矩阵分析第四章
第四章 多重共线性
二、产生多重共线性的背景
多重共线性产生的经济背景主要有几种情形: 1.经济变量之间具有相同的变化趋势。 2.模型中包含滞后变量。 3.利用截面数据建立模型也可能出现多重共线性。 4.样本数据的原因。
6
第二节 多重共线性的后果
一、完全多重共线性产生的后果
1.参数的估计值不确定 2.参数估计值的方差无限大
Cov( ˆ2 ,
ˆ3 )
(1
r223 )
r23 2
x22i
x32i
随着共线性增加,r23趋于1,方差将增大。同样 协方差的绝对值也增大,它们增大的速度决定于
方差扩大(膨胀)因子(variance inflation factor, VIF)
VIF
1
1 r223
这时
Var(ˆ2 )
4.多重共线性严重时,甚至可能使估计的回归系数 符号相反,得出完全错误的结论。(如引例)
18
第三节 多重共线性的检验
本节基本内容: 简单相关系数检验法 方差扩大因子法 直观判断法 病态指数检验法 逐步回归法
19
一、简单相关系数检验法 简单相关系数检验法是利用解释变量之间的线性 相关程度去判断是否存在严重多重共线性的一种 简便方法。适用于只有两个变量的情形。
2
x32i 0
同理
ˆ3
这说明完全多重共线性时,参数估计量的方差将 变成无穷大。
9
关于方差的推导
Var(ˆ2 )
x32i (x22i ) (x32i )
(x2i x3i )2
2
1 X21 X 1 X22
1 X2n
第四章 矩阵分析及矩阵函数
4.1 矩阵分析 4.2 矩阵函数 4.3 线性常系数微分方程 4.4 变系数微分方程组
4.1 矩阵分析
4.1.1基本概念 4.1.1基本概念 定义4 定义 4.1.1 令 A 1 , A 2 , L 是 m× n的矩阵序 × 列 , 假 如 存 在 一 个 ×n m×
k →∞
令 A 1 , A 2 , L是 m× n 矩阵序列 , × 矩阵序列,
构造部分和序列 A 1 , A1 + A 2 , A 1 + A 2 + A 3 ,L 假如其收敛到 A , 记
∞
∑A
∞
k
= A
k =1
则级数∑ A k ,收敛到 A .
k =1
定理4 (Cauchy收敛准则 收敛准则) 定理4.1.3 (Cauchy收敛准则) 收敛, ∑ A 收敛,当且仅当矩阵序列
∞
Ak
收敛, 收敛,则矩
k =1
特别地,对于方阵 A ,如果级数 ∑ 特别地, 收敛, 收敛,则矩阵幂级数 收敛. ∑ A 收敛.
k
∞
Ak
∞
k =1
k =1
定理4 定理 4.1.5
设幂级数
∑
∞
a k λk
的收敛半径 时 , 矩阵
k =0
是 R , 则当方阵 A 的范数 幂级数 ∑ a k A k 收敛。 收敛。
于是矩阵幂级数
1 1 2 1 3 I + A + A + A + LL 1! 2! 3!
1 2 1 4 I − A + A − LL 2! 4! 1 3 1 5 A − A + A − LL 3! 5!
《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案
第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。
矩阵分析引论第四版课后练习题含答案
矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
计算方法(5)第四章 矩阵特征值和特征向量的计算
n
使得u 0
i xi
i 1
n
n
uk Auk1 Aku0 Ak (i xi ) iik xi
i 1
i 1
1k [1x1
n i2
( i 1
)k i xi ]
由1 0, 1 i (i 2, 3,L , n) 得
lim(
对矩阵A1用乘幂法得 uk
A-1u
k
,
1
因为A1 的计算
比较麻烦,而且往往不能保持矩阵A 的一些好性质
(如稀疏性),因此,反幂法在实际计算时以求解
方程组
Auk
u
k
,代替迭代
1
uk
A-1uk1求得uk,每
迭代一次要解一线性方程组。 由于矩阵在迭代过
程中不变,故可对A 先进行三角分解,每次迭代只 要解两个三角形方程组。
且
2 p 2 n
2 n
2 n 2
1 p 21 2 n 1 n 1 2 1 n 1
因此,用原点平移法求1可使收敛速度加快。
三、反幂法
反幂法是计算矩阵按模最小的特征值及特征向 量的方法,也是修正特征值、求相应特征向量的最 有效的方法。
0
0.226
0.975
做正交相似变换后得到
3.366
A3 =R2 AR2T
0.0735
0.317
0.0735 1.780
0
0.317
0
1.145
雅可比方法是一个迭代过程,它生成的是一个矩阵的
序列 Ak,当k越大时Ak就越接近于对角矩阵,从而
第四章特殊变换及其矩阵
或
QT AQ = Q- 1 AQ = B
则称 A 酉相似(或正交相似)于 B 。
定义2 酉空间 V 上的线性变换 T 称为 V上的一个
正规变换,如果存在 V的标准正交基 ε1,ε2 ,L , εn 及对角矩阵 D º diag(d1,d2 ,L , dn ) 满足
U3U H U2U H (UU H )2
因此
3
2 ,即
3 i
2 i
,故 i 0 或 1.
从而 2 ,故
A2 U2U H UU H A.
课后思考
1、实正规矩阵是否正交相似于实 对角矩阵?
2、实正规矩阵是否正交相似于复 对角矩阵?
3、实正规矩阵正交相似于什么 样的“简单”矩阵?
(η1,η2 ,L , ηn ) = (ε1,ε2 ,L , εn )U
显然过渡矩阵 U 是酉矩阵(请试试自己证明一下)
因为 (η1,η2 ,L , ηn ) B
= (T (η1 ), T (η2 ),L , T (ηn )) = (T (ε1 ), T (ε2 ),L , T (εn ))U = (ε1,ε2 ,L , εn ) AU = (η1,η2 ,L , ηn )U H AU 所以 B = U H AU ,结论成立。
| ti i |2 | ti n |2 | t1i |2 | ti i |2 当 i 1 时,有 | t11 |2 | t12 |2 | t1 n |2 | t11 |2
可知 t1 j 0 ( j 2, 3, , n)
对 i 施行归纳法,可得 ti j 0 (i j) ,证毕。
矩阵分析第4章课件
矩阵满秩分解不唯一;但同一矩阵的两个满
秩分解的因式矩阵之间存在密切的关系( 见P153,定理4.1.2).
ACrmn r=rank A min{m,n} A的秩等于它的行秩、列秩或行列式秩。A的行( 列)秩是它的最大线性无关组的行(列)数;A 的行列式秩是它的非0子式的最大阶数。 A=BC rank A rank B & rank A rank C
1
初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变
换等价于左(右)乘A以可逆矩阵Pr,…,P1(P1,…,Pr).
③可适当选第一类初等矩阵的乘积P使PA(AP)的 行(列)是A的行(列)的任意排列.可适当选第三类 初等矩阵P(i,j(k))中的k使P(i,j(k))A的(i,j) 元变为0.可适当选第二类初等矩阵P(i(k))中的k 使P(i(k))A的非零(i,i)元变为1.综合起来推出: Er 0 存在初等矩阵的乘积P和Q,使 PAQ= 0 0 m n 其中r=rank A.一般地,ACr 都 Er 0 存在m,n阶可逆阵P和Q使 PAQ=
a11 a1n AB ann
b11 b1n a11b11 * bnn annbnn
a11 a1n 1/ a11 * 1 1 A , aii 0 det A 0 A det A a 1/ a nn nn
1 C11 1 2 C21 1 C22 2 n Cn1 1 Cn 2 2 ... Cnn n
线代第四章之实对称矩阵
目录
• 实对称矩阵基本概念与性质 • 实对称矩阵的相似对角化 • 特征值与特征向量在实对称矩阵中的应用 • 正交变换在实对称矩阵中的应用 • 线性方程组在实对称矩阵中的解法探讨 • 总结回顾与拓展延伸
01
实对称矩阵基本概念与性质
定义及性质
性质:实对称矩阵 具有以下性质
不同特征值对应的 特征向量正交;
拓展延伸:其他类型矩阵简介
反对称矩阵
反对称矩阵是一个方阵,其转置等于它本身的相反数,即$A^T = -A$。反对称矩阵在量 子力学和刚体动力学等领域有着重要应用。
正交矩阵
正交矩阵是一个方阵,其逆等于它本身的转置,即$A^{-1} = A^T$。正交矩阵在保持向 量长度和角度不变的线性变换中扮演着重要角色。
举例说明
例子1
例子2
例子3
矩阵$A=begin{pmatrix} 1 & 2 2 & 1 end{pmatrix}$是一个实对称矩阵 ,因为$A^T=A$。
矩阵$B=begin{pmatrix} 1 & 2 -2 & -1 end{pmatrix}$不是一个实对称 矩阵,因为$B^T neq B$。
应用正交变换求解
03
04
05
首先,通过正交变换将 然后,根据对角矩阵
矩阵$A$化为对角矩阵, $D$的元素即为原实对
即求解$P^{-1}AP = D$, 称矩阵的特征值,求得
其中$D$为对角矩阵, 特征值为$lambda_1 =
$P$为正交矩阵;
1, lambda_2 = 4$;
最后,根据特征值求得 对应的特征向量,并构 造正交矩阵$P = begin{pmatrix} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} end{pmatrix}$。
矩阵分析引论--第四章--矩阵的奇异值分解-向量范数、向量范数
n
定义 E
xi2 .
证明
a,
都与
b
E 等价.
i 1
利用 a
x11 xn n
( x1 ,, xn )连续,
在单位球面
S
y
(
y1 ,,
yn
n
)
i 1
yi2
1
上
取得最大值M与最小值m.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
第二节 矩阵范数
定义4-2 设A P nn ,定义非负实数 A, 满足下列条件: (1) 正定性:当A 0时,A 0; (2) 齐次性:kA k A (k P); (3) 三角不等式: A B A B . (4) AB A B . 则称非负实数||A||为n×n方阵的范数.
则称非负实数||||为向量 的范数.
此时称线性空间V 为线性赋范空间.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
设V是内积空间, V ,定义: ( , ),
则 • 是V上的一个范数,称为由内积引出的范数.
向量范数的性质:
P124, 1
(1) 0 0 ;
(2) 0时, 1 1 ;
A F
n
2
aij
tr( AH A)
i , j1
是与 2相容的方阵范数. 称为 F 范数.
注:当U为酉矩阵时,有
F范数的优点
A的酉相似矩阵的F 范数相同.
目录 上页 下页 返回 结束
第四章第一二节 向量范数、矩阵范数
常用的矩阵范数
n
(1)
A
1
max
1 jn i 1
aij
矩阵分析 史荣昌 魏丰 第三版 第一章-第四章 期末复习总结
定义:若v1 ∩ v =0,则称v1与v 2 的和空间v1 + v 2 是直和,用记号v1 ⊕ v 2 表示
交
定理:设v1与v 2 是线性空间 v 的两个子空间,则下列命题是等价的
与
和
1) v1 + v 2 是直和
直和
2) dim(v1 + v 2 )= dim v1 + dim v 2
3)
设
α1, αn1
α α α 定理:(1) R(T)=span{T( 1 ),T( 2 ),……T( n )} (2)rank(T)=rank(A)(A 为线性映射在基下的矩阵表示)
值
域
性质:
设 A 是 n 维线性空间V1 到 m 维线性空间V2 的线性映射,α1,α2, αn
是V1
的一组基,β1,
β
2
,
,βm
是V2 的一组基。线性映射 A 在这组基下的矩阵表示是 m*n 矩阵 A=( A1,A2, An
特征子
空间
V 性质:特征子空间 λi 是线性变换 T 的不变子空间。
定义:设v1和v 2 是数域 F 上的两个线性空间,映射 A:v1 → v 2 ,如果对任何两个向量 α1,α2 ∈ v1和任何数λ ∈ F
有 A( α1 + α2 )=A( α1 )+A( α2 ),A( λα1 )= λ A( α1 ),便称 映射 A 是由v 1到v 2 的线性映射
α1,α
2
,
αr
生成的子空间为
T
的不变子空间。
0 0 an,r +1 ann
λ α λ λ λ 定义:设 T 是数域 F 上 n 维线性空间 V 的线性变换,如果 V 中存在非零向量α,使得 T(α)= 0 , 0 ∈F.那么称 0 是 T 的一个特征值,称α是 T 的属于 0 的一个特征向量。
矩阵分析第四章.
B1(θ1θ2)C1 = B1C1
因此有:
B1HB1(θ1θ2)C1C1H = B1HB1C1C1H
其中B1HB1, C1C1H都是可逆矩阵, 因此
θ1θ2 = E ⇒ θ2 = θ1−1
(2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
第二节 矩阵的正交三角分解(UR, QR分解)
0 0 0 0 0
0 0 0 0 0
1 3 0 −1/ 3 10 / 3
r1←r1 −2r2 → 0 0 1 2 / 3 1/ 3
0 0 0 0
0
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1,
3 3
而C就是变换后的前2行,即
C
=
1 0
3 0
β1 k β 21 1
+
β
2
Lα3L=Lk31β1 + k32β2 + β3
α r = kr1β1 + kr2 β2 + L + kr,r−1βr−1 + βr
并设 ν1 =|| β1 ||−1 β1,ν 2 =|| β2 ||−1 β2 , L,ν r =|| βr ||−1 βr , 则:
α1 = k1′1ν1 α 2 = k2′1ν1 + k2′2ν 2 α3 = k3′1ν1 + k3′2ν 2 + k3′3ν 3
A = U1RLU2.
证明: 自己练习
− 2 1 − 2
例1:求矩阵A的UR分解, 其中
1 1 1
A=
1 1
−1 −1
0 1
解:设A = (α1, α2, α3), 用Schmidt方法将α1, α2, α3标准正交
矩阵的对角化
第四章 矩阵的对角化对于一个矩阵,如何寻找一个适当的变换,在将其变为简单矩阵的同时,保留原矩阵的一些重要特征,这是矩阵论中一个非常重要的问题.在这一问题的研究中,矩阵的特征值和特征向量的概念起着非常重要的作用.拉普拉斯在19世纪初提出了矩阵的特征值的概念.1854年,若尔当研究了矩阵化为标准形的问题.1885年,埃尔米特证明了一些特殊矩阵的特征根的性质,后人称之为埃尔米特矩阵的特征根性质,凯莱1858年发表了一篇论文《矩阵论的研究报告》,文中研究了方阵的特征方程和特征值的一些基本结果,克莱布什等证明了对称矩阵的特征根性质.在这一问题的研究史上,值得重点介绍的是下面两位数学家:第一位是柯西,他首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称矩阵都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值.第二位是弗罗贝尼乌斯,正是他引入了矩阵的相似变换、合同矩阵、正交矩阵等重要概念,并讨论了正交矩阵和合同矩阵的一些重要性质.矩阵的特征值、特征向量和仿真的对角化理论与方法是矩阵理论的重要组成部分,它不仅在数学的各个分支有重要作用,而且在其他学科如工程技术、数量经济分析等领域有着广泛的应用.本章主要讨论方阵的特征值与特征向量理论及方阵在相似意义下的对角化问题,并应用这些理论和方法解决一些实际问题.§4.1 矩阵的特征值和特征向量一、特征值和特征向量的概念在工程实践及经济管理等许多领域中,经常会遇到矩阵的特征值和特征向量的问题.例 4.1.1 经济发展与环境污染是当今世界亟待解决的两个突出问题.为了研究某地区经济发展与环境污染之间的关系,可建立如下数学模型:设,分别为某地区目前 x 0 y 0 的环境污染水平与经济发展水平,,分别为该地区若干年后的环境污染水平与经济 x 1 y 1 发展水平,且有如下关系{ x 1 = 3x 0 +y 0 ,y 1 = 2x 0 +2y 0 .令, , α0=( x 0 y 0 )α1=( x1 y 1 )A =(3 12 2),则上述关系的矩阵形式为:α1=Aα0 .若该地区目前的环境污染水平与经济发展水平,则若干年后的环境污染水α0=( x0 y 0)=(11)平与经济发展水平为,α1=Aα0=(3 12 2) ( x 0 y 0 )=(3 12 2) (11)= (44)=4 (11)=4α0即这里,4就是矩阵的一个特征值,是矩阵的对应于4的一个特征向量.Aα0=4α0 . A α0 A 定义 4.1.1 设为阶矩阵,若存在数 和维非零列向量,使得A n λ n α ;Aα=λα则称为矩阵的特征值,是矩阵一个特征值,称为的属于(或对应于)特征值 λ A α0 A α0 A λ的特征向量.由特征值、特征向量的定义可得(1)若为的属于的特征向量,则对于非实数,也是的属于的特征向量. α A λk k α A λ (2)若为的属于的特征向量,则当时,也是的属于α1,α2 A λα1+α2 ≠0 α1+α2 A 的特征向量.λ (3)若为的互异特征值,分别为的属于的特征向量,则λ1, λ2 A α1,α2 A λ1, λ2 .α1≠α2 证 若,则,即,故.由于 α1≠α2 Aα1≠Aα2 λ1α1=λ2α2=λ2α1 (λ1-λ2)α1=0,所以,矛盾.因此.λ1≠λ2α1≠0 α1≠α2 例 4. 1. 2 求阶方阵的一个特征值与所对应的特征向量. n A =(a b b ⋯ bb a b ⋯ b ⋮ ⋮ ⋮ ⋮b b b ⋯ a )解 取维向量,则n α=(1,1,1)TAα=(a b b ⋯ bb a b ⋯ b⋮ ⋮ ⋮ ⋮b b b ⋯ a)(11⋮1)=(a +(n -1)b a +(n -1) b ⋮ a +(n -1) b),故 是的一个特=[a +(n -1) b ](11⋮1)= [a +(n -1) b ] αλ=a +(n -1) b A 征值,是 属于特征值的一个特征向量.α A λ=a +(n -1) b 将(4.1.1)写成下面形式.(λE ‒A ) α=0根据定义,特征向量就是齐次线性方程组α. (4.1.2)(λE ‒A ) α=0的非零解.由于(4.1.2)有非零解的充要条件是其系数行列式等于零,故知阶矩阵的 n A 特征值满足方程λ .|λE ‒A |=0为叙述方便,引入下面的概念.定义4. 1. 2 .,称A =(a ij )n ×n f (λ)=|λE ‒A |=|λ-a 11 a 12 ⋯ -a 1n -a 21 λ-a 22 ⋯ -a 2n⋮ ⋮ ⋮-a n1 -a n2 ⋯ λ- a nn|为矩阵 的特征多项式,称为的特殊矩阵,称为的特征方程.A λE ‒A A |λE ‒A |=0 A 二、特征值与特征向量的计算求阶矩阵的特征值和特征向量,可按如下步骤进行:n A (1)计算的特征多项式,求出特征方程的全部根,,,.A |λE ‒A | |λE ‒A |=0 λ1λ2⋯λn对每个特征值,求解齐次线性方程组.设它的一个基础λi (i =1,2,⋯,n )(λi E ‒A ) x =0解系为,,,,则的属于的全部特征向量为αi 1 αi 2 ⋯αini A λ i k 1αi 1+k 2αi 2+⋯+k n iαini其中为不全为零的任意常数.k 1,k 2,⋯,k ni 限于本教材适用范围,我们将不讨论的复特征值和特征向量.A 例 4.1.3 求矩阵A =(2 -2 0- 2 1 -20 -2 0)的特征值与特征向量.解 矩阵的特征多项式A f (λ)=|λE ‒A |=|λ-2 2 02 λ-1 20 2 λ|=λ(λ-1)(λ-8)-8(λ-1)=(λ+2)(λ-1)(λ-4)由,得的特征值为,,.|λE ‒A |=0 A λ1=-2λ2=1λ3=4对于,解齐次线性方程组,即解方程组λ1=-2(-2E ‒A )x =0,,(- 4 2 02 -3 20 2 -2)(x 1x 2x 3)=(000)得基础解系,所以对应于,的全部特征向量为(ξ1=(1,2,2)Tλ1=-2k 1ξ1).k 1≠0对于,解齐次线性方程组 ,即解方程组λ2=- 2 (E ‒A )x =0(- 1 2 02 0 20 2 1)(x 1x 2x 3)=(00)得基础解系,所以对应于的全部特征向量为ξ2=(2,1,‒2)T λ2= 1 ()..k 2ξ2k 2≠0对于,解齐次线性方程组 ,即解方程组λ3= 4 (4E ‒A )x =0,(2 2 023 20 2 4)(x 1x 2x 3)=(0)得基础解系,所以对应于的全部特征向量为(ξ3=(2,-2,1)Tλ3= 4 k 3ξ3)..k 3≠0例4.1.4 求矩阵的特征值与特征向量 A =(3 2 42 0 24 2 3)解 矩阵的特征多项式为Af (λ)=|λE ‒A |=|λ-3 - 2 -- 2 λ - -4 -2 λ |λ+1 0 -(λ+1)- 2 λ -2 -4 -2 λ-3|=,(λ+1)2(λ‒8)由,得的特征值为,.|λE ‒A |=0A λ1= λ2=-1 λ3=8对于,解齐次线性方程组,即解方程组λ1= λ2=-1(-E ‒A )x =0,(- 4 - 2 -4- 2 - 1 -2- 4 - 2 -4)(x 1x 2x 3)=(000)得基础解系,,所以对应于的全ξ1=(-1,2,0)T ξ2=(2,1,‒2)Tλ1= λ2=-1部特征向量为不全为零).k 1ξ1+k 2ξ2(k 1,k 2 对于,解齐次线性方程组,即解方程组λ3=8(8E ‒A )x =0,(5 -2 -4- 2 8 -2- 4 - 2 5 )(x 1x 2x 3)=(00)得基础解系,所以对应于的全部特征向量为().ξ3=(-1,2,0)Tλ3=8 k 3ξ3k 3≠0例4.1.5求矩阵的特征值与特征向量 A =(3 2 42 0 24 2 3)解 矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-3 1 -- 2 λ - -1 1 λ-2||λ-2 1 -1λ-2 λ -1 0 1 λ-2|=,(λ-2)2(λ‒1)由,得的特征值为,.|λE ‒A |=0A λ1= λ2=2 λ3=1对于,解齐次线性方程组,即解方程组λ1= λ2=2(2E ‒A )x =0,(- 1 1 -1- 2 2 -1- 1 1 0)(x 1x 2x 3)=(000)得基础解系,所以对应于的全部特征向量为ξ1=(1,1,0)Tλ1= λ2= 2 ().k 1ξ1k 1≠0对于,解齐次线性方程组,即解方程组λ3=1(E ‒A )x =0,(- 2 1 -1- 2 1 -1- 1 1 -1)(x 1x 2x 3)=(000)得基础解系,所以对应于的全部特征向量为(.ξ2=(0,1,1)Tλ3= 1 k 2ξ2k 2≠0)三、特征值与特征向量的性质定理4.1.1 阶矩阵与有相同的特征值.n A A T证 由,知与有相同的特征多项式,故有相同的特|λE ‒A T|=|(λE ‒A )T|=|λE ‒A | A A T 征值.定理4.1.2 设 ,,,,为方阵的个特征值,则有A =(a ij )n ×n λ1λ2⋯λn A n (1)λ1λ2⋯λn =|A |(2)λ1+λ2+⋯+λn =a 11+a 22+⋯+a nn 证 (1)根据多项式因式分解与方程根的关系,有(4.1.3)|λE ‒A |=(λ-λ1)(λ-λ2)⋯(λ-λn )令,得,即λ=0|-A |=(-λ1)(-λ2)⋯(-λn )=(-1)nλ1λ2⋯λn |A |=λ1λ2⋯λn(2)比较(4.1.3)式两端的系数,右端为,而左端含λn -1-(λ1+λ2+⋯+λn )的项来自的主对角线元乘积项,其含的λn-1|λE ‒A |(λ-a 11)(λ-a 22)⋯(λ-a nn ) λn-1系数为,因此.-(a 11+a 22+⋯+a nn )λ1+λ2+⋯+λn =a 11+a 22+⋯+a nn 我们将阶矩阵的主对角线元之和称为矩阵的迹,记为,即n A A tr (A )=tr (A )a 11+a 22+⋯+a nn =∑=nk 1a kk推论4.1.1 阶矩阵可逆的充分条件是它的任一特征值不等于零.n A 定理4.1.3 若为的特征值,是对应的特征向量,则 λ A α (1)为的特征值();a λ a A a 为常数(2)为的特征值();λk A kk 为正整数(3)为的多项式,则为的特征值;若φ(x ) x φ( λ)φ(A )(4)若可逆,则为的特征值,为的特征值.A 1λA -11λ|A |A *证 由题意,对于,有.α≠0 Aα=λα(1)因为,故为的特征值.(a A )α=a (Aα)=(a λ)αa λ a A (2)由,得,假设Aα= λα A 2α=A ( Aα)=A ( λα)=λ( Aα)= λ2α,A k-1α=λk-1α于是,由数学归纳法知结论成立.A k α=A ( Ak-1α)=A ( λk -1α)=λk-1( Aα)= λk α(3)设,由(2)可得φ(x )=a 0x m +a 1x m-1+⋯+a m-1x+a mφ(A )α=(a 0A m +a 1A m -1+⋯+a m-1A+a m E ) α =a 0A m α+a 1A m-1α+⋯+a m -1Aα+a m α=a 0λm α+a 1λm-1α+⋯+a m-1λα+a m α=(a 0λm +a 1λm -1+⋯+a m-1λ+a m ) α=φ(λ)α(4) 由于可逆,故,从而,故 A λ≠0α= A -1(Aα)= A -1(λα)=λ A-1α,,即为的特征值,为的特征A-1α=1λαA*α=| A | A-1α=| A |λα 1λ A-11λ|A |A*值.下面给出方阵的特征向量的性质A 定理4.1.4 设,,,阶矩阵的个互异特征值,,,,分别是 λ1λ2⋯λm 为 n A m α1 α2 ⋯αm 的属于,,,的特征向量,则,,,线性无关. A λ1λ2⋯λm α1 α2 ⋯αm 证 设有常数,,,,使得k 1 k 2 ⋯k m k 1α1+k 2α2+⋯+k m αm =0(4.1.4)上式两边左乘,并注意到,有A Aαi =λi αi (i =1,2,⋯,m ).k 1λ1α1+k 2λ2α2+k m λm αm =0 按这种方法再依次用左乘(4.1.4),并应用定理4.1.3(2)的结论,A 2, A 3, A m ‒1得{k 1α1+k 2α2+k m αm =0 ,k 1λ1α1+k 2λ2α2+k m λm αm =0,k 1λ21α1+k 2λ22α2+k m λ2m αm =0, ⋯⋯⋯⋯k 1λm ‒11α1+k 2λm ‒12α2+k m λm ‒1m αm =0.上式的矩阵形式为,( k 1α1,k 2α2,⋯,k m αm )(1 λ1 ⋯ λm ‒111λ2 ⋯ λm ‒12⋮ ⋮ ⋮1 λm ⋯ λm ‒1m)=(0,0,⋯,0)上式左端第二个矩阵的行列式是范德蒙德行列式,因为,,,互不相同,λ1λ2⋯λm 所以该行列式的值不为零,从而该矩阵可逆.用该矩阵的逆右乘上述等式两边,得( k 1α1,k 2α2,⋯,k m αm )=(0,0,⋯,0)于是,由于特征向量非零,因此只有k i αi =0(i =1,2,⋯,m )αi (i =1,2,⋯,m )上式才能成立,故,,,为线性无关.k i =0(i =1,2,⋯,m )α1 α2 ⋯αm 定理4.1.5 设,,,阶矩阵的个互异特征值,,,,分别λ1λ2⋯λm 为 n A m α1 α2 ⋯αm是的属于的线性无关的特征向量,则向量组A λi (i =1,2,⋯,m ),,,, ,,,, ,,,线性无关.α11 α12 ⋯α1s 1α21 α22 ⋯α2s 2αm 1 αm 2 ⋯αms m 证明略.关于对应同一个特征值的特征向量间的关系,有定理4.1.6 设阶矩阵的重特征值,则对应于的线性无关特征向量个数 λ0是 n A k λ0不超过个.k 显然,依据定理4.1.6,当特征值为单根时,对应的线性无关特征向量个数只能是一个.根据上述定理,对于阶矩阵的每一个不同的特征值,求出齐次线性方程组n A λi 的基础解系,就得到的属于的线性无关的特征向量.然后,把它们合成一(λi E ‒A )=0 A λi 起所得的向量组仍然线性无关.阶矩阵的线性无关特征向量个数不大于.n A n 例4.1.6 设三阶矩阵的特征值为,,求A λ1= λ2=3 λ3=3(1)的特征值.A -1(2)的特征值.A *(3)的特征值及.B =12(A-1)2‒A *+2E |B |解 (1)由于,因此可逆,由定理4.1.3知,的特征值为,| A |= λ1λ2λ3=12≠0A A-112,.1213(2)由定理4.1.3知,的特征值为6,6,4.A *(3)因为,所以).A *|A |A-1=12A -1B =12(A -1)2‒A*+2E 设,由定理4.1.3知,的特征值为,1,2,3.f (x )=12x 2-12x +2B =f (A-1)f(1λi )i =由此得的特征值为,.B -1,-1,-23|B |=-23例4.1.7 设为正交矩阵,若,则有特征值A |A |=-1A -1证 ,则f (λ)=|λE ‒A |.f (-1)=|-E ‒A |=|(-E ‒A )T|=|-E ‒A T|另一方面,由于及,则AA T=E |A |=1f (-1)=|-E ‒A |=|AA T -A |=|A || ‒A T-E |=-| -E ‒A T|=-f (-1)因此,即为的特征值.f (-1)=0-1 A §4.2 相似矩阵在矩阵的运算中,对角矩阵的运算最方便.我们自然要问,一个阶矩阵是否可化为n A 对角矩阵,且保持矩阵的一些重要性质不变.本节将讨论这个问题.A 一、相似矩阵定义4.2.1 设为阶矩阵,如果存在阶可逆矩阵,使得A ,B n n P ,P -1AP =B 则称矩阵相似,也称是的相似矩阵,记作.可逆矩阵称为相似变换矩阵.A 和B B A A~B P例4.2.1 设,,,不难A =(4 6 0- 3 -5 0- 3 -6 1)B =(1 0 00 1 00 0 -2)P =(- 2 0 -11 0 10 1 1)验证可逆,且.由于P P-1=(- 1 - 1 0- 1 - 2 11 2 0),P-1AP =(- 1 - 1 0- 1 - 2 11 2 0)(4 6 0- 3 -5 0- 3 -6 1)(- 2 0 -11 0 10 1 1)=(1 0 00 1 00 0 -2)=B 因此.A~B 两个相似矩阵是等价矩阵,相似是方阵之间的一种关系,这种关系具有如下性质:(1)反身性:;A~A (2)对称性:若,则;A~B B~A (3)传递性:若,,则;A~B B~C A~C 此外,相似矩阵之间有许多共同的性质定理4.2.1 若阶矩阵相似,则n A 与B (1);|A |=|B |(2);R (A )=R (B )(3)有相同的特征值;A ,B (4).tr (A )=tr (B )证 由于,故存在阶可逆矩阵,使得,从而A~B n P P-1AP =B (1);|B |=|P-1AP |=|P-1||A ||P |=|A |(2);R (B )=R (P -1AP )=R (AP )=R (A )(3)由于,|λE ‒B |=|λE ‒P-1AP |=|P-1(λE ‒A )P |=|λE ‒A |即有相同的特征多项式,于是有相同的特征值.A ,B A ,B (4)由(3)即得.推论4.2.1 若阶矩阵对角矩阵n A 与 =Λ(λ1λ2⋱λn)相似,则,,,是的个特征值. λ1λ2⋯λn A n 例4.2.2 若,求.A =(- 2 0 02 x 23 1 1)~(- 1 0 00 2 00 0 y )=B x ,y 解 对角矩阵的特征值为,,,由于,因此的特征值也为,,,再B -12y A~B A -12y 根据相似矩阵有相同的迹,可得{|2E ‒A |=0,tr (A )=tr (B ),解此方程组得, .x =0y =-2两个相似的矩阵还具有下面的性质(1)若,则,(为正整数);A~B k A~kB A m ~B mm (2)若, 为多项式,则;A~B f (x )f (A )~f (B )(3)若,且均可逆,则;A~B A ,B A-1~B -1证 只证,故存在阶矩阵,使得,从而 A m ~B m n P P-1AP =B B m =(P-1AP )m =(P-1AP )(P-1AP )⋯(P-1AP )=P-1A mP即.A m ~B m 二、矩阵的对角化定义 4.2.2 若阶矩阵与对角矩阵相似,则称可对角化.n A A 相似矩阵有许多共同性质.在我们熟悉的矩阵中,形式最简单的一类是对角矩阵,若矩阵相似于对角矩阵,就可以借助对角矩阵来研究,如何求相应的可逆矩阵?下面我A A P 们就来讨论这个问题.定理4.2.3 阶矩阵相似于对角矩阵(可对角化)的充要条件是有个线性无n A A A n 关的特征向量.证 必要性.设存在可逆矩阵,使得P = =.P -1AP Λ(λ1λ2⋱λn)设,由 =,得 =,或P =( α1,α2,⋯,αn )P-1AP ΛAP P Λ.A ( α1,α2,⋯,αn )=( α1,α2,⋯,αn )(λ1λ2⋱ λn)即A ( α1,α2,⋯,αn )=( λ1α1,λ2α2,⋯,λm αm )因此,,由于可逆,因此,从而Aαi =λi αi (i =1,2,⋯,n )P |P |≠0都是非零向量,故分别是的属于特征值αi (i =1,2,⋯,n )α1,α2,⋯,αn A 的特征向量,再由可逆知线性无关.λ1,λ2,⋯,λn P α1,α2,⋯,αn 充分性.设分别是的属于特征值的个线性无关的特征α1,α2,⋯,αn A λ1,λ2,⋯,λn n 向量,则有Aαi =λi αi (i =1,2,⋯,n )取,因为线性无关,所以可逆,于是有P =( α1,α2,⋯,αn )α1,α2,⋯,αn P =.,AP P(λ1λ2⋱λn)即个m==P -1AP (λ1λ2⋱λn)Λ因此矩阵相似于对角矩阵.A A 因为特征向量不是唯一的,所以矩阵不具有唯一性.P 推论4.2.2 若阶矩阵有个互异的特征值,则必可对角化.n A n A 推论4.2.3 阶矩阵的充分必有条件是的每个重特征值个线性无n A 可对角化A t i λi 都有ti 关的特征向量.即.R (λi E ‒A )=n ‒t i由上述结论可知,例4.1.3和例4.1.4给出的矩阵可对角化,而例4.1.5给出的矩阵不能对角化.根据上述结论,可以归纳出将矩阵对角化的具体计算步骤:A (1)求出阶矩阵的全部互异特征值,,,,它们的重数依次为n A λ1λ2⋯λn ;t 1,t 2,⋯,t m (t 1+t 2+⋯+t m =n )(2)求的特征向量.对每个特征值求方程组的基础解系,即为的对A λi (λi E ‒A ) x =0应的线性无关的特征向量,设为;ξi 1,ξi 2,⋯,ξis i (i =1,2,⋯,m )(3)判定是否可对角化.若对每一个特征值都有,则可对A s i =t i (i =1,2,⋯,m )A 角化,否则不可对角化;(4)当可对角化时,令A ,P =(ξ11,ξ12,⋯,ξ1s i,ξ21,ξ22,⋯,ξ2s i,ξm 1,ξm 2,⋯,ξmsm),,,,,,,,,Λ=diag (λ1λ1⋯λ1,λ2λ2⋯λ2,⋯,λm λm ⋯λm )且可逆,且有P =P-1AP Λ例4.2.3 判断下列矩阵能否对角化,若能,求出可逆矩阵,使得为对角矩阵.P P -1AP (1);(2)A =(1 2 22 1 ‒2‒2 ‒2 1)B =(1 2 22 1 22 2 1)(1)矩阵的特征多项式为解A f (λ)=|λE ‒A |=|λ-1 -2 -2- 2 λ- 1 22 2 λ-1||λ-1 λ-1 λ-1- 2 λ- 1 22 2 λ-1|= (λ+1)(λ-1)(λ-3)由,得的特征值为.由推论4.2.2知,矩阵可对|λE ‒A |=0A λ1=-1,λ2=1,λ3=3A 角化.下面求可逆矩阵.P 个1个2个s m r 1+r 2r 1+r 3对于,解齐次线性方程组,即解方程组λ1=-1(-E ‒A )x =0,,(- 2 - 2 -2- 2 - 2 22 2 -2)(x 1x 2x 3)=(000)得基础解系,即为即为的属于特征值的一ξ1=(-1,-1,0)Tξ1 ξ2A λ1=-1个特征向量.对于,解齐次线性方程组 ,即解方程组λ2= 1 (E ‒A )x =0(0 ‒2 ‒2‒2 0 22 2 0)(x 1x 2x 3)=(0)得基础解系,即为的属于特征值的一个特征向量.ξ2=(1,-1,0)Tξ2A λ2=1对于,解齐次线性方程组 ,即解方程组λ3= 3 (3E ‒A )x =0,(2 -2 -2- 2 2 22 2 2)(x 1x 2x 3)=(0)得基础解系,即为的属于特征值的一个特征向量.ξ3=(0,1,-1)Tξ3A λ3=3取,则有P =( ξ1,ξ2,ξ3)=(1 1 0- 1 - 1 10 1 -1)==P-1AP (- 1 0 00 1 00 0 3)Λ(2)矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-1 -2 -2- 2 λ- 1 22 2 λ-1|λ-1 λ-1 λ-1- 2λ- 1 22 2 λ-1|= (λ+1)2(λ-5)由,得的特征值为.|λE ‒B |=0B λ1=λ2=‒1,λ3=5当−1,即−1为的二重特征值时,λ1=λ2=B .(-E ‒B )=(‒2 ‒2 ‒2‒2 ‒2 ‒2‒2 ‒2 ‒2) 1 1 1)故,依据推论4.2.3知,矩阵可对角化,且−1对应的线R (-E ‒B )=1=3‒2B λ1=λ2=性无关的特征向量为,.ξ1=(-1,1,0)T ξ2=(-1,0,1)T对于,解齐次线性方程组 ,得的属于特征值的一个特λ3= 5 (5E ‒A )x =0B λ3=5征向量.取ξ3=(1,1,1)T取,P =( ξ1,ξ2,ξ3)=(- 1 - 1 11 0 1 0 1 1)则有==P-1BP (- 1 0 00 ‒1 00 0 5)Λ对于可对角化的矩阵,我们可应用来求方程的幂,例如,对上例的矩阵,A A m =P Λm P ‒1A 我们有(1 2 22 1 ‒2‒2 ‒2 1)m=( 1 1 0‒1 ‒1 10 1 ‒1)=((‒1)m 0 00 1 00 0 3m)=(0 ‒1 ‒11 1 11 1 0).=(1 1+(‒1)m +1 1+(‒1)m +13m ‒1 3m ‒1+(‒1)m (‒1)m ‒11‒3m 1‒3m 1)例4.2.4 设,求为何值时,A =(a 1 11 a ‒11 ‒1 a )A (1)可对角化,并求相似变换矩阵;A P (2)为可逆矩阵.A ‒E 解 (1)矩阵的特征多项式为A f (λ)=|λE ‒A ||λ-a -1 -1- 1 λ-a -1- 1 2 λ-a| |λ-a -1 -1 -1λ-a -1 λ-a 10 1 λ-a |=,(λ-a -1)2(λ-a +2)故的特征值为,.A λ1=λ2=a +1λ3=a ‒2对于,解齐次线性方程组 ,得的属于特征值λ1=λ2=a +1((a +1)E ‒A )x =0A 的特征向量为,.λ1=λ2=a +1ξ1=(1,1,0)T ξ2=(-,0,1)T 对于,解齐次线性方程组 ,得的属于特征值 λ3=a -2((a -2)E ‒A )x =0A 的特征向量为.依据推论4.2.3知,无论为何值,矩阵 λ3=a -2 ξ3=(-1,1,1)T a 均可对角化.令A ,P =( ξ1,ξ2,ξ3)=(1 1 -11 0 10 1 1)则有==.P-1AP (a +1 0 00 a +1 00 0 a ‒2)Λ的特征值分别为,故当时,为可逆矩阵.(2)A ‒E a ,a ,a ‒3a ≠0且a ≠3A ‒E §4.3 实对称矩阵的对角化c 1+c 2我们已经知道,不是每个矩阵都能对角化.但本节讨论的实对称矩阵一定可以对角化,而且还能正交相似于对角矩阵,本节将讨论实对称矩阵的对角化.一、实对称矩阵的特征值与特征向量的性质实对称矩阵的特征值和特征向量具有一些特殊的性质,这些性质可以保证实对称矩阵一定可以对角化.定理4.3.1 实对称矩阵的特征值都是实数.证 设为实对称矩阵的特征值,为对应的特征向量,即λα.Aα=λα, α≠0用表示的共轭复数,用表示的共轭复向量.则λλαα,Aα=Aα=Aα=λα=λα于是有,αT Aα=αT (Aα)=λαT α及,αT Aα=(αT A T )α=(Aα)T α=(λα)T α=λαT α以上两式相减得,(λ-λ)αT α=0以为所以.因而,即为实数.α≠0αTα≠0λ=λλ由于实对称矩阵的特征值为实数,那么为实矩阵,则齐次线性方程组的解A λE ‒A 可取为实向量,亦即实对称矩阵的特征向量为实向量.(λE ‒A )x =0A 定理4.3.2 实对称矩阵不同的特征值对应的特征向量正交,证 设为实对称矩阵的两个不同的特征值,分别为它们对应的特征向量,则λ1,λ2A α1,α2,从而,因是对称矩阵,又有Aα1=λ1α1,Aα2=λ2α2,α1,α2≠0αT 1(Aα2)=λ2∙αT1α2A ,于是αT 1(Aα2)=αT 1(A T α2)=( Aα1)T α2=( Aα1)T α2=( λ1α1)T α2=λ1α1T ∙α2,(λ1-λ2)α1Tα2=0因,故,即正交.λ1≠λ2α1Tα2=0α1与α2定理4.3.3 设为阶实对称矩阵,为的重特征根,则,从而特A n λA k R (λE ‒A )=n ‒k 征值恰好对应个线性无关的特征向量.λk 证明略.二、实对称矩阵的对角化由定理4.3.2和定理4.3.3可得定理4.3.4 设为阶实对称矩阵,则存在正交矩阵,使得A n Q =Q-1AQ Q T AQ =Λ=(λ1λ2⋱λn)其中,,,为的全部特征值.λ1λ2⋯λn A (1)求出阶实对称矩阵的全部互异特征值,,,,它们的重数依次为n A λ1λ2⋯λn ;t 1,t 2,⋯,t m (t 1+t 2+⋯+t m =n )(2)求实对称矩阵的特征向量.对每个特征值求方程组的基础解系,A λi (λi E ‒A ) x =0即为的对应的线性无关的特征向量,设为;(i =1,2,⋯,m )(3)用施密特正交化方法,将特征向量正交αi1,αi 2,⋯,αis i(i =1,2,⋯,m )单位化,得到一个标准正交向量组αi 1,αi 2,⋯,αiti ;βi 1,βi 2,⋯,βit i(i =1,2,⋯,m )(4)令Q =(β11,β12,⋯,β1t i,β21,β22,⋯,β2t i,βm 1,βm 2,⋯,βmtm),,,,,,,,,Λ=diag (λ1λ1⋯λ1,λ2λ2⋯λ2,⋯,λm λm ⋯λm )且为正交矩阵,且有Q =Q-1AQ Q T AQ =Λ例4.3.1 设实对称矩阵,A = (3 -3 -3- 3 1 -1- 3 - 1 1)求正交矩阵,使得=为对角矩阵.Q Q-1AQ Q T AQ =Λ解 矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-3 3 33 λ-1 13 1 λ-1|λ+3 λ+3 λ+33 λ-1 13 1 λ-1|=,(λ+3)(λ-2)(λ-6)=0因此,矩阵的特征值为.A λ1=-3,λ2=2,λ3=6对于,解齐次线性方程组,得基础解系;λ1=-3(-3E ‒A )x =0α1=(1,1,1)T对于,解齐次线性方程组 ,得基础解系; λ2= 2 (2E ‒A )x =0 α2=(0,1,-1)T对于,解齐次线性方程组 , 得基础解系.λ3= 6 (6E ‒A )x =0 α3=(-2,1,1)T将单位化,可得α1,α2,α3β1=1||α1||α1=13(1,1,1)T ,β2=1||α2||α2=12(0,1,‒1)T ,β3=1||α3||α3=16(-2,1,1)T令个s 1个2个s m,Q =( β1,β2,β3)=(130 2613 1216131216)且为正交矩阵,且有Q =Q-1AQ Q TAQ =(- 3 0 00 2 00 0 6)例4.3.2 设实对称矩阵,A = (1 -2 2- 2 - 2 42 4 -2)求正交矩阵,使得=为对角矩阵.Q Q-1AQ Q T AQ =Λ解 矩阵的特征多项式为A f (λ)=|λE ‒A ||λ-1 2 -22 λ+2 -4- 2 - 4 λ+2| |λ-1 2 -22 λ+2 -4- 2 λ- 2 λ-2|=,(λ-2)2(λ+7)=0因此,矩阵的特征值为.A λ1=λ2=2,λ3=7对于,解齐次线性方程组,得基础解系,λ1=λ2=2(2E ‒A )x =0α1=(-2,1,0)T;先将向量正交化,令α2=(2,0,1)T α1,α2,η1=α1=(-210),η2=α2=-(α2,η1)(η1,η1)=(201)+45(-210)=(25451)再单位化,得β1=1||η1||η1=15(-210),β2=1||η2||η2=135(245),对于,解齐次线性方程组 , 得基础解系,λ3=‒7 (‒7E ‒A )x =0 α3=(1,2,‒2)T将其单位化,得.β3=1||α3||α3=13(12-2)令r 3+r 2,Q =( β1,β2,β3)=(‒25235 1315435 230 535 ‒23)且为正交矩阵,且有Q =.Q -1AQ Q TAQ = (2 0 00 2 00 0 ‒7)例4.3.3设三阶实对称矩阵的特征值为,且属于的特征矩阵A λ1=-1,λ2=λ3=1λ1为,求矩阵.α1=(0,1,1)TA 解 设的属于特征值的特征向量为,则与正交,即A λ2=λ3=1α=(x 1,x 2,x 3)Tαα1,α1T α=x 2+x 3=0解此齐次线性方程组,得基础解系,α2=(1,0,0)T ,α3=(0,1,‒1)T 易见,正交. 将单位化,可得α2,α3 α1,α2,α3β1=1||α1||α1=12(011),β2=1||α2||α2=(100),β3=1||α3||α3=12(01-1)令,则为正交矩阵,且有Q =( β1,β2,β3)=12(0 2 01 0 11 0 -1)Q =,Q-1AQ Q TAQ =B =(- 1 0 00 1 00 0 1)从而= A =Q-1BQ Q T BQ.=12(0 2 01 0 11 0 ‒1)(- 1 0 00 1 00 0 1)(0 1 12 0 00 1 ‒1)=(1 0 00 0 ‒10 ‒1 0)习题四(A )一、填空题1.为阶矩阵,有非零解,则必有一个特征值__________.A n Ax =0A 2.若阶可逆方阵的每行元之和,则的一个特征值为__________.n A a 3A-1+E3.设为三阶可逆矩阵,其逆矩阵的特征值为,则行列式 __________.A 12,13,14|E ‒A |=4.设是非奇异矩阵的一个特征值,则矩阵有一个特征值为__________.λ=2(13A 2)-15.若为四阶实对称矩阵,,且2是的三重特征值,则的相似对角矩阵为A |A |=-8A A __________.6. 设为阶矩阵,有个互异特征值,,,,则有__________A n A n λ1λ2⋯λn R (λj E ‒A ) x =.(j =1,2,⋯,n )7. 设是三阶实对称矩阵,的特征值是,则有__________.A A λ1=λ2=1,λ3=-1A 2n =8.若四阶矩阵相似,矩阵的特征值为,则A 与B A 12,13,14,1513|(B -1)∗+E |=__________.9.已知矩阵只有一个线性无关的特征向量,则A =(4 a2 6)a =__________.10.设,矩阵,为自然数,则行列式α=(2,1,‒1)T A =ααTn |a E -A*|=__________.11.已知三阶实对称矩阵的一个特征值为,对应的特征向量,且A λ=2α=(1,2,‒1)T的主对角线上的元全为零,则A A =__________.二、单选题1.设三阶矩阵,则的特征值是()A =(1 1 01 0 10 1 1)A (A )1,0,1(B )1,1,2(C )-1,1,2(D )1,-1,12.若可对角化的阶矩阵只有一个特征值为零,则=()n A R (A )(A )n(B )n -1(C )1(D )03.设是矩阵对应于特征值的特征向量,当线性组合满足αi (i =1,2,⋯,n )A A ∑=ni 1k i αi ()时,也是矩阵对应于特征值的特征向量.∑=ni 1k i αi A A (A )其中不全为零k i (B )其中全不为零k i (C )是非零向量(D )是任一向量4.当满足下列()条件时,矩阵相似.A 与B (A )|A |=|B |(B )R (A )=R (B )(C )有相同的特征多项式.A 与B (D )阶矩阵有相同的特征值且个特征值不相同.n A 与B n 5.已知二阶实对称矩阵的特征向量为,且,则必为的特征向量的是()A (-31)|A |<0A (A )c (-31)(B )c (13),c ≠0(C )c 1(-31)+c 2(13),c 1≠0,c 2≠0(D )c 1(-31)+c 2(13),c 1,c 2不同时为零6.设是阶非零矩阵,,下列命题不正确的是().A n A k=O (A )的特征值只有零A (B )必不能对角化A (C )必可逆E +A +⋯+A k ‒1(D )只有一个线性无关的特征向量A 7.设是矩阵的两个不同的特征值,对应的特征向量分别为,则λ1,λ2A α1,α2线性无关的充要条件是()α1,A (α1+α2)(A )λ1=0(B )λ2=0(C )λ1≠0(D )λ2≠08.若,且,则以下结论错误的是().A 2≠A A ≠E ,O (A )|A ‒E |≠0(B )(A +E )‒1=‒12(A ‒2E )(C )为不可逆矩阵A (D )必有特征值A λ≠09.设,有特征值(二重),且有三个线性无关的特A =(1 -1 12 4 x- 3 - 3 5)A λ1=6,λ2=2A 征向量,则.x =( )(A )4(B )2(C )‒4(D )‒210.设为阶矩阵,且相似,则()A ,B n A 与B (A )λE ‒A =λE ‒B(B )均相似于同一个对角矩阵.A 与B (C )有相同的特征值与特征向量A 与B (D )对任意常数,相似.a aE ‒A 与aE ‒B 三、综合题1.求下列矩阵的特征值与特征向量:(1); (2);(3);(4).(- 3 2- 2 2)(0 0 10 1 01 0 0)(2 0 01 2 -11 0 1)(2 0 01 1 11 ‒1 3)2.判断下列矩阵是否相似:A 与B (1);A =(3 1 00 3 10 0 3),B =(3 0 00 3 00 0 3)(2);A =(1 1 00 2 10 0 3),B =(1 0 00 2 00 0 3)(3);A =(1 1 00 2 10 0 3),B =(1 0 00 2 00 0 3)(4).A =(1 1 1 11 1 1 11 1 1 11 1 1 1),B =(4 0 0 01 0 0 01 0 0 01 0 0 0)3.求下列矩阵的次幂:k (1); (2).A =(- 3 2- 2 2)A =(1 4 20 -3 40 4 3)4. 求正交矩阵,使得为对角矩阵.Q Q TAQ (1);(2).A =(0 -2 2- 2 - 3 42 4 - 3)A =(1 2 42 -2 24 2 1)5.设是阶方阵的一个特征值,且的伴随矩阵为,试证:λ0n A (λ0E ‒A )(λ0E ‒A )*的非零列向量是的属于的特征向量.(λ0E ‒A )*A λ06.考察栖息地在同一地区的兔子和狐狸的生态模型,对两种动物的数量的相互依存的关系可用以下模型描述:{x n = 1.1x n -1-0.15y n -1,y n =0.1x n -1-0.85y n -1,n =1,2,⋯,其中分别表示第年时兔子和狐狸的数量,而分别表示基年时兔子和狐x n ,y n x 0,y 0(n =0)狸的数量,记,αn =(x ny n )n =1,2,⋯,(1)写出该模型的矩阵形式;(2)如果,求.α0=(x0y 0)=(108)αn (3)求lim n→∞αn7.设相似,求:(1),的值;(2)求正交矩阵A =(1 0 00 a 10 1 0),B =( 1 0 00 b 00 0 -1)a b ,使得.Q Q-1AQ =B8.设向量,,且记α=(a 1,a 2,⋯,a n )T ≠0β=(b 1,b 2,⋯,b n )T≠0αT β=0,,求的所有特征值及特征向量.A =αβTA 9.设为三维单位列向量,且,令,证明与相似.α,βαT β=0A =αT β+αβTA (1-1 0)10.设三阶实对称矩阵的特征值是1,2,3,矩阵的属于特征值1,2,3的特征向量分别是A A ,.(1)求的属于特征值3的特征向量;(2)α1=(-1,-1,1)T α2=(1,‒2,‒1)T A 求矩阵.A 11.设,若为的一个特征值,求;(2)求.A =(2 0 01 2 -11 0 k ) λ=1A k An(-142)12.若存在正交矩阵,使矩阵同时相似于对角矩阵,则必有.Q A ,B AB =BA 13.设为三阶实对称矩阵,且满足条件,的秩.求的全部特征值.A A 2+2A =O A R (A )=2A 14.设,求实对称矩阵,使.A =(8 -2 -2- 2 5 4- 2 - 4 5)B A =B 215.设矩阵,求.(1 4 20 -3 40 4 3)A 201316.已知三阶矩阵相似,是的两个特征值,,计算A 与B λ1=1,λ2=2A |B |=2,其中是的伴随矩阵.|(A +E )‒1 OO ( 2B )∗|( 2B )∗2B (B )1.设矩阵相似,相似,试证:与相似.A 与B C 与D (A O O C )(B O O D )2.已知与对角矩阵相似,求.A =(0 0 1x 1 2x -31 0 0)x 3.设是阶实幂等矩阵(即),且.A n A =A 2R (A )=r ,0<r ≤n (1)设,试证.R (A ‒E )=s ,0<s ≤n r +s =n (2)试证:;A~( 1 ⋱ 10 ⋱0)(3)求|2E -A |4.设为阶矩阵,,证明A ,B n R (A )+R (B )<n (1)是的相同特征值;λ=0A 与B (2)与的基础解系线性相关.Ax =0Bx =05.设是阶矩阵,且任一非零维向量都是的特征向量,试证:A n n A (即为数量矩阵)A =(λλ⋱λ)A 6.已知三阶非零矩阵满足,,,证明:A ,B A =A 2B 2=B AB =BA =O (1)0和1必是的特征值;A 与B (2)若的特征向量,的个特征值两两互异,若的特征向量总是的特α是A 关于λ=1A n A B 征向量,证明.AB =BA 8.设均为阶非零矩阵,且满足,,证明:A ,B n A +A 2=O B +B 2=O (1)是的特征值.-1A ,B (2)若,分别是对应于的特征向量,则线AB =BA =O ξ1,ξ2A ,B λ=-1ξ1,ξ2性无关.答案:一、填空题1.02.3a+13.-64.345.. (2 22-1)6. n -17.E8.14 7639.-1210.a 2(a -6n )11.A =(0 2 22 0 -22 -2 0)二、单选题1-5 CBCDB 6-10 DDADD 三、综合题1.(1),,的属于的特征向量;的属于λ1=1λ2=-2A λ1=1c 1(12),c 1≠0A的特征向量.λ2=-2c 2(21),c 2≠0(2),;的属于的特征向量为λ1=λ2=1λ3=-1A λ1=λ2=1不全为零;的属于的特征向量为c 1(101)+c 2(010),c 1,c 2A λ3=-1c 3(-101),c 3≠0(3),;的属于的特征向量为不λ1=λ2=2λ3=1A λ1=λ2=2c 1(101)+c 2(010),c 1,c 2全为零;的属于的特征向量为.A λ3=1c 3(011),c 3≠0(4)(三重);的属于的特征向量为不全为零;λ=2A λ=2c 1(110)+c 2(-101),c 1,c 22.(1)不相似;(2)相似;(3)相似.3.(1);A k=13((-1)k 2k +2- 1 (-1)k +12k +1+2(-1)k 2k +1- 2 (-1)k +12k +4)(2)当为偶数时,;当为奇数时,k A k =(1 0 -1+5k0 5k 00 0 5k )k .A k =(1 4×5k -1 -1+3×5k -10 - 3×5k -1 4×5k -10 4×5k -1 3×5k -1 )。
第4章 矩阵分解-1
3 1 2
H2H1A
0
1
1
R
0
0
0
矩阵分析简明教程
Q
H
H 1
21
1 3
1
2 2
2 1 2
2
2 1
所求的QR分解为
A QR
8
0 1 1
矩阵分析简明教程
1 5
x1 2x2 x3 5x2 3x3
0 1
12 5
x3
4 5
(
5 12
)
3 5
x1
2x2 x2
1 3 0
x3
1 3
(2)
x1 x2
1 3 0
x3 1 3
(II )
矩阵分析简明教程
用矩阵形式表示,系数矩阵
1 2 1 r12 (3) 1 2 1
角方阵 R ,使得
A QR
当 m = n 时 ,Q 就 是 酉 矩 阵 或 正 交 矩 阵 。
矩阵分析简明教程
例 1 将下列矩阵进行QR分解:
1 2 2
A
1 0
0 1
2 1
4
矩阵分析简明教程
解: 1 (1,1,0, )T, 1 1 (1,1,0)T
1
||
1 1
||
1 (1,1, 0)T 2
定理4.2.3 设 e1 1, 0,, 0T C n ,
x1 , x2 ,, xn T C n , 0
令
x1
x1 ,
,
x1
0 ,u
e1
x1 0
e1
H E 2uuH是n 阶Householder矩阵,且
H -e1
矩阵分析简明教程
定理4.2.4(QR分解)设 A为 任 一 n 阶 矩 阵 则必存在 n 阶酉矩阵 Q 和 n 阶上三角方
代数方法 第四章__高等代数选讲之矩阵
分析 因为可逆矩阵的定义式是矩阵相乘可交换次序 的等式,所以可将等式进行恒等变形,变成 CD E(或
DC E )的形式,此时有 DC E(或 CD E )。利用 此可证明矩阵乘积可交换的命题。
由 AB A B 得 AB A B O ,即 AB A B E E 于是有 A E B E E 证 因为 A E 与 B E 为 n 阶方阵,则由上式知 A E 可逆 且 B E 为 A E 的逆矩阵,从而有 B E A E E 即 BA A B E E 故
A
k T
k
T
k 1
T T
k 1
A
注
当 A 可分解为 A T 时,可知 r A 1.
方法4 分块对角矩阵求方幂:对于分块对角矩阵
A1 A AN A1k 有 Ak
A' A, AA' A2 0
2 2 a11 a12 a12n 0 2 2 2 a21 a22 a2 n 0 则有 2 2 2 an1 an 2 ann 0
又 aij R 则有 aij 0, i, j 1,2,n
xy y2 yz
xz 1 1 1 yz 1 1 1 z 2 1 1 1 1,于是 T x2 y 2 z 2 3.
例2.
12
13
14
15
AB 例3、设 A, B 为 n 阶方阵,且 AB A B ,证明: BA.
3
T 例3、设 A 是 n 阶矩阵,满足 AA E,且 A 0 ,
数值分析第四章矩阵特征值与特征向量的计算
其中0为代选择参数. 设A的特征值为1, 2, …, n, 则B的特征值为1-0, 2-0, …, n-0, 而且A, B
的特征向量相同.
13
仍设A有主特征值1, 且 1 2 , 取0使得
1 0 i 0 (i 1) 1-0是B=A0I的主特征值
且
max i 0 i1 1 0
征向量为u1, u2, …, un. 且满足条件
1 2 3 n
u1, u2, …, un线性无关.
此时1一定是实数!
幂法: 求1及其相应的特征向量.
1通常称为主特征值.
3
➢ 幂法基本思想
给定初始非零向量x(0), 由矩阵A构造一向量序列
x(1) Ax(0)
x
(
2
)
Ax (1)
10
2 1 0 例 用幂法求矩阵 A 0 2 1
0 1 2
的按模最大的特征值和相应的特征向量.
取 x(0)=(0, 0, 1)T, 要求误差不超过103.
解 y0 x0 0,0,1T ,
x1 Ay0 0,1,2T , 1 max(x(1) ) 2,
y(1) x(1) (0,0.5, 1)T
能达到较y(0)0,
x(k1) ( A * I )1 y(k )
y ( k 1)
x ( k 1) max(x(k1) )
(k 0,1,2, ).
迭代向量x(k+1)可以通过解方程组求得
( A * I )x(k1) y(k)
26
1
x(2) Ay(1) 0.5, 2, 2.5T ,
2
max(x(2) )
2.5,
11
y(2) x(2) (0.2, 0.8, 1)T
线性代数_第四章
从本例中,我们可看出,对角矩阵中的主对角
元素恰为矩阵A的特征值.相似因子阵P的各
列恰为A的对应于各特征值的特征向量.
定理7 n阶矩阵A相似于对角矩阵的充 要条件是A有n个线性无关的特征向量.
证明: (必要性)
设A相似于对角矩阵D=diag{l1, l2, …,ln} ,
则存在可逆矩阵P,使得P-1AP=D,即AP=PD。
即可求得对于该特征值的特征向量.
例4 设三阶方阵
1 2 2 A= 2 1 2 2 2 1
求A的特征值与对应于各特征值 的全部特征向量.
解: 求解特征方程|lI – A|=0,
l 1
| l I A |= 2 2 2 2 2 = (l 1) 2 (l 5) l 1
l 1
2
证明: 设A~B,则存在可逆矩阵X,使得B=X-1AX.
于是:
|B|=|X-1AX|=|X-1||A||X|=|A|
故行列式是相似不变量.
定理3
ห้องสมุดไป่ตู้
矩阵的迹是相似不变量.
定理4 矩阵的秩是相似不变量.
证明: 设矩阵A, B相似, 从而有A与B等价. 故A与B的秩相等. 因此, 矩阵的秩是相似不变量.
定理4 如果l1, l2, …,ls如(s<n)是n阶方阵A的
不同特征值,而 X , X , i1 i2
, X iri (i=1,…,s)是
A的对应于特征值li的ri个线性无关的特征向 量,那么向量组
X11 , X12 , , X1r1 , X 21, X 22 ,
, X 2r2
, X s1 , X s 2 ,
对P进行分块有:P=(X1, X2, …,Xn),代入上式
数值计算方法第04章矩阵特征值与特征向量的计算
• 计算出k=2时的x和y。 • (保留四位有效数字)
22
二、幂法的加速
因为幂法的收敛速度是线性的,而且依赖 于比值 2 /1 ,当比值接近于1时,幂法收敛 很慢。幂法加速有多种,介绍两种。
23
幂法的加速—原点移位法 应用幂法计算矩阵A的主特征值的收敛速度主要
26
4 14 0 , 2.9, 用原点移位法求矩 例:A 5 13 0 0 1 0 2.8 -4 阵A的按模最大的特征值,要求误差不超过10 。 解:取x (0) (1,1,1)T , 按x ( k 1) ( A pI )x (k )进行计算 0 6.9 14 A 0 I 5 10.1 0 0 0.1 1 (3.1000568, 2.214326, 0.9687661) 4 3.1000568
在一定条件下, 当k充分大时: 相应的特征向量为:
x 1 x
x
( k 1)
( k 1 ) i (k ) i
10
幂法的理论依据 对任意向量x(0), 有 x ( 0 ) i ui , 设1不为零.
i 1 n
x
( k 1 )
Ax
n i 1
(k )
A
k 1
x
(0) n
1 Ak 1 i ui i k i ui i 1
k 1 1
2 k 1 n k 1 1u1 ( ) 2 u2 ( ) n un 1 1
k 1 1 1u1
故 1 xi( k 1) xi( k ) x(k+1)为1的特征向量的近似向量(除一个因子外).
第四章 向量和矩阵范式
定义4.8 A或b的微小变化(又称扰动或摄动) 引起方程组Ax=b解的巨大变化,则称方程组 为病态方程组,矩阵A称为病态矩阵。否则方 程组是良态方程组,矩阵A也是良态矩阵 为了定量地刻画方程组“病态”的程度, 要对方程组Ax=b进行讨论,考察A(或b)微 小误差对解的影响。为此先引入矩阵条件数的 概念。
§4.2 向量和矩阵的范数 为了研究线性方程组近似解的误差估计
和迭代法的收敛性, 有必要对向量及矩阵的
“大小”引进某种度量----范数的概念。向量 范数是用来度量向量长度的,它可以看成是 二、三维解析几何中向量长度概念的推广。 用Rn表示n维实向量空间。
记笔记
§4.2 向量和矩阵的范数
定义4.2 对任一向量XRn, 按照一定规则确定一个实 数与它对应, 该实数记为||X||, 若||X||满足下面三个 性质:
x* R n , 记 一向量序列,
x x , x ,, x
* * 1 * 2
x
(k )
x
(k ) 1
,x
(k ) 2
,, x
(k ) T n
* T n
。如果
lim xi( k ) xi*
k
(i =1,2,…, n),
则称 x ( k ) 收敛于向量 x * ,记为
1 例4.12 计算方阵 A 0 0
解
0 2 2
0 的三种范数 4 4
1 例4.12 计算方阵 A 0 0
解
3
0 2 2
0 的三种范数 4 4
A
A
1
max aij max 1,4,8 8
1 j 3 i 1
max aij max 1,6,6 6
第四章_微分运动和雅可比矩阵
雅可比矩阵的求解(矢量积法):
Jli的求法: (1) 第i关节为移动关节时
qi di
qi di
仅平移关节产生的线速度
设某时刻仅此关节运动、其余的关节静止不动,则:
ve JLiqi
设bi-1为zi-1轴上的单位矢量,利用它可将局部坐标下的 平移速度di转换成基础坐标下的速度:
ve bi1d i
例:斯坦福六自由度机器人除第三关节为移动关节 外,其余5个关节为转动关节。此处用微分法计算 TJ(q)
d2[c2(c4c5c6 s4s6)s2s5c6]s2d3(s4c5c6 c4s6) d2[c2(c4c5s6 s4c6)s2s5s6]s2d3(s4c5s6 c4c5)
T J1
d2(c2c4s5 s2c5)s2d3s4s5 s2(c2c4s6 s4s6)c2s5c6
s2(c2c4s6 s4c6)c2s5s6
s2c4s5 c2c5
d 3(c4c5c6 s4s6 )
d
3 (c4c5c6
s
4
c
6
)
T4c6
s4s5
s5c6
s5s6
T J3
c5 0
0
0
4.1 雅可比矩阵的定义
把机器人关节速度向量 q i 定义为:
q[q1 q2
qn]T
式中, qi(i=1,2,...,n) 为连杆i相对i-1的角
速度或线速度。
手抓在基坐标系中的广义速度向量为:
V[x y z x y z]T
式中, v为线速度,ω为角速度分量。
从关节空间速度向操作空间速度映射的 线性关系称为雅可比矩阵,记为J,即:
三维空间运行的机器人,其J阵的行数恒为6(沿/绕
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Er m× r r×n ( ) 其中 : B = P ∈ C , C = E D ∈ C r r r 0
若A的前r个列线性相关, 则∃P∈Cmm×m, Q∈Cnn×n使
D −1 E r −1 ( ) ⇒ A = P E D Q = BC r 0 0 −1 E r m× r −1 r ×n ( ) 其中 : B = P ∈ C , C = E D Q ∈ C r r r 0
Er PAQ = 0
1 3 2 1 4 1 3 2 1 4 r ←r −r −r → 2 6 1 0 7 例 1: A = 2 6 1 0 7 3 9 3 1 11 0 0 0 0 0
3 3 2 1
1 3 2 1 4 1 3 2 1 4 r ←r − 2r ( −1 / 3) r − − → 0 0 − 3 − 2 − 1 − − → 0 0 1 2 / 3 1 / 3 0 0 0 0 0 0 0 0 0 0
令 k1AHx1 + k2AHx2 + L + kpAHxp = 0 上式两边左乘A, 得: λi(k1x1 + k2x2 + L + kpxp) = 0 ⇒ k1 = k2 = L = kp = 0 表明AHxj, j = 1, 2, L, p是线性无关的. 因此, AAH的p重特征值也是 AHA的p重特征值. 再由AAH 与AHA的大于零的特征值个数相同, 可知: λi = µi > 0, i = 1, 2, L, r. 定义:设 定义: 设A∈Crm×n, AAH的正特征值为λi, AHA的正特征值为 µi. 称
2 2 1 2
1 3 0 − 1 / 3 10 / 3 r ←r − 2r → 0 0 1 2 / 3 1 / 3 0 0 0 0 0
1 1 2
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1 , 3 3
将上两式代入BC = B1C1,得: B1(θ1θ2)C1 = B1C1 因此有: B1HB1(θ1θ2)C1C1H = B1HB1C1C1H 其中B1HB1, C1C1H都是可逆矩阵, 因此 θ 1θ 2 = E ⇒ θ 2 = θ 1− 1 (2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
1 A= 1 1
1 −1 −1
1 0 1
解:设A = (α1, α2, α3), 用Schmidt方法将α1, α2, α3标准正交 化得:
−3 1 1 1 ν1 = , , , 2 3 2 3 2 3 2 3 2 1 1 ν2 = ,− ,− 0, 6 6 6 1 1 ν3 = , 0, 0, − 2 2
⇒
α 1 = β1 α 2 = k 21 β1 + β 2 α 3 = k 31 β1 + k 32 β 2 + β 3 LLL α r = k r1 β1 + k r 2 β 2 + L + k r , r −1 β r −1 + β r
并设 ν 1 =|| β1 ||−1 β1 , ν 2 =|| β 2 ||−1 β 2 , L , ν r =|| β r ||−1 β r , 则:
R∈Crr×r 正线上三角
由R1, R2均为正线上三角矩阵可得: R1 = R2, 从而U1 = U2. 推论1:设A∈Crr×n, 则∃唯一的U∈Urr×n和r阶正线下三角矩 阵L使 A = LU. 证明: 自己练习
推论2:设A∈Cnn×n, 则∃唯一的U1∈Un×n和n阶正线上三角矩 阵R使 A = U1R; ∃唯一的U2∈Un×n和n阶正线下三角矩阵L使 A = LU2. 证明: 自己练习 推论3:设A∈Crm×n, 则∃唯一的U1∈Urm×r, U2∈Urr×n, r阶正线 上三角矩阵R, 及r阶正线下三角矩阵L使 A = U1RLU2. − 2 1 − 2 证明: 自己练习 例1:求矩阵A的UR分解, 其中
定理:设 定理: 设A∈Crm×n, λi是AAH的特征值, µi是AHA的特征值, λi, µi都是实数。另设 λ1 ≥ λ2 ≥ L ≥ λr > λr+1 = λr+2 = L = λm = 0, µ1 ≥ µ2 ≥ L ≥ µr > µr+1 = µr+2 = L = µn = 0, 则: λi = µi > 0, i = 1, 2, L, r. 证明:设 证明 :设x1, x2, L, xp是AAH (正规矩阵)对应于特征值λi≠0的 线性无关特征向量, 则: AAHxj = λixj, j = 1, 2, L, p. ⇒ (AHA)(AHxj) = λi(AHxj), j = 1, 2, L, p. 表明AHxj, j = 1, 2, L, p是AHA(正规矩阵)的对应于特征值 λi≠0的特征向量(但还不能认为λi = µi ). 下证它们也是线性 无关的.
δ i = λi = µ i , i = 1, 2, L, r
为矩阵A的正奇异值, 简称为奇异值.
• 若A本身为正规阵, 即AAH = AHA, 则: A = Udiag(λ1, λ2, L, λn)UH ⇒ ⇒ ⇒ AH = Udiag(λ1, λ2, L, λn)UH AAH = Udiag(λ1λ1, λ2λ2, L, λnλn)UH A的奇异值的奇异值,先介绍两个引理。 引理:∀A∈Cm×n, rank(AHA) = rank(AAH) = rank(A) 定理:先证 定理: 先证rank(AHA) = rank(A). 只需证: N(AHA) = N(A), 因为∀A∈Cm×n, dimN(A) = n − dimR(A) = n − rank(A). 设x∈Cn是AHAx = 0的解, 则xHAHAx = 0, 即(Ax)HAx = 0, 从而Ax = 0; 反之, 设x∈Cn是Ax = 0的解, 则AHAx = 0. 所以, N(AHA) = N(A). 又因∀A∈Cm×n: rank(A) = rank(AH), 从而有 rank(AHA) = rank(AAH) = rank(A) 引理:∀A∈Cm×n, AHA及AAH都是正半定Hermite矩阵
β1 = α 1
(α 2 , β1 ) β2 = α2 − β1 ( β1 , β1 )
β3 = α3 −
LLL
(α 3 , β1 ) (α , β ) β1 − 3 2 β 2 ( β1 , β1 ) (β 2 , β 2 )
(α r , β1 ) (α r , β 2 ) (α r , β r −1 ) βr = αr − β1 − β2 − L − β r −1 ( β1 , β1 ) (β 2 , β 2 ) ( β r −1 , β r −1 )
1
所以,也可取第2列和第3列构成E2, 则B由A的第2列和第3列 构成, 即
3 2 B = 6 1 , 9 3
而C就是再次变换后的前2行,即
1 / 3 1 0 − 1 / 9 10 / 9 C = 0 0 1 2 / 3 1/ 3
定理: 定理 :若A = BC = B1C1均为A的满秩分解,则: (1) ∃θ∈Crr×r满足B = B1θ, C = θ −1C1; (2) CH(CCH)−1(BHB)−1BH = C1H(C1C1H)−1(B1HB1)−1B1H . 证明: 证明 :(1) 由BC = B1C1有: BCCH = B1C1CH 因为 rankC = rank(CCH) (见本章第三节引理), CCH∈Crr×r, 由 上式得: B = B1C1CH(CCH)−1 = B1θ1, 其中 θ1 = C1CH(CCH)−1. 同理可得: C = (BHB)−1BHB1C1 = θ2 C1, 其中: θ2 = (BHB)−1BHB1.
第四章 矩阵分解 矩阵分解
第一节 矩阵的满秩分解
定理:设 定理 :设A∈Crm×n, 则∃B∈Crm×r, C∈Crr×n使 A = BC 证明:设 证明 :设A的前r个列线性无关, 则∃P∈Cmm×m, 使
⇒
Er D PA = (即对A做初等行变换 ) 0 0 D −1 E r −1 E r A=P 0 0 =P 0 (E r D ) = BC
而C就是变换后的前2行,即
1 3 0 − 1 / 3 10 / 3 C = 0 0 1 2 / 3 1/ 3
1 / 3 1 0 − 1 / 9 10 / 9 r /3 A → 0 0 1 2 / 3 1 / 3 0 0 0 0 0
− 2/ 3 4/ 3 4 / 6 1/ 6 0 1/ 2
例2:设A∈Cnm×n, b∈Cn, 证明方程组 Ax = b 有解, 并求其解 证明: 对A∈Cnm×n, 一定∃唯一的U∈Unm×n和n阶正线上三角 矩阵R, 使得: A = UR. 从而: URx = b ⇒ UHURx = UHb 由于UHU = En, ⇒ Rx = UHb ⇒ x = R−1UHb
− 2 1 − 2 1 x1 1 1 0 1 练习:求方程组 :求方程组 练习 x2 = 的解。 1 −1 0 − 2 x3 1 1 −1 1
第三节
矩阵的奇异值分解
⇒
′ k11 A = (α 1 , α 2 , L, α r ) = (ν 1 , ν 2 , L, ν r )
U∈Urm×r A = UR
′ L k r′1 k 21 ′ O k 22 M O k r′, r −1 ′ k rr