制冷剂的压焓图
空调制冷原理-压焓图
汽液共存
过冷
饱和
过热
焓
17
P-H 图简介 :
饱和区
饱和区 汽液混合物
18
P-H 图简介 :
质量恒定
压力
100% 液体
焓
19
P-H 图简介 :
质量恒定
压力
100% 蒸汽
焓
20
P-H 图简介 :
质量恒定
压力
20% 液体 80% 蒸汽
焓
21
P-H 图简介 :
质量恒定
LATENT
22
P-H 图简介 :
39
在P-H图上描绘制冷循环:
节流装置
节流装置
压力
22.8 psia
节流装置 • 热力膨胀阀 • 节流孔板 • 浮球阀
6 psia
焓
40
在P-H图上描绘制冷循环:
制冷循环
压力
冷凝器 节流装置
蒸发器
压缩机
焓
制冷剂将热 量排放给冷
却介质
制冷剂从负 荷吸收热量
41
在P-H图上描绘制冷循环:
制冷循环效率
59
冷水机组工作原理(P-H图)
压力
焓
满液式蒸发器 (冷冻水在管内流动 ,制冷剂在管外)
60
冷水机组工作原理(P-H图)
压力
焓
挡液板 (阻止制冷剂液体
进入吸气管)
61
冷水机组工作原理(P-H图)
导流叶片 (冷量控制) 压力
焓
62
冷水机组工作原理(P-H图)
吸气管
TURNING VANES
SUCT PIPE
压缩机
压头
35
在P-H图上描绘制冷循环:
02-压焓图解读
压焓图该图纵坐标是绝对压力的对数值lnp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、压焓图曲线的含义压焓图曲线的含义可以用一点(临界点)、二线(饱和液体线、饱和蒸汽线)、三区(液相区、两相区、气相区)、五态(过冷液状态、饱和液状态、过热蒸汽状态、饱和蒸汽状态、湿蒸汽状态)和八线(等压线、等焓线、饱和液线、饱和蒸汽线、等干度线、等熵线、等比体积线、等温线)来概括。
2、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
3、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
4、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP) 等焓线(Enthalpy) 饱和液体线(Saturated Liquid) 等熵线(Entropy)等容线(Volume)干饱和蒸汽线(Saturated Vapor) 等干度线(Quality) 等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
压焓图怎样看
在制冷工程中,最常用的热力图就是制冷剂的压焓图。该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线
临界点K为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。
实际循环中不仅存在制冷剂蒸汽过热,而且还存在制冷剂液体过冷的问题。制冷剂液体温度低于同一压力下饱和状态的温度称为过冷,其温度差称为过冷度。过冷度的大小取决于冷凝系统的设计和制冷剂与冷却介质之间的温差。在具有过冷的循环中,过冷度越大,对循环越有利。它可以使单位制冷量增加,从而导致制冷系数增加。 5-6即为过冷过程。冷凝后的制冷剂经过膨胀阀,节流降压降温,使制冷剂压力由 P k 降至 P 0 ,温度由过冷温度降至 t 0 ,并进入气液两相区。经过膨胀阀时,制冷剂焓值不变。但膨胀阀节流是一个不可逆的过程,故6-7节流过程用虚线来表示。冷凝后的制冷剂液体通过膨胀阀进入蒸发器,两相混合物中的液体在蒸发器中蒸发,从被冷却介质中吸取它所需要的汽化潜热,而混合物中的蒸汽通常称为闪发蒸汽,它在被压缩机重新吸入之前不再起吸热作用。
压焓图说明
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧-—过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧—-过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区.该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线(1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等.(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些.制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线.它只存在与湿蒸气区.上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态.在lgp-h图上确定其状态点,可查取该点的其余四个状态参数在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
如何看压焓图
教你如何看压焓图在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线(1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些。
制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。
它只存在与湿蒸气区。
上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。
在lgp-h图上确定其状态点,可查取该点的其余四个状态参数。
压焓图画法(详细介绍“制冷”)共9张
6、找点4,PK等压线与饱和液 体线相交的点为4点。
8、找点5,通过4’点作等焓线 与P0等压线相交的点为5点。
2
1
过热温 度线
h
7、找点4’,PK等压线与过冷温度线相 交的点为4’点。(tp=tps-△tC)
9、将1’、1、2、3、4、4’、5各点相连即 为实际制冷循环的理论压焓图
3、找点1,P0等压与过热温度线的相交点为1点。
7、找点42’,-P3K等等压压线放与热过冷降温温度线冷相却交的过点程为4’点。
4-4’等压放热降温过冷过程
1、根据已知条件画P0与 PK的等压线
画实际制冷循环的理论压焓图步骤:
13、 -4等根压据放已3热知-4恒条等温件液画压化P放0过与程热PK恒的等温压液线 化过程
4-5等焓绝热降压过程
5-1’等压吸热恒温气化过程
P 4’
4
3
2
5
1’ 1
H
实际制冷循环的理论热力特性过程(有过
冷、过热)
二、学绘画制冷循环压焓图
画理想制冷循环的理论压焓图步骤:
1、根据已知条件画P0与 PK的等压线
2、找点1, P0等压线与干饱和蒸汽线的相
交点为1点。
P
3、找点2,通过点1作等熵线并与PK等
2、找点1’,P0等压线与干饱和蒸汽线的相交点为1’点。
理想制冷循环的理论热力特性过程(无过冷、过热)
P
6、找点4,PK等压线与饱和液体线相交的点为4点。
76、 、找找点点441’,,-PP2KK等等等压压熵线线与压与饱过缩和冷液热温体度力线线相相过交交程的的点点为为44点’点。。
二、学绘画制冷循环压焓图
画实际制冷循环的理论压焓图步骤:
压焓图解读
压焓图解读在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
制冷剂与压焓图
⑵按工作温度压力分:
• 在一个大气压下,环温30℃下的冷凝压力分为: • 1. 高温低压制冷剂,沸点在0℃以上,冷凝压 力小于0.3MPa的制冷剂,包括R11、R21、R114。 • 2.中温中压制冷剂,标准沸点在-60℃~0℃范围 内,压力在03MPa~2MPa范围内的制冷,包括 R717、R12、R22、R502等。 • 3.低温高压制冷剂,标准沸点低于-60℃,冷凝 压力高于2MPa的制冷剂,包括R13、R14、R503。
平流层
3.1 臭氧层被破坏的危害
Байду номын сангаас
• 1.会影响人类的健康。 臭氧层被破坏后,其吸收紫外线 的能力大大降低,使得人类接受过量紫外线辐射的机会大 大增加了。一方面,过量的紫外线辐射会破坏人的免疫系 统,使人的自身免疫系统出现障碍,患呼吸道系统传染性 疾病的人数大量增加;另一方面,过量的紫外线辐射会增 加皮肤癌的发病率。据统计,全世界范围内每年大约有10 万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭 氧层的臭氧每损耗1%,皮肤癌的发病率就会增加 2%。 另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、 角膜肿瘤等。 • 2. 会影响农作物的生产。 实验表明,过量的紫外线辐射 会使植物叶片变小,减少了植物进行光合作用的面积,从 而影响作物的产量同时,过量紫外线辐射还会影响到部分 农作物种子的质量,使农作物更易受杂草和病虫害的损害。 一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆 将会减产20%-25%。
第一章
制冷基本原理
§1-4 制冷剂与压焓图
一、制冷剂的作用:
• 制冷剂是制冷系统完成制冷循环所必需的工作 介质。制冷剂在制冷系统中不断的与外界发生 热交换。 • 制冷剂借助压缩机的做功,将被冷却对象的热 量连续不断传递给外界环境,从而实现制冷。 • 制冷剂在蒸发器中是低压低温下汽化,在冷凝 器中是高压常温下凝结,因此只有在工作温度 范围内能气化和凝结的物质才能作为制冷剂。 多数制冷剂在大气压力和环境温度下是气态。 • 制冷剂在制冷系统中状态只发生物理变化,没 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。
制冷剂与压焓图
代号 =1.0) ODP 代号 1.0)
• 主要有:甲烷(CH4)-R50; 乙烷(CH3CH3)-
R170; 丙烷(CH2CH2CH3)-R290; 丁烷
(CH3CH2CH2CH33)--R600 ;
异丁烷
(CH(CH3)3)--R600a 。从经济观点来看,它们
是出色的制冷剂,但易燃,安全性很差。
1
• 它们的命名是在R后面先写“1”主要有: 乙烯R1150, 丙烯R1270。
• 制冷剂在制冷系统中状态只发生物理变化,没 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。
1
二、常用制冷剂分类和命名
⑴
⑵
按
按
化
工
学
作
组
温
成
度
分
压
类
Hale Waihona Puke 力分1• 主要有:氨、空气、水、co2等。 代号由字母 R7××组成,如:氨(NH3)--R717 , 水-R718,空气--R729。它们是较早采用的天然制 冷剂。
特点:不能与矿物冷冻油互溶,能溶于聚酯类 合成冷冻油。
1
• 主要是有机氧化物、有机硫化物、有机氮化 物。命名是R600序号中编写,6后面的1代表 氧化物、2硫化物、3氮化物。如:乙醚 C2H5OC2H5–R610; 甲胺 CH3NH2 –R630。
• 命名是R后面先加字母C,后面按氟里昂编号 规则编写。
• 它是饱和碳氢化合物的卤族元素的衍生物总称,
卤代烃的一类.生产氟里昂主要是甲烷、乙烷、
丙烷。它的分子通式是:CmHnFpClqBrr
氟
里昂的代号是: R(m-1)(n+1)(p)B(r) 若
r=0,B可省去。
制冷剂与压焓图
3.2 哪些气体可以破坏臭氧层?
• 臭氧层在氯原子,氟原子和溴原子附近会被毁坏。 这些元素含在很稳定的氟氯烃(如氟里昂)中。这些 气体分子升到平流层,在紫外线照射之后,分解成 各种单元素气体,破坏臭氧。这些气体比空气重, 最终会降落到地球表面,和有机物质反应之后被吸 收。但是在平流层已经破坏了很多臭氧。氯气破坏 性最大,可以破坏它十万倍的臭氧。
平流层
3.1 臭氧层被破坏的危害
• 1.会影响人类的健康。 臭氧层被破坏后,其吸收紫外线 的能力大大降低,使得人类接受过量紫外线辐射的机会大 大增加了。一方面,过量的紫外线辐射会破坏人的免疫系 统,使人的自身免疫系统出现障碍,患呼吸道系统传染性 疾病的人数大量增加;另一方面,过量的紫外线辐射会增 加皮肤癌的发病率。据统计,全世界范围内每年大约有10 万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭 氧层的臭氧每损耗1%,皮肤癌的发病率就会增加 2%。 另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、 角膜肿瘤等。 • 2. 会影响农作物的生产。 实验表明,过量的紫外线辐射 会使植物叶片变小,减少了植物进行光合作用的面积,从 而影响作物的产量同时,过量紫外线辐射还会影响到部分 农作物种子的质量,使农作物更易受杂草和病虫害的损害。 一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆 将会减产20%-25%。
四、氟里昂从环保角度的分类 Ⅰ
• 卤代烃(氟里昂)是链状饱和碳氢化合物的氟、 氯、溴衍生物的总称。可以分为八类: ① 全卤代烃-PFCs,碳氢化合物中氢原子被氟 置换,具有无毒不燃的性质,结构稳定,不易 分解,对臭氧层不产生影响。如CF4、C2F6等。
② 氯氟烃-CFCs,碳氢化合物中氢全被氯和氟 置换,在紫外线照射下分解出氯原子;如R11, R12等。 ③ 氢氯氟烃-HCFCs,碳氢化合物中氢部分被氯 和氟置换,如R22等。对臭氧层仍有一定的破坏, 只能作为过渡性物质,限期使用。
教你如何看压焓图
教你如何看压焓图在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
 1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
 2、三个状态区 Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度; Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
 3、六组等参数线(1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些。
制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。
它只存在与湿蒸气区。
上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。
压焓图
两相比例由干度x确定
定义
干饱和蒸汽质量 x?
=
mv
湿饱和蒸汽质量
mv ? mf
Quality
干饱和蒸汽
对干度x的说明:
饱和水
x = 0 饱和水 x = 1 干饱和蒸汽
0≤x ≤1
在过冷水和过热蒸汽区域,x无意义
湿饱和蒸汽区状态参数的确定
如果有1kg湿蒸气,干度为x, 即有 xkg饱和蒸汽,(1-x)kg饱和水。
? 对于理论循环,离开蒸发器、进入压缩机的 制冷剂蒸汽是处于蒸发压力下的饱和蒸汽; 离开冷凝器和进入膨胀阀的液体是冷凝压力 下的饱和液体;
? 等熵过程:制冷剂在压缩机中压缩是等熵过 程;
? 等压过程:制冷剂在冷却及冷凝过程为等压 过程
? 等焓过程:制冷剂通过膨胀阀节流时,节流 前后焓值相等:
环境压力Environmental pressure
指压力表所处环境
大气压力 Atmospheric pressure
barometric
注意:
环境压力一般为 barometer
h
大气压,但不一定。
大气压力Atmospheric pressure
大气压随时间、地点变化
物理大气压 1atm = 760mmHg
Condenser Expansion valve
Evaporator
Compressor
制冷循环和制冷系数
Coefficient of Performance
COP ? ? ? q2
w
1
?
T0环T境0 ? 1
T
T2
卡诺逆循环 Reversed Carnot cycleq1 w
?C
?
制冷剂的压焓简介
六制冷剂的压焓(lg-h)图和热力性质表图6-1 R12压焓图表6-1 R12饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-2 R22压焓图表6-2 R22饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-3 R23压焓图表6-3 R23饱和液体和气体性质表(续表) 图6-4 R32压焓图表6-4 R32饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。
图6-5 R50压焓图表6-5 R50饱和液体和气体性质表注:a=三相点;b=正常沸点;c=临界点。
图6-6 R123压焓图表6-6 R123饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-7 R124压焓图表6-7 R124饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-8 R125压焓图表6-8 R125饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。
图6-9 R134a压焓图表6-9 R134a饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。
图6-10 R152a压焓图表6-10 R152a饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。
图6-11 R170压焓图表6-11 R170饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-12 R290压焓图表6-12 R290饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。
图6-13 R404A压焓图表6-13 R404A沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。
图6-14 R407c压焓图表6-14 R407C沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。
图6-15 R410A压焓图表6-15 R410A沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。
制冷剂与压焓图
4.2 制冷剂类别与环境保护
• 科学家的研究证实R11、R12、R13等氯氟烃化合物 (CFCs)制冷剂,当它们泄漏或排放后扩散到地球 的平流层中,会破坏臭氧层,结果使地球上生物遭 到紫外线的损害;另一方面,氯氟烃化合物的排放 会加剧地球的温室效应,会像二氧化碳那样使地球 温度升高。 • CFCs中含氯元素,对臭氧层具有最大的破坏作用, 是禁用制冷剂;而HCFCs中由于氢元素的存在,大大 减弱了对臭氧层的破坏作用,目前还可以继续使用, 属过渡制冷剂;至于无氯的HFCs,则不会对臭氧层 破坏,受到国际社会的重视,成为替代制冷剂。
• HFCs和HC这一类不含氯的制冷剂,对环境无害。
4.3 制冷剂环保指标
ODP大气臭氧层消耗的潜能值;以R11为基准值,人为地规 定其值为1.0; GWP全球变暖潜能;以R11或CO2为基准值,人为地规定其 值为1.0。 一些制冷剂的ODP值和GWP值
GWP 臭氧 制冷剂 (CO2 消耗 制冷剂 (CO2= 代号 =1.0) ODP 代号 1.0) GWP 臭氧 消耗 ODP GWP 制冷 臭氧 剂代 (CO2 消耗 号 =1.0) ODP
平流层
3.1 臭氧层被破坏的危害
• 1.会影响人类的健康。 臭氧层被破坏后,其吸收紫外线 的能力大大降低,使得人类接受过量紫外线辐射的机会大 大增加了。一方面,过量的紫外线辐射会破坏人的免疫系 统,使人的自身免疫系统出现障碍,患呼吸道系统传染性 疾病的人数大量增加;另一方面,过量的紫外线辐射会增 加皮肤癌的发病率。据统计,全世界范围内每年大约有10 万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭 氧层的臭氧每损耗1%,皮肤癌的发病率就会增加 2%。 另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、 角膜肿瘤等。 • 2. 会影响农作物的生产。 实验表明,过量的紫外线辐射 会使植物叶片变小,减少了植物进行光合作用的面积,从 而影响作物的产量同时,过量紫外线辐射还会影响到部分 农作物种子的质量,使农作物更易受杂草和病虫害的损害。 一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆 将会减产20%-25%。
制冷剂与压焓图
R22/115 R23/13 R32/115 R12/31 R31/114 R125/143a
48.8/51.2 40.1/59.9 48.2/51.8 78.0/22.0 55.1/44.9 50.0/50.0
111.6 87.6 79.2 103.5 93.7 98.9
-45.4 -40.8/-38 -88.0 -82.2/-81.5 -59.2 -51.2/-38 -30 -29.8/-9.8 -12.5 -9.8/3.5 -46.7 -48.8/-47.7
• 在一个大气压下,环温30℃下的冷凝压力分为: • 1. 高温低压制冷剂,沸点在0℃以上,冷凝压 力小于0.3MPa的制冷剂,包括R11、R21、R114。 • 2.中温中压制冷剂,标准沸点在-60℃~0℃范围 内,压力在03MPa~2MPa范围内的制冷,包括 R717、R12、R22、R502等。 • 3.低温高压制冷剂,标准沸点低于-60℃,冷凝 压力高于2MPa的制冷剂,包括R13、R14、R503。
• 1973年,美国化学家马里奥·莫利纳首次提出氟里昂对臭氧层有 影响。氟里昂是一种氟氯烃,在冰箱和空调器中已经做了20多年 的制冷剂。但是当时没有学者测试臭氧层厚度,也没有多少臭氧 层研究,各国政府没有在意。 臭氧层空洞是在做南极研究时逐 步发现。这些研究在地面和空中一起测量,由各国合作测量。
3.3 臭氧层破坏原因实验
三、制冷剂的环保问题
• 臭氧层破坏和温室效应是当今全球性环境问 题,它对人类健康和人类赖以生存的生态环 境造成了巨大的有害影响。
大气的总臭氧层包括平流层和对流层
• 它们对人类的影响不同,离地面10公里以上的臭氧 约占总臭氧80%,能吸收大部分太阳紫外线辐射, 此层臭氧常称为臭氧层,平流层臭氧减少是造成南 极臭氧空洞与全球臭氧量减少的主要原因。 • 近地面10公里以内的对流层臭氧约占总臭氧15%, 对流层臭氧增加,会增强温室效应。
如何看压焓图
教你如何看压焓图在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1、临界点K和饱和曲线临界点K为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3、六组等参数线(1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些。
制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。
它只存在与湿蒸气区。
上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。
在lgp-h图上确定其状态点,可查取该点的其余四个状态参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制冷剂的压焓图
在制冷工程中,最常用的热力图就是制冷剂的压焓图。
该图纵坐标是绝对压力的对数值lgp (图中所表示的数值是压力的绝对值),横坐标是比焓值h。
1 、临界点K 和饱和曲线临界点K 为两根粗实线的交点。
在该点,制冷剂的液态和气态差别消失。
K 点左边的粗实线Ka 为饱和液体线,在Ka 线上任意一点的状态,均是相应压力的饱和液体;K 点的右边粗实线Kb 为饱和蒸气线,在Kb 线上任意一点的状态均为饱和蒸气状态,或称干蒸气。
2 、三个状态区Ka 左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;
Kb 右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka 和Kb 之间——湿蒸气区,即气液共存区。
该区内制冷剂处于饱和状态,压力和温度为一一对应关系。
在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。
3 、六组等参数线制冷剂的压-焓图中共有八种线条:等压线P、等焓线、饱和液体线等熵线等容线、干饱和蒸汽线、等干度线等温线(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。
(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。
(3)等温线:图上用点划线表示的为等温线。
等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。
(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。
制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h 图上等熵线以饱和蒸气线作为起点。
(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。
与等熵线比较,等比容线要平坦些。
制冷机中常用等比容线查取制冷压缩机吸气点的比容值。
(6)等干度线:从临界点K 出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。
它只存在与湿蒸气区。
上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。
在lgp-h 图上确定其状态点,可查取该点的其余四个状态参数。