高中数学 第二章 变化率与导数本章整合 北师大版选修2-2
数学北师大版高中选修2-2变化率与导数、导数的计算
2.已知某运动物体的位移y(米)与其运动时间t(秒)的函 数关系为:y=t3+t. (1)设y=f(t),利用导数的定义求f′(t).
(2)求该物体在t=2秒时的瞬间速度.
Δt→0
即 f′(t)=3t2+1. (2)∵t=2 秒时的瞬时速度即 f′(2), ∴瞬间速度为 f′(2)=3×4+1=13 (米/秒).
[归纳领悟] 根据导数的定义求函数 y=f(x)在点 x0 处导数的方法: (1)求函数的增量 Δy=f(x0+Δx)-f(x0); Δy fx0+Δx-fx0 (2)求平均变化率 = ; Δx Δx Δy (3)得导数 f′(x0)= lim ,简记作:一差、二比、三极 Δx→0 Δx 限.
一、把脉考情 从近两年的高考试题来看,求导公式和法则,以及导数
的几何意义是高考的热点,题型既有选择题、填空题,又有
解答题,难度中等左右,在考查导数的概念及其运算的基础 上,又注重考查解析几何的相关知识. 预测2012年高考在考查方式和内容上不会有大的变化, 在保持稳定的基础上可能对条件的设置情景进行创新,考查
原函数 f(x)=logax f(x)=lnx
导函数 f′(x)= 1 xlna f′(x)= 1 x
三、导数的运算法则
1.[f(x)±g(x)]′= f′(x)±g′(x) ; 2.[f(x)· g(x)]′= f′(x)g(x)+f(x)g′(x) ;
fx 3.[ ]′= f′xgx-f2xg′x (g(x)≠0). gx [gx]
(2)几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上 )) 切线的斜率 点 (x0,f(x0处的 .(瞬时速度就是位移函数 s(t)对时间t的导数)相应地,切线方程为 y-y0=f′(x0)(x-x0) . 2.函数f(x)的导函数 称函数f′(x)=
高中数学 第二章 变化率与导数章末综合测评(含解析)北师大版选修2-2(2021年最新整理)
2016-2017学年高中数学第二章变化率与导数章末综合测评(含解析)北师大版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章变化率与导数章末综合测评(含解析)北师大版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章变化率与导数章末综合测评(含解析)北师大版选修2-2的全部内容。
(二) 变化率与导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.某质点沿直线运动的位移方程为f(x)=-2x2+1,那么该质点从x=1到x=2的平均速度为( )A.-4 B。
-5C.-6 D。
-7【解析】错误!=错误!=错误!=-6。
【答案】C2。
设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=()A。
1 B.错误!C。
-错误!D。
-1【解析】y′=2ax,于是切线斜率k=f′(1)=2a,由题意知2a=2,∴a=1.【答案】A3。
下列各式正确的是( )A。
(sin α)′=cos α(α为常数)B.(cos x)′=sin xC。
(sin x)′=cos xD.(x-5)′=-错误!x-6【解析】由导数公式知选项A中(sin α)′=0;选项B中(cos x)′=-sin x;选项D中(x-5)′=-5x-6。
【答案】C4。
设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a等于()A。
0 B。
1 C。
2 D。
3【解析】令f(x)=ax-ln(x+1),则f′(x)=a-1x+1。
高中数学选修2-2 北师大版 变化的快慢与变化率 课件 (18张)
������(������1 )-������(������0 ) ������1 -������0
=
率,瞬时变化率刻画的是函数在一点处变化的快慢.
做一做 2
如果某物体作运动方程为 s=2(1-t2)的直线运动(s 的单位:m,t 的单位:s), 那么,物体在 1.2 s 末的瞬时速度为 ( ) A.-4.8 m/s B.-0.8 m/s C.0.88 m/s D.4.8 m/s 解析:������ = -4.8 m/s. 答案:A
Δ��� )-������(������1 ) .我们用它来刻画函数值在区间[x1,x2]上变化的 ������2 -������1
温馨提示
1.
������ ������
=
������(������2 )-������(������1 ) ������2 -������1 ������ ������
第二章
变化率与导数
§2.1
变化的快慢与变化率
学习目标 思维脉络 1.理解函数在某点的平 均变化率的概念与意义. 2.理解运动物体在某时刻的 瞬时变化率(瞬时速度). 3.会求函数在某点的平均变 化率. 4.能正确地理解平均变化率 与瞬时变化率的区别与联 系.
1
2
1.函数的平均变化率 对一般的函数 y=f(x)来说,当自变量 x 从 x1 变为 x2 时,函数值从 f(x1)变 为 f(x2),它的平均变化率为
与 Δx 是相对应的“增量”,即当
Δx=x2-x1 时,Δy=f(x2)-f(x1).
1
2
做一做 1
一物体的运动方程是 s=3+t2,则在一小段时间[2,2.1]内相应的平均速 度为( ) A.0.41 解析:������ = 答案:D
北师大版高中数学2-2第二章《变化率与导数》导数的概念_课件
由导数的定义可知, 求函数 y = f (x)的导数的一般方法: 1. 求函数的改变量 f f ( x0 x) f ( x0 ); f ( x0 x) f ( x0 ) f ; 2. 求平均变化率 x x f lim . 3. 求值 f ( x0 ) x0 x
北师大版高中数学选修2-2第二章 《变化率与导数》
一、教学目标:1、知识与技能:通过大量的实例的 分析,经历由平均变化率过渡到瞬时变化率的过程, 了解导数概念的实际背景,知道瞬时变化率就是导数。 2、过程与方法:①通过动手计算培养学生观察、分析、 比较和归纳能力②通过问题的探究体会逼近、类比、 以已知探求未知、从特殊到一般的数学思想方法。3、 情感、态度与价值观:通过运动的观点体会导数的内 涵,使学生掌握导数的概念不再困难,从而激发学生 学习数学的兴趣. 二、教学重点:了解导数的概念及求导数的方法。 教学难点:理解导数概念的本质内涵 三、教学方法:探析归纳,讲练结合 四、教学过程
( x) 3 x
2
y ( x) 2 3 x x 3 平均变化率 x x y / f (1) lim lim ( x 3) 3 x 0 x x 0
三.典例分析
题型二:求函数在某处的导数
例1.(3)质点运动规律为s=t2+3,求质点在t=3的 瞬时速度.
y f (1) lim lim (6 3 x) 6 x 0 x x 0
/
三.典例分析
题型二:求函数在某处的导数
例1.(2)求函数f(x)=-x2+x在x=-1附近的平均变化 率,并求出在该点处的导数.
解:y f (1 x) f (1)
(1 x)2 (1 x) [(1)2 (1)]
数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案
北师大版高中数学选修2-2第二章《变化率与导数》全部教案§1变化的快慢与变化率第一课时变化的快慢与变化率——平均变化率一、教学目标:1、理解函数平均变化率的概念;2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。
二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。
教学难点:对平均速度的数学意义的认识三、教学方法:探析归纳,讲练结合四、教学过程(一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
高中数学 第二章 变化率与导数 1 变化的快慢与变化率教案(含解析)北师大版选修2-2-北师大版高二
1变化的快慢与变化率平均变化率下表是某病人吃完退烧药,他的体温变化情况:x (min) 0 10 20 30 40 50 60 y (℃)3938问题1:观察上表,每10分钟病人体温变化相同吗? 提示:不相同.问题2:哪段时间体温变化较快? 提示:从20 min 到30 min 变化快. 问题3:如何刻画体温变化的快慢?提示:用单位时间内的温度变化的大小,即体温的平均变化率.平均变化率(1)定义:对一般的函数y =f (x )来说,当自变量x 从x 1变为x 2时,函数值从f (x 1)变为f (x 2),它的平均变化率为f x 2-f x 1x 2-x 1.其中自变量的变化x 2-x 1称作自变量的改变量,记作Δx ,函数值的变化f (x 2)-f (x 1)称作函数值的改变量,记作Δy .这样,函数的平均变化率就可以表示为函数值的改变量与自变量的改变量之比,即Δy Δx =f x 2-f x 1x 2-x 1.(2)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.瞬时变化率一质点的运动方程为s =10t 2,其中s 表示位移,t 表示时间. 问题1:求该质点从t 1=1到t 2=2的平均速度v 1. 提示:v 1=10×4-10×12-1=30.问题2:问题1中所求得的速度是t =1或t =2时的速度吗?提示:不是,是平均速度.问题3:求该质点从t1=1到t1v2.提示:v2=错误!=21.问题4:v1,v2中哪一个值较接近t=1时的瞬时速度?提示:v2,因为从t1=1到t2=1.1的时间差短.瞬时变化率(1)定义:对于一般的函数y=f(x),在自变量x从x0变到x1的过程中,若设Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化率是ΔyΔx=f x1-f x0x1-x0=f x0+Δx-f x0Δx.而当Δx趋于0时,平均变化率就趋于函数在x0点的瞬时变化率.(2)作用:刻画函数在一点处变化的快慢.(1)函数的平均变化率可正可负,反映函数y=f(x)在[x1,x2]上变化的快慢,变化快慢是由平均变化率的绝对值决定的,且绝对值越大,函数值变化得越快.(2)平均速度和瞬时速度都是反映运动物体的位移随时间变化而变化的情况.平均速度是运动物体在一个时间段里位移的改变量与这段时间的比值,而瞬时速度是运动物体在某一时刻的速度,当一个时间段趋于0时的平均速度就是瞬时速度.求函数平均变化率[例1] 2(1)求函数f(x)在[2,2.01]上的平均变化率;(2)求函数f(x)在[x0,x0+Δx]上的平均变化率.[思路点拨] 先求Δx,Δy,再利用平均变化率的定义求解.[精解详析] (1)由f(x)=2x2+1,得Δy=f(2.01)-f(2)=0.080 2,Δx=2.01-2=0.01,∴Δy Δx =0.080 20.01=8.02. (2)∵Δy =f (x 0+Δx )-f (x 0) =2(x 0+Δx )2+1-2x 20-1 =2Δx (2x 0+Δx ), ∴Δy Δx =2Δx 2x 0+Δx Δx=4x 0+2Δx . [一点通] 求平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 1)-f (x 0). (2)再计算自变量的改变量Δx =x 1-x 0. (3)求平均变化率Δy Δx=f x 1-f x 0x 1-x 0.[注意] Δx ,Δy 的值可正,可负,但Δx ≠0,Δy 可为零,若函数f (x )为常值函数,则Δy =0.1.在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 为( )A .Δx +1Δx +2B .Δx -1Δx -2C .Δx +2D .2+Δx -1Δx解析:选C ∵x 1=1,x 2=1+Δx ,即Δx =x 2-x 1,∴Δy =(x 22+1)-(x 21+1)=(1+Δx )2+1-(12+1)=2Δx +(Δx )2, ∴Δy Δx =2Δx +Δx 2Δx=2+Δx .2.已知函数f (x )=x +1x,分别计算f (x )在区间[1,2]和[3,5]上的平均变化率, 并比较在两个区间上变化的快慢.解:自变量x 从1变化到2时,函数f (x )的平均变化率为Δy Δx=f2-f 12-1=12.自变量x 从3变化到5时,函数f (x )的平均变化率为Δy Δx =f 5-f 35-3=1415.由于12<1415,所以函数f (x )=x +1x在[1,2]的平均变化比在[3,5]的平均变化慢.运动物体的平均速度与瞬时速度[例2] 已知s (t )=5t 2.(1)求t 从3秒到3.1秒的平均速度; (2)求t 从3秒到3.01秒的平均速度; (3)求t =3秒时的瞬时速度.[精解详析] (1)当3≤t ≤3.1时,Δt =0.1, Δs =s (3.1)-s (3) =5×(3.1)2-5×32=5×(3.1-3)×(3.1+3), ∴ΔsΔt=,0.1)=30.5(m/s). (2)当3≤t ≤3.01时,Δt =0.01, Δs =s (3.01)-s (3), =5×(3.01)2-5×32=5×(3.01-3)×(3.01+3), ∴ΔsΔt=,0.01)=30.05(m/s). (3)在t =3附近取一个小时间段Δt , 即3≤t ≤3+Δt (Δt >0),∴Δs =s (3+Δt )-s (3)=5×(3+Δt )2-5×32=5·Δt ·(6+Δt ), ∴Δs Δt =5Δt 6+Δt Δt=30+5Δt . 当Δt 趋于0时,ΔsΔt 趋于30.∴在t =3时的瞬时速度为30 m/s.[一点通] 在某一时间段内的平均速度与时间段Δt 有关,随Δt 变化而变化;但求某一时刻的瞬时速度时,Δt 是趋于0,而不是Δt =0,此处Δt 是时间间隔,可任意小,但绝不能认为是0.3.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为( ) A .0.41 B .3解析:选DΔsΔt=错误!=4.1. 4.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,求a . 解:∵s =at 2+1,∴s (2+Δt )=a (2+Δt )2+1=4a +4a ·Δt +a ·(Δt )2+1.于是Δs =s (2+Δt )-s (2)=4a +4a ·Δt +a ·(Δt )2+1-(4a +1)=4a ·Δt +a ·(Δt )2.∴Δs Δt =4a ·Δt +a ·Δt 2Δt=4a +a ·Δt .当Δt 趋于0时,ΔsΔt 趋于4a .依据题意有4a =12,∴a =3.(1)瞬时变化率的绝对值度量函数在某点处变化的快慢.(2)当瞬时变化率大于0时,说明函数值在增加;当瞬时变化率小于0时,说明函数值在减小;其绝对值大小才能说明变化的快慢.(3)平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.1.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为( ) C .2 D .0解析:选AΔy Δx=f 1.1-f 11.1-1=,0.1)=2.1.2.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么Δt 趋于0时,ΔsΔt为( ) A .从时间t 到t +Δt 时物体的平均速度B .在t 时刻物体的瞬时速度C .当时间为Δt 时物体的速度D .在时间t +Δt 时物体的瞬时速度 解析:选BΔsΔt中Δt 趋于0时得到的数值是物体在t 时刻的瞬时速度. 3.一辆汽车在起步的前10秒内,按s =3t 2+1做直线运动,则在2≤t ≤3这段时间内的平均速度是( )A .4B .13C .15D .28解析:选C Δs =(3×32+1)-(3×22+1)=15. ∴Δs Δt =153-2=15. 4.一块木头沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系式为s =18t 2,则t =2时,此木头在水平方向的瞬时速度为( )A .2B .1C.12D.14解析:选C 因为Δs =18(2+Δt )2-18×22=12Δt +18(Δt )2,所以Δs Δt =12+18Δt ,当Δt无限趋近于0时,12+18Δt 无限趋近于12,因此t =2时,木块在水平方向的瞬时速度为12,故选C.5.函数y =x 2-2x +1在x =-2附近的平均变化率为________.解析:当自变量从-2变化到-2+Δx 时,函数的平均变化率为ΔyΔx=-2+Δx2-2-2+Δx +1-4+4+1Δx=Δx -6.答案:Δx -66.质点的运动方程是s (t )=1t2,则质点在t =2时的速度为________.解析:因为Δs Δt =s2+Δt -s 2Δt=12+Δt2-14Δt=-4+Δt 42+Δt2,当Δt →0时,Δs Δt →-14,所以质点在t =2时的速度为-14.答案:-147.已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率ΔyΔx ;(2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率ΔyΔx .解:f (x )=2x 2+3x -5, ∴Δy =f (x 1+Δx )-f (x 1)=2(x 1+Δx )2+3(x 1+Δx )-5-(2×x 21+3×x 1-5) =2[(Δx )2+2x 1Δx ]+3Δx =2(Δx )2+(4x 1+3)Δx . (1)当x 1=4,Δx =1时,Δy =2+(4×4+3)×1=21, ∴Δy Δx =211=21. (2)当x 1=4,Δx =0.1时,Δy 2+(4×4+3)×0.1=0.02+1.9=1.92, ∴ΔyΔx=,0.1)=19.2. 8.若一物体运动方程如下(位移s 的单位:m ,时间t 的单位:s):s =⎩⎪⎨⎪⎧3t 2+2, t ≥3,29+3t -32, 0≤t <3.求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.解:(1)∵物体在t ∈[3,5]内的时间变化量为 Δt =5-3=2,物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]内的平均速度为Δs Δt =482=24(m/s).(2)求物体的初速度v 0,即求物体在t =0时的瞬时速度.∵物体在t =0附近的平均变化率为 Δs Δt=29+3×0+Δt -32-29-3×0-32Δt=3Δt -18,当Δt 趋于0时,ΔsΔt趋于-18,∴物体在t =0时的瞬时速度(初速度)为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为Δs Δt =29+3[1+Δt -3]2-29-3×1-32Δt =3Δt -12,当Δt 趋于0时,ΔsΔt趋于-12,∴物体在t =1处的瞬时变化率为-12 m/s.。
北师大版高中数学选修2-2 第2章:变化率与导数2.1《变化的快慢与变化率》(共18张PPT
变化的快慢与变化率
模块一:平均变化率
例1 S(t)表示物体经过时间t走过的路程,比较该物体在
[2,10],[10,13]这两段时间内运动的快慢?
路 程 32
C(13,32)
v1
S(10) 10
S(2) 2
1.75
y f (1) f (1) 0
y 0 0 x 2
模块一:平均变化率
随堂练习
2.已知函数f ( x) 2x2 1
答案:
(1)求函数f(x)在[1,1]上的平均变化率; (1)0
(2)10, 8.2, 8.02
(2)求函数f(x)在[2,3],[2, 2.1],[2, 2.01]上
变 20
化
曲
A(2,6) 6
线
o2
B(10,20) 路程曲线
S(10) 13 10
4
区间[t1, t2 ]平均速度计算公式: S(t2 ) S(t1)
t2 t1
模块一:平均变化率
y
f(1300)
登 山 f(x2)
路
线
f(x1) A
图 f(200)
o 200
模块二:瞬时变化率
例2 一小球从高空自由下落,其走过的路程 s与时间t之间的函数关系是s 1 gt2
2 (1)小球在时间区间[5, 6], [5, 5.1]上的平均速度
v1, v2 ? (2)小球在t 5时的瞬时速度?
(2)t 0,在[5 t,5]这段时间 v s(5) s(5 t) 4.9(10 t)
(1)当t 2s,t 0.01s时,求 s ; t
高中数学第2章变化率与导数2导数的概念及其几何意义课件北师大版选修2_2
1 C.2 解析:
1 D.4 ΔΔyx=2+1ΔΔxx-12=-4+12Δx,
当Δx→0时,ΔΔxy→-14,故在x=2处的导数为-14. 答案: A
3.设函数y=f(x)为可导函数,且满足 Δlxi→m 0
f1-f1-x x
=-1,则曲线y=f(x)在点(1,f(1))处切线的倾斜角为______.
(2)∵f(x)= x,
∴Δy=f(1+Δx)-f(1)= 1+Δx-1,
∴ΔΔyx=
1+ΔΔxx-1=
1+Δx-1 1+Δx+1 Δx 1+Δx+1
=
1 1+Δx+1.
∴Δlxi→m 0 ΔΔxy=Δlxi→m 0 1+1Δx+1=12,
∴f′(1)=12.
根据定义求导数是求函数的导数的基本方法,
[规范解答] 设直线l与曲线相切于点P(x0,y0). 1分
∵f′(x0)=Δlxi→m 0
x0+Δx3-2x0+Δx2+3-x30-2x20+3 Δx
=3x20-4x0,
4分
由导数的几何意义,得3x20-4x0=4.
解得:x0=-23或x0=2.
6分
∴切点坐标为-23,4297或(2,3).
x0点的导数.用符号__f′__(_x0_)__表示,记作:f′(x0)= fxx11--xf0x0=x1l→imx0 fx0+ΔΔxx-fx0.
x1l→imx0
(1)导数是研究在点x0处及其附近函数的改变量 Δy与自变量改变量Δx之比的极限,它是一个局部性的概念,
若Δlxi→m 0
x3,求曲线在点P(3,9)处的切线方
程.
[思路导引] 由于点P在曲线上,故可以求函数在x=3处
的导数,就是所求切线的斜率,利用点斜式求得切线方程.
高中数学 第二章 变化率与导数整合课件 北师大版选修2-2
,再根据相应法则求其导数.
-5-
本章整合
知识网络
专题探究
专题一
专题二
专题三
专题三 求复合函数的导数
复合函数的求导法则:y'x=y'u· u'x,即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积. 具体求导步骤如下: (1)分清复合关系,选好中间变量是关键. (2)分清每一步的求导是哪个变量对哪个变量求导,不能混淆,且一直计 算到最后.常见错误如(cos 2x)'=-sin 2x 错,而(cos 2x)'=-2sin 2x 对. (3)求导后,中间变量改换为原函数的自变量.
-6-
本章整合
知识网络
专题探究
专题一
专题二
专题三
【例题】 (1)函数 y=sin 解析:设 y=sin u,u=3x+ ,
π 6
3������ +
π 6 π 6
的导数为 .
.
则 yx'=yu'· ux'=cos u· 3=3cos 3������ + 答案:3cos 3������ + (2)函数 y=
本章整合
-1-
本章整合
知识网络
专题探究
������(������+Δ������)-������(������) Δ������ 函数的变化率 Δ������ ������(������+Δ������)-������(������) 函数的瞬时变化率:当 Δ������→0 时, = Δ������ Δ������ f(x+������x)-f(x) 导数的概念:f'(x) = lim ������x Δ������ →0 导数
(北师大版选修2-2)课件:本章整合提升2
3.复合函数的求导公式 (1)复合函数的定义: ①一般形式是y=f(φ(x)). ②可分解为y=f(u)与u=φ(x),其中u称为中间变量. (2)求导法则:复合函数y=f(φ(x))的导数和函数y=f(u),u =φ(x)的导数间的关系为y′x=f′(u)φ′(x).
学习本章应注意的问题 1.导数的概念,要注意结合实例,理解概念的实质,利用 导数的几何意义,求曲线的切线方程,要注意当切线平行于y轴 时,导数不存在,此时的切线方程为x=x0. 2.利用基本初等函数的求导公式和四则运算法则求导数, 熟记基本求导公式,熟练运用法则是关键,有时先化简再求 导,会给解题带来方便.因此观察式子的特点,对式子进行适 当的变形是优化解题过程的关键.
∴曲线 y=f(x)在点(1,f(1))处的切线的斜率为-2.
【点评】
本题解决的关键在于对比lim x→0
f1-2fx1-x与 f(x)
导数的定义式得出 f′(1).
专题二 导数的计算Байду номын сангаас
求导公式和导数法则的建立使求导问题程序化,为许多较 复杂的函数的求导提供了简捷的途径.在运用时必须严格按照 已有的公式、法则进行,运用求导公式和法则必须做到:
x-12在点
Mπ4,0处的切线的斜
率为( )
A.-12
B.12
C.-
2 2
D.
2 2
解析:y′=cos
xsin
x+cos sin
x-sin x+cos
xcos x2
x-sin
x=
sin
1 x+cos
x2,
∴y′|x=π4= sin
1 π4+cos
π42=12.
答案:B
曲 线 y = x3 - x + 3 在 点 (1,3) 处 的 切 线 方 程 为 _________.
高中数学第二章变化率与导数章末小结知识整合与阶段检测教学案北师大版选修2-2(new)
第二章变化率与导数[对应学生用书P25]一、导数的概念1.函数在点x0处的导数f′(x)=li错误!错误!,Δx是自变量x在x0附近的改变量,它可正、可负,但不可为零,f′(x0)是一个常数.2.导函数f′(x)=li错误!错误!,f′(x)为f(x)的导函数,不是一个常数.二、导数的几何意义1.f′(x0)是函数y=f(x)在点(x0,f(x0))处切线的斜率,这是导数的几何意义.2.求切线方程常见的类型有两种:一是函数y=f(x)“在点x=x0处的切线方程”,这种类型中(x0,f(x0))是曲线上的点,其切线方程为y-f(x0)=f′(x0)(x-x0).二是函数y=f(x)“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x)(x0-x1),又y1=f(x1),由上面两个方程可解得x1,y1的值,即求出了过点P(x0,1y)的切线方程.三、导数的运算1.基本初等函数的导数(1)f(x)=c,则f′(x)=0;(2)f(x)=xα,则f′(x)=α·xα-1;(3)f(x)=a x(a〉0且a≠1),则f′(x)=a x ln a;(4)f(x)=log a x,则f′(x)=错误!;(5)f(x)=sin x,则f′(x)=cos x;(6)f(x)=cos x,则f′(x)=-sin x;(7)f(x)=tan x,则f′(x)=错误!;(8)f(x)=cot x,则f′(x)=-错误!。
2.导数四则运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!。
3.复合函数的求导法则设复合函数μ=g(x)在点x处可导,y=f(μ)在点μ处可导,则复合函数f(g(x))在点x处可导,且f′(x)=f′(μ)·g′(x),即y x′=yμ′·μx′.利用复合函数求导法则求导后,要把中间变量换成自变量.错误!(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)=错误!,则f′错误!=()A.-错误!B.-错误!C.-8 D.-16解析:∵f′(x)=(x-2)′=-2x-3,∴f′错误!=-2×错误!-3=-16.答案:D2.若曲线f(x)=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1解析:由f′(x)=2x+a,得f′(0)=a=1,将(0,b)代入切线方程得b=1,故选A。