例析平抛运动题型归类
高中物理平抛运动--知识归类总结,经典型题精讲,典型习题针对训练
平抛运动考点一平抛运动的基本规律 2019.51.平抛运动(1)定义:(2)性质:(3)研究方法:运动的合成与分解。
(4)运动规律:①速度关系:②位移关系:(5)两个重要推论2.斜抛运动(1)定义:(2)性质:(3)研究方法:①水平方向:②竖直方向: [思维诊断](1)以一定的初速度水平抛出的物体的运动是平抛运动。
()(2)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化。
()(3)做平抛运动的物体质量越大,水平位移越大。
()(4)做平抛运动的物体初速度越大,落地时竖直方向的速度越大。
()(5)做平抛运动的物体初速度越大,在空中运动的时间越长。
()(6)从同一高度水平抛出的物体,不计空气阻力,初速度大的落地速度大。
()[题组训练]1.[平抛运动的理解](多选)关于平抛运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.做平抛运动的物体在任何相等的时间内,速度的变化量都相等C.可以分解为水平方向的匀速直线运动和竖直方向上的自由落体运动D.落地时间和落地时的速度只与抛出点的高度有关2.[平抛规律的应用]从正在高空水平匀速飞行的飞机上每隔1 s释放1个小球,先后共释放5个,不计空气阻力,则()A.这5个小球在空中处在同一条竖直线上B.这5个小球在空中处在同一条抛物线上C.在空中,第1、2两球间的距离保持不变D.相邻两球的落地间距相等3.[平抛规律推论的应用](2017·宁波模拟)如图所示,在足够高的竖直墙壁MN的左侧某点O以不同的初速度将小球水平抛出,其中OA沿水平方向,则所有抛出的小球在碰到墙壁前瞬间,其速度的反向延长线() A.交于OA上的同一点B.交于OA上的不同点,初速度越大,交点越靠近O点C.交于OA上的不同点,初速度越小,交点越靠近O点D.因为小球的初速度和OA距离未知,所以无法确定考点二多体平抛运动问题[两个小球从不同高度抛出,落到同一高度上]如图所示,A、B两个小球从同一竖直线上的不同位置水平抛出,结果它们同时落在地面上的同一点C,已知A离地面的高度是B离地面高度的2倍,则A、B两个球的初速度之比为v A∶v B为()A.1∶2B.2∶1C.2∶1 D.2∶2[考法拓展1][小球从同一高度下落到不同高度](2017·内蒙古呼伦贝尔模拟)如图所示,在同一平台上的O点水平抛出的三个物体,分别落到a、b、c三点,则三个物体运动的初速度v a、v b、v c的关系和三个物体运动的时间t a、t b、t c的关系是()A.v a>v b>v c,t a>t b>t c<v b<v c,t a=t b=t cB.vC.v a<v b<v c,t a>t b>t cD.v a>v b>v c,t a<t b<t c[考法拓展2][平抛中的相遇](2017·江西省重点中学协作体联考)如图所示,将a、b两小球以大小为20 5 m/s的初速度分别从A、B两点相差1 s先后水平相向抛出,a小球从A点抛出后,经过时间t,a、b两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,g取10 m/s2,则抛出点A、B间的水平距离是()A.805m B.100 mC.200 m D.180 5 m[变式训练](多选)如图,x轴在水平地面内,y轴沿竖直方向。
也谈平抛运动几类常见题型及解法
也谈平抛运动几类常见题型及解法
平抛运动是力学中相当重要的思想,它体现了质点在缺乏其他受力的情况下运
动的规律性。
常见的平抛运动题目一般涉及不考虑空气阻力和受力的情况下,由抛物线运动求解各个参数的问题,此类问题可以分为三类:
(1)求反弹高度
此类问题一般要求求解反弹高度,主要利用动量守恒定理,即质点在发射点和
反弹点的动能守恒关系,由此可以得到平抛运动的反弹高度公式:y1=2y0-V0^2/2g,其中y0为发射高度,V0为发射速度,g为重力加速度。
(2)求发射角度
此类问题主要考察学生对初速度和落点的求解能力,其中平抛运动的落点方程
可以写成:X=(V0cosα*T)^2/2g,其中α为发射角度.由此可以求出发射角度。
(3)求初速度
此类问题主要考察学生求解V0的能力,当情况比较复杂时可以利用动量守恒
的方法来求解:V0^2=V^2+2gy ,其中V为质点的速度,y为质点的高度,g为重力加速度。
平抛运动题目的解决可以通过分析其运动轨迹,明确运动物体的参数,然后运
用动力学的改变量守恒定理,以及物体的运动学方法来确定运动物体的位置和动量,从而解决各类问题。
综上所述,平抛运动几类常见题型及解法主要有求反弹高度、求发射角度以及
求初速度三类。
可以通过动量守恒定理和物体的运动学方法来求解平抛运动中各个物理参数,以既定运动物体的位置和动量。
平抛运动常考题型及解析
平抛运动常考题型及解析平抛运动的定义及基本公式:1. 平抛运动是指物体仅在重力作用下,由水平初速度开始运动的一种运动方式。
2. 平抛运动需要满足以下条件:a. 物体只受重力作用;b. 物体的初速度与重力方向垂直。
3. 尽管平抛运动的速度大小和方向时刻在改变,但其运动的加速度始终为重力加速度g,因此平抛运动属于匀变速曲线运动。
4. 研究平抛运动的方法:通常可以将平抛运动理解为两个分运动的合成结果:一个是水平方向(垂直于恒力方向)的匀速直线运动,另一个是竖直方向(沿着恒力方向)的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性。
5、平抛运动的规律①水平速度:vx=v0,竖直速度:vy=gt合速度(实际速度)的大小:物体的合速度v与x轴之间的夹角为:②水平位移:竖直位移合位移(实际位移)的大小:物体的总位移s与x轴之间的夹角为:可见,平抛运动的速度方向与位移方向不相同。
而且但是要记住6、平抛运动的几个结论①落地时间由竖直方向分运动决定:平抛运动常见题型一:直接应用公式解题。
一带有乒乓球发射机的乒乓球台如图所示。
水平台面的长和宽分别为L1和L2,中间球网高度为h。
发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。
不计空气的作用,重力加速度大小为g,若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是此题是对于公式的直接考查,同学们只要找准题中的限定条件直接带入公式求解就可以了。
具体解题过程如下:平抛运动常见题型二:利用运动的合成与分解解题。
此类题型一般并不能直接代入公式求解,需要先将速度位移进行分解后再去列方程。
例:倾斜雪道的长为50 m,顶端高为30 m,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。
一滑雪运动员在倾斜雪道的顶端以水平速度v0=10 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。
平抛运动与斜面、曲面相结合问题归类例析
平抛运动与斜面、曲面相结合问题归类例析作者:王玉鸿来源:《中学物理·高中》2014年第06期平抛运动是曲线运动的典型物理模型,其处理的方法是化曲为直,即平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,分运动和合运动具有独立性、等时性和等效性的特点.纵观近几年的高考试题,平抛运动考点的题型大多不是单纯考查平抛运动而是平抛运动与斜面、曲面相结合的问题,这类问题题型灵活多变,综合性较强,既可考查基础又可考查能力,因而受到命题专家的青睐,在历年高考试题中属高频考点.解答平抛运动的问题,首先要掌握平抛运动的规律和特点,同时也应明确联系平抛运动的两个分运动数量关系的桥梁除了时间t,还有是两个重要参量:一是速度与水平方向之间的夹角θ,其正切值tanθ=vy1vx (如图1);二是位移与水平方向之间的夹角α,其正切值tanα=y1x (如图2).这两个正切值之间还满足关系:tanθ=2tanα.平抛运动与斜面、曲面相结合的问题,命题者用意在于考查学生能否寻找一定的几何关系,建立上述两个角参量与几何图形中几何角之间关系,或建立水平位移、竖直位移与曲线方程的函数关系,考查学生运用数学知识解决物理问题的能力.倘若学生能够从寻找这层关系上展开思维,也就找到了解决这类问题的钥匙.这类问题有多种题型,下面分几种情况进行讨论和解析.1从斜面外抛出的平抛运动1.1落点速度与斜面垂直例1(2010年全国Ⅰ卷)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图3中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为A.11tanθB.112tanθC.tanθD.2tanθ解析如图4所示,先将物体的末速度vt分解为水平分速度vx和竖直分速度vy.根据平抛运动的规律可知,vx=v0,vy=gt;又因为vt与斜面垂直,vy与水平面垂直,所以vt与vy间的夹角等于斜面的倾角θ.根据tanθ=vx1vy=v01gt,可以求出时间t=v01gtanθ.则小球竖直方向下落距离与水平方向通过距离之比y1x=112gt21v0t=112tanθ.所以答案为B.变式(2013年上海高考)如图5,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A.已知A点高度为h,山坡倾角为θ,由此可算出A.轰炸机的飞行高度B.轰炸机的飞行速度C.炸弹的飞行时间D.炸弹投出时的动能解析由于炸弹落地时速度垂直于山坡,依照例题1的方法将速度分解建立与倾角的关系,可先求出炸弹的飞行时间t.再由几何关系可知炸弹的水平位移x=hcosθ,由v0=x1t可求得轰炸机的飞行速度.根据H=h+112gt2,可求得轰炸机的飞行高度.由于炸弹的质量未知,故无法求得其动能.所以答案为A、B、C.点评物体从斜面外抛出垂直落在斜面上的问题,要充分利用“垂直”关系,将隐藏的关系挖掘出来,即将落地速度沿水平和竖直方向进行分解,则竖直分速度vy与落地速度vt的夹角就等于斜面倾角θ,利用tanθ=vx1vy=v01gt即可求解此类问题.1.2落点速度与斜面或切面平行例2如图6所示,一小球自平台上水平抛出,恰好落在临近平台的一倾角为θ=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,重力加速度g=10 m/s2,sin53°=0.8,cos53°=0.6,求:(1)小球水平抛出的初速度v0是多少?(2)斜面顶端与平台边缘的水平距离s是多少?解析(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以vy=v0tan53°,v2y=2gh,代入数据,得vy=4 m/s,v0=3 m/s.(2)由vy=gt1得t1=0.4 s,s=v0t1=3×0.4 m=1.2 m.变式如图7所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB 与水平方向夹角为60°,重力加速度为g,求小球抛出时的初速度.解析将B点速度分解成水平分速度v0和竖直分速度vy,由于速度vt与圆弧相切,由几何关系得vy与vt的夹角等于60°,tan60°=v01vy=v01gt,得t=v013g.由几何关系,小球的水平位移x=R+Rcos60°,又x=v0t,解得v0=33gR12.点评当平抛的落点速度与斜面或切面平行时,要注意寻找速度角与几何角之间的关系,然后利用tanθ=vx1vy=v01gt求出相关物理量.1.3落点速度与斜面不垂直不平行例3如图8,斜面上有a、b、c、d四个点,ab=bc=cd.从a点正上方的O点以速度v0水平抛出一个小球,它落在斜面上b点.若小球从O点以速度2v0水平抛出,不计空气阻力,则它落在斜面上的A.b与c之间某一点B.c点C.c与d之间某一点D.d点解析由平抛运动的特点,平抛运动时间由高度决定,与初速无关,高度相同时,水平位移与初速成正比.故可过b点作一水平线ef,由于ab=bc,所以eb=bf.若没有斜面,则当初速为2v0时,水平位移是初速为v0时的两倍,小球将落在同一水平线上的f点,若有斜面,画出轨迹可知,小球将落在斜面上的b、c两点之间的某一点,故答案为A.变式(2012年上海卷)如图9,斜面上a、b、c三点等距,小球从a点正上方O点抛出,做初速为v0的平抛运动,恰落在b点.若小球初速变为v,其落点位于c,则A.v0C.2v03v0解析过b点作水平线de,由于ab=bc,则有db=be,画出落点在c点的平抛轨迹可知,当速度为v时小球落在同水平线上的b、e之间,即与初速为v0时相比,落在水平线de上的水平位移大于前者的1倍而小于其2倍,由平抛运动规律可知,v0点评根据平抛运动的规律,平抛时间由高度决定,高度相同时水平位移与初速成正比.物体从斜面外以不同速度抛出,落在斜面上的位置不同,为了利用上述规律解题,应虚拟一水平面,并画出平抛轨迹,根据位移关系来确定速度关系或根据速度关系来确定位移关系.1.4落点在曲面上的平抛运动例4(2012年全国卷)一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状.此队员从山沟的竖直一侧,以速度v0沿水平方向跳向另一侧坡面.如图10所示,以沟底的O点为原点建立坐标系Oxy.已知,山沟竖直一侧的高度为2h,坡面的抛物线方程为y=112hx2,探险队员的质量为m.人视为质点,忽略空气阻力,重力加速度为g.(1)求此人落到坡面时的动能;(2)略.解析平抛运动的分解x=v0t,y=2h-112gt2,得平抛运动的轨迹方程y=2h-g12v20x2,此方程与坡面的抛物线方程为y=112hx2的交点为x=4h2v201v20+gh,y=2hv201v20+gh.根据动能定理mg·(2h-y)=Ek-112mv20.由以上各式解得Ek=112mv20+2mghv201v20+gh.点评平抛运动与曲面相结合,其结合点通常有两个,一是建立速度角或位移角与几何角的关系;二是建立平抛轨迹方程与有关曲线方程的函数关系.本题解题的关键是要确定探险队员在坡面上落点的位置,为此就要建立平抛轨迹方程与抛物线方程的关系,考查了运用数学方法解决物理问题的能力.2在斜面上抛出的平抛运动例5如图11所示,小球以初速度v0自倾角为θ的斜坡顶端被水平抛出.若不计空气阻力作用且斜坡足够长,重力加速度为g,试求:(1)小球需经过多长时间落到斜坡上?落地点到斜坡顶端的距离是多大?(2)小球被抛出多久距离斜坡最远?解析当小球从斜坡上抛出落到斜坡上时,位移与水平方向的夹角就等于斜坡倾角;而当小球距离斜坡最远时,小球的速度与水平方向的夹角也必等于斜坡的倾角.(如图12)(1)因小球落到斜坡上(A点)位移与水平方向夹角θ满足tanθ=y1x=112gt211v0t1=gt112v0,得落地时间t1=2v0tanθ1g,所以落地点到斜坡顶端的距离s=sx1cosθ=v0t11cosθ=2v20sinθ1gcos2θ.(2)因小球距离斜坡最远(B点)速度与水平方向的夹角θ满足tanθ=vy1vx=gt21v0,所以小球达到距离斜坡最远所需时间t2=v0tanθ1g.变式(2008年全国理综卷Ⅰ)如图13所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.。
平抛运动三类新题型 高中物理
平抛运动三类新题型万洪禄平抛运动既是高考的重点,也是高考的热点。
平抛运动是匀变速曲线运动,它在水平方向上的分运动为匀速运动,在竖直方向上的分运动为自由落体运动。
两分运动的联系是时间相等。
匀变速直线运动的规律,尽管对平抛运动不适用,但对平抛运动竖直方向上的分运动是适用的。
下面分析平抛运动的三类题。
一、条件开放题所谓“条件开放题”,是指题设条件貌似不完备,解题依据不明确的问题。
解此类问题,有时要根据问题所涉及的知识自行补充一些条件,如自行测量一些数据、利用一些常识、物理常数及一些近似规律作为解题的补充条件等。
例1 如图1是某一质点平抛轨迹的一部分,试根据轨迹求质点平抛时初速度的大小。
解析 题中没有任何数据,要求初速度,必须自行测量一些数据作为补充条件。
在原轨迹上等间距地画出三条竖直线,令这些线与轨迹的交点分别为A 、B 、C 点,如图2所示,测量AB 、BC 间的水平距离x x x x 1212、()=,高度差y y 12和,并令质点从A →B 、B →C 的时间皆为T ,则根据平抛运动在水平方向的分运动为匀速直线运动,在竖直方向的分运动为初速度为零的匀加速直线运动,有x x v T 120==…………①y y gT 212-=…………② 解①②式得:v x g y y 0121=-如果测得x x m y m y m 121204025035====...,,,由此可知,质点平抛的初速度v x g y y m s m s 012104100350254=-=-=...// 如果需求出抛出点到A 点的水平距离,方法如下:T x v s s ===1004401/./.。
从A →B 、B →C 的时间内,B 为中间时刻对应的位置,从竖直方向分析得:v y y Tm s By =+=+=()/(..)/./212035025023从抛出点O 到B 点的运动过程中分析得:v gt t v g s By B B By ===,/.03从抛出点O 到A 点的运动时间t t T s A B =-=02.抛出点到A 点的水平距离x v t m m A ==⨯=040208..二、照片题照片题是新出现的一种题型,在近年高考中已多次出现。
平抛运动问题全解读
ʏ江苏省镇江第一中学 白利燕 李更磊将物体沿水平方向以一定的初速度(不为零)抛出,在忽略空气阻力的理想状况下,物体仅受自身重力作用,做平抛运动㊂平抛运动是初速度沿水平方向,加速度等于重力加速度g 的匀变速曲线运动㊂深入研究平抛运动的运动规律和重要推论,掌握平抛运动常见题型的分析与求解方法是同学们在高三一轮复习过程中应该完成的主要任务㊂一㊁平抛运动的特点利用频闪照相㊁录制视频㊁传感器和计算机测绘等方法得到的做平抛运动的物体的轨迹如图1所示,其运动轨迹是抛物线的一部分㊂根据研究平抛运动水平分运动和竖直分运动特点的实验可知,平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动㊂做平抛运动的物体到达任意位置时,水平分位移x =v 0t ,竖直分位移y =12g t 2,水平分速度v x =v 0,竖直分速度v y =g t ,合位移的大小s =x 2+y 2,合位移与水平方向间的夹角φ的正切值t a n φ=yx=g t 2v 0,合速度的大小v t =v 2x +v 2y,合速度与水平方向间的夹角α的正切值t a n α=v y v x =g t v 0㊂图1二㊁平抛运动的推论推论一:设做平抛运动的物体到达任意位置时的末速度与水平方向间的夹角为α,位移与水平方向间的夹角为φ,则总有t a n α=2t a n φ㊂证明:做平抛运动的物体到达任意位置时,有t a n α=v y v x =g t v 0,t a n φ=y x =g t 2v 0,因此t a n α=2t a n φ㊂推论二:做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点㊂证明:做平抛运动的物体到达任意位置时,末速度与水平方向间的夹角α的正切值t a n α=v yv x =y t x t -x ',其中x '是末速度的反向延长线与x 轴的交点到坐标原点的距离,即g t v 0=12g t 2v 0t -x ',解得x '=12v 0t ,即x '=x t 2㊂推论三:做平抛运动的物体在任意相等的时间间隔Δt 内的速度变化量Δv =g Δt 大小相等,方向恒为竖直向下㊂证明:因为做平抛运动的物体在任意时刻的水平分速度v x =v 0,竖直分速度v y =g t ,经过时间Δt ,物体的水平分速度v x '=v 0,竖直分速度v y'=g (t +Δt ),所以物体的水平分速度变化量Δv x =0,竖直分速度变化量Δv y =g Δt ,即物体在任意相等的时间间隔Δt 内的速度变化量Δv =g Δt 大小相等,方向恒为竖直向下㊂推论四:在某一固定斜面上,将物体沿水平方向抛出,当其再次落到斜面上时,物体在51知识篇 知识结构与拓展 高考理化 2023年9月Copyright ©博看网. All Rights Reserved.空中运动的时间只与初速度大小有关,且初速度越大,运动时间越长㊂图2证明:如图2所示,设将物体从倾角为θ的斜面顶端以初速度v 0水平抛出,在不计空气阻力的情况下,物体经过时间t落回到斜面上时的水平分位移与竖直分位移分别为x ㊁y ,根据几何关系得t a n θ=y x =12g t 2v 0t =g t 2v 0,解得t =2v 0t a n θg ,因为斜面倾角θ和重力加速度g 保持不变,所以物体在空中运动的时间t 只与初速度v 0的大小有关,且初速度v 0越大,运动时间t 越长㊂三、平抛运动的常见题型归类剖析题型一:求平抛运动的初速度v 0㊂若已知平抛运动轨迹上某点的位置坐标(非原点),则根据平抛运动轨迹方程y =g 2v 2㊃x 2得v 0=g 2y㊃x ;若已知平抛运动轨迹上某点位移s 的大小和方向,则根据x =s c o s φ,y =s s i n φ得v 0=g 2s ㊃s i n φ㊃s ㊃c o s φ㊂例1 如图3所示,将一支飞镖从倾角θ=45ʎ的斜面底端正上方高H =1.6m 处以一定的初速度水平抛出,取重力加速度g =10m /s 2,若飞镖打到斜面上发生的位移最小,则下列说法中正确的是( )㊂图3A.飞镖打到斜面上发生的位移与斜面成45ʎ角B .飞镖打到斜面上发生的位移与斜面垂直C .飞镖的初速度大小为2m /sD .飞镖的初速度大小为4m /s解析:要使飞镖打到斜面上发生的位移最小,飞镖的位移应与斜面垂直,选项A 错误,B 正确㊂设飞镖打到斜面上发生的水平分位移为x ㊁竖直分位移为y ,根据几何关系得x =y =12H ,根据平抛运动轨迹方程得y =g 2v 20㊃x 2,解得v 0=2m /s ,选项C 正确,D 错误㊂答案:B C题型二:求平抛运动的运动时间t ㊂若已知抛出点的高度h ,则根据h =12g t 2得t =2hg;若已知平抛运动轨迹上某点速度v 的大小和方向,则根据s i n α=v yv =g t v 得t =v s i n αg;若已知平抛运动轨迹上某点位移s 的大小和方向,则根据s i n φ=ys=12g t 2s得t =2s s i n φg㊂例2 如图4所示,无人机携带石块朝向倾角θ=30ʎ的斜坡飞行㊂已知无人机以速度v 0=3m/s 沿水平方向匀速飞行,某时刻无人机释放石块,之后无人机的飞行速度和飞行方向均保持不变,石块被释放后经过一段时间落在斜坡上㊂若石块落在斜坡上时的速度方向与斜面垂直,取重力加速度g =10m /s 2,则下列说法中正确的是( )㊂图4A.在石块离开无人机至落到斜坡上的过程中,石块始终位于无人机的正下方B .在石块离开无人机至落到斜坡上的过程中,石块与无人机间的水平距离越来越大C .石块从离开无人机至落到斜坡上所用61 知识篇 知识结构与拓展 高考理化 2023年9月Copyright ©博看网. All Rights Reserved.的时间为0.1sD.石块从离开无人机至落到斜坡上所用的时间为0.3s解析:无人机始终沿水平方向做匀速直线运动,石块离开无人机后做平抛运动,根据平抛运动特点可知,石块和无人机在水平方向上做速度大小相等的匀速直线运动,因此在石块离开无人机至落到斜坡上的过程中,石块始终位于无人机的正下方,选项A正确,B错误㊂当石块落在斜坡上时的速度方向与斜面垂直时,根据几何关系得t a nθ=v0v y =v0g t,解得t=0.3s,选项C错误,D正确㊂答案:A D题型三:求平抛运动的水平射程x㊂根据x=v0t可知,要想求出平抛运动的水平射程x,需要先求出平抛运动的初速度v0和运动时间t㊂例3取水平地面为零重力势能平面,不计空气阻力㊂将一质量为m的物块从离地h高度沿水平方向抛出,若物块在抛出点时的动能与重力势能恰好相等,则物块的落地点到抛出点的水平距离为()㊂A.2hB.hC.h2D.h4解析:设物块的初速度为v0,根据物块在抛出点时的动能与重力势能相等得m g h= 12m v20,解得v0=2g h㊂设物块做平抛运动的时间为t,则h=12g t2,解得t=2h g㊂因此物块的落地点到抛出点的水平距离x= v0t=2h㊂答案:A题型四:求平抛运动的末速度v t㊂根据v t=v2x+v2y=v20+2g h可知,要想求出平抛运动的末速度v t,需要先求出平抛运动的初速度v0和下落高度h㊂例4将甲㊁乙两小球从同一斜面顶端沿同一水平方向抛出,小球甲落在斜面的中点处,小球乙落在斜面的底端,不计空气阻力,则下列说法中正确的是()㊂A.甲㊁乙两小球的初速度大小之比为1ʒ2B.甲㊁乙两小球的位移方向相同C.甲㊁乙两小球的末速度方向不同D.甲㊁乙两小球的末速度大小之比为1ʒ2解析:甲㊁乙两小球落在同一斜面上,则甲㊁乙两小球的位移方向相同,选项B正确㊂根据做平抛运动的物体的末速度与水平方向间夹角的正切值总是位移与水平方向间夹角正切值的2倍可知,甲㊁乙两小球的末速度方向也相同,选项C错误㊂设斜面的高度为h,斜面沿水平方向的长度为l,根据平抛运动规律得h2=12g t2甲,h=12g t2乙,l2=v0甲t甲,l= v0乙t乙,解得v0甲=l2g h,v0乙=l g2h,即甲㊁乙两小球的初速度大小之比v0甲ʒv0乙= 1ʒ2,选项A错误㊂设甲㊁乙两小球的末速度与水平方向间的夹角为α,根据几何关系得c o sα=v0甲v甲=v0乙v乙,变形得v甲v乙=v0甲v0乙,即甲㊁乙两小球的末速度大小之比v甲ʒv乙=1ʒ2,选项D正确㊂答案:B D总结:平抛运动四个重要推论的推导,平抛运动常见题型的分析与求解都是基于平抛运动的特点,结合数学知识得出的㊂另外,物体做平抛运动的时间由抛出点的高度决定,抛出点离地面越高,物体的运动时间越长;物体做平抛运动的水平射程由抛出点的高度和初速度共同决定,抛出点离地面越高㊁初速度越大,水平射程越大㊂同学们在高三一轮复习的过程中,应该在理解的前提下,熟练掌握平抛运动的特点㊁推论,灵活选用平抛运动规律,结合动力学知识和数学方法求解各种类型的问题㊂(责任编辑张巧)71知识篇知识结构与拓展高考理化2023年9月Copyright©博看网. All Rights Reserved.。
平抛运动典型分类例题.docx
1.定义水平抛出的物体只在重力作用下的运动.2.特征加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.平抛运动的速率随时间变化不是均匀的,但速度随时间的变化是均匀的,要注意区分.4.规律(1)平抛运动如图所示;(2)其合运动及在水平方向上、竖直方向上的运动如下表所示:①从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角正切值的两倍.②抛物线上某点的速度反向延长线与初速度延长线的交点到抛点的距离等于该段平抛水平位移的一半.③在任意两个相等的t ∆内,速度矢量的变化量v ∆是相等的,即v ∆的大小与t ∆成正比,方向竖直向下.④平抛运动的时间为t =,取决于下落的高度,而与初速度大小无关.水平位移0x v t v == 4.求解方法(1)常规方法:将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,利用运动的合成及分解来做.(2)特殊方法:巧取参考系来求解,例如:选取具有相同初速度的水平匀速直线运动物体为参考系,平抛物体做自由落体运动;选取自由落体运动的物体为参考系,平抛物体做匀速直线运动.题型一:对平抛性质的理解【例1】 关于平抛运动,下列说法正确的是( )A .是匀变速运动B .是变加速运动C .任意两段时间内速度变化量的方向相同D .任意相等时间内的速度变化量相等【例2】 物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的 ( )A .速度的增量B .加速度C .位移D .平均速率题型二:对平抛基本公式、规律运用【例3】 以速度0v 水平抛出一个小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B 0C .小球运动的时间为2v gD .此时小球的速度方向与位移方向相同【例4】 一架飞机水平匀速飞行.从飞机上海隔l s 释放一个铁球,先后释放4个,若不计空气阻力,从地面上观察4个小球( )A .在空中任何时刻总是捧成抛物线,它们的落地点是等间距的B .在空中任何时刻总是排成抛物线,它们的落地点是不等间距的C .在空中任何时刻总在飞机正下方,排成竖直的直线,它们的落地点是等间距的D .在空中任何时刻总在飞机的正下方,捧成竖直的直线,它们的落地点是不等间距的【例5】 在光滑的水平面上有一个小球a 以初速度0v 向右运动,以此同时,在它的正上方有一个小球b 也以0v 的初速度水平向右抛出(如右上图),并落于水平面的c 点,则( ) A .小球a 先到达c 点B .小球b 先到达c 点C .两球同时到达c 点D .不能确定【例6】 甲、乙两球位于同一竖直直线上的不同位置,甲比乙高h ,如图所示,将甲、乙两球分别以1v 、2v 的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( )A .同时抛出,且1v <2vB .甲迟抛出,且1v >2vC .甲早抛出,且1v >2vD .甲早抛出,且1v <2v【例7】 滑雪运动员以20/m s 的速度从一平台水平飞出,落地点与飞出点的高度差3.2m .不计空气阻力,取210/g m s =.运动员飞过的水平距离为s ,所用时间为t ,则下列结果正确的是( ) A .16m, =0.50s s t = B . 16m, =0.80s s t = C .20m, =0.50s s t = D . 20m, =0.80s s t =【例8】 一物体从某高度以初速度0v 水平抛出,落地时速度大小为t v ,则它运动时间为( )A .0t v v g -B .02t v v g -C .222t v v g - D题型三:与斜面组合类【例9】 如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan sin φθ=B .tan cos φθ=C . tan tan φθ=D .tan 2tan φθ=【例10】 如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30° 的斜面上,可知物体完成这段飞行的时间是 ( )A 、sB 、sC 、s D 、2s【例11】 如图所示,相对的两个斜面,倾角分别为37。
平抛运动问题归类求解
平抛运动问题归类求解一.平抛运动的条件1.平抛运动的初始条件:物体具有水平初速度V02.平抛运动的受力特点:只受重力:F=mg(实际问题中阻力远远小于重力,可以简化为只受重力)3.平抛运动的加速度:mg=mα ,α=g ,方向竖直向下,与质量无关,与初速度大小无关4.平抛运动的理论推理:水平方向——x :物体不受外力,根据牛顿第一定律,水平方向的运动状态保持不变,水平方向应做匀速直线运动,V x=V0.竖直方向—— y:初速度为0,只受重力,加速度为g,做自由落体运动,V y=gt .二.平抛运动的规律如左图所示,以抛出点为坐标原点,沿初速度方向建立x轴,竖直向下为y轴.在时间t时,加速度:α=g ,方向竖直向下,与质量无关,与初速度大小无关;平抛运动速度规律:速度方向与水平方向成θ角平抛运动位移规律:位移方向与水平方向成α角平抛运动的轨迹方程:为抛物线平抛运动在空中飞行时间:,与质量和初速度大小无关,只由高度决定平抛运动的水平最大射程:由初速度和高度决定,与质量无关三.平抛运动的考察知识点与典型例题1. 平抛运动定义的考察例题:飞机在高度为0.8km的上空,以2.5×102km/h的速度水平匀速飞行,为了使飞机上投下的炮弹落在指定的轰炸目标,应该在离轰炸目标的水平距离多远处投弹?2.平抛运动中模型规律考察例题:一架飞机水平匀速飞行从飞机上每隔一秒释放一个炮弹,不计空气阻力在它们落地之前,炮弹()A、在空中任何时刻总是排成抛物线,它们的落地点是等间距的B、在空中任何时刻总是排成抛物线,它们的落地点是不等间距的C、在空中任何时刻总是在飞机的正下方排成竖直直线,它们的落地点是等间距的D、在空中任何时刻总是在飞机的正下方排成竖直直线,它们的落地点是不等间距的3.平抛运动中合速度与两个分速度的关系例题:一个物体以初速度V0水平抛出,落地时速度的大小为V,则运动时间为()题1、如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足A.tanφ=sinθB.tanφ=cosθC.tanφ=tanθD.tanφ=2tanθ平抛运动的常见问题及求解思路:关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。
第五章 小专题研究(一) 平抛运动的六种常见题型及其解决方法
答案:3
10 m/s<v0<12
2 m/s
平抛运动的两个重要推论的应用
推论 1:平抛运动的速度方向与水平方向的夹角 θ 和位移方 向与水平方向的夹角 α 的关系:tan θ=2tan α
[例 5]
如图 11 所示,一物体自倾角为 α 的固定斜面顶端沿
水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向 的夹角 θ 满足 ( )
平抛运动与斜面相结合问题的处理方法
平抛运动经常和斜面结合起来命题, 求解此类问题的关键是挖 掘隐含的几何关系。常见模型有两种: (1)物体从斜面平抛后又落到斜面上,如图 4 所示。则其位移 大小为抛出点与落点之间的距离,位移的偏角为斜面的倾角 α,且 y gt tan α=x= 。 2v0
图4
图5
解析:(1)设小球在空中运动的时间为 t, 小球由 P 落到 Q 的过程, 水平位移 x=v0t, 1 2, 竖直位移 y= gt 2 y 又 tan θ=x 2v0tan θ 解①②③式得 t= 。 g (2)则 P、Q 间的距离 L 为:L=
2 2 v tan θ 0 2 2 x +y = 。 gcos θ
图3
答案:C
平抛或类平抛运动的两类分解方法
1.常规分解法 将平抛 ( 或类平抛 ) 运动分解为沿初速度方向的匀速直线运动 和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运 动彼此独立,互不影响,且与合运动具有等时性。 2.特殊分解法 对于有些问题,可以过抛出点建立适当的直角坐标系,将加 速度分解为 ax、ay,初速度 v0 分解为 vx、xy,然后分别在 x、y 方 向列方程求解。
解析:从题图中可以看出 hA>hB>hC,由 t=
2h g 得 tA>tB
平抛运动的五个结论和六类典型题
平抛运动的五个结论和六类典型题平抛运动是指物体在重力场中自由落体,无论沿着任何方向,都不受外力的影响而进行的直线运动。
它是一种常见的物理现象,在我们的日常生活中随处可见。
在物理学家的努力下,研究出了平抛运动的五个结论和六大类几乎所有的物理题型都可以用这五个结论来求解。
1、任何物体以相同的加速度沿直线运动。
2、从时间t0到t1,物体在竖直方向上的运动距离相等,而水平方向上的运动距离为两个时间之间的重力加速度乘以时间。
3、时间t0和t1之间的重力加速度和时间无关。
4、物体从t0开始运动接近水平时,针对两个时间之间的水平距离没有重力影响。
5、在竖直方向上,物体的运动距离变小,而水平方向上的运动距离由时间的变化而决定。
根据这五个结论,可以分为六大类典型题:1、物体从高度h出发,求t0到t1这个时间内的垂直距离。
2、物体已知发射角与发射速度,求t0到t1这个时间内的水平距离。
3、物体从高度h发射,求t0到t1这段时间内的水平距离。
4、物体从高度h发射,求一段时间内发射角和发射速度来使其最远到达水平距离。
5、物体从高度h发射,求t0到t1这段时间内的最高点距离。
6、物体从高度h发射,求在一段时间内的最大的水平距离。
上面就是平抛运动的五个结论以及六类典型题。
下面我们用这些结论和题型来计算经典问题:一个物体从高度h发射,求它在前一秒内到达的最大水平距离。
根据平抛运动第二个结论,从时间t0到t1,物体在竖直方向上的运动距离相等,而水平方向上的运动距离为两个时间之间的重力加速度乘以时间,因此,一秒内的最大水平距离就是重力加速度t乘以1秒,即g×t。
所以,要求解这个问题,只需要知道重力加速度g的大小就可以了。
以上就是平抛运动的五个结论和六类典型题的介绍,以及如何使用这五个基本结论来解决实际问。
物理平抛运动实验题型及解析
物理平抛运动实验题型及解析
在物理中,平抛运动实验是一个重要的实验,它主要考察学生对平抛运动的理解以及实验设计和操作能力。
以下是一些常见的平抛运动实验题型及解析:
1. 基本概念题:
题型:什么是平抛运动?请描述其运动特点。
解析:平抛运动是指一个物体以一定的初速度水平抛出,在重力的作用下,沿曲线轨迹运动。
其运动特点是初速度恒定,仅受重力影响,轨迹为抛物线。
2. 实验设计题:
题型:请设计一个实验来研究平抛运动的轨迹。
解析:可以使用频闪仪或高速摄像机来捕捉平抛运动的轨迹。
通过调整频闪仪或高速摄像机的参数,可以观察和记录物体在不同时刻的位置,从而描绘出其运动轨迹。
3. 数据分析题:
题型:给定一组平抛运动的实验数据,如何计算初速度和落地时间?
解析:通过分析物体的水平位移和竖直位移,结合时间间隔,可以计算出物体的初速度和落地时间。
使用公式$x = v_{0}t$和$y =
\frac{1}{2}gt^{2}$进行计算。
4. 误差分析题:
题型:在平抛运动的实验中,如何减小测量误差?
解析:可以采用多种方法减小误差,例如使用更精确的测量工具、多次测量求平均值、优化实验设计和操作等。
此外,还要注意消除系统误差和随机误差的影响。
5. 综合应用题:
题型:请解释在平抛运动的实验中,为何需要选择合适的实验参数?
解析:选择合适的实验参数是确保实验准确性和可靠性的关键。
例如,选择合适的初速度可以确保平抛运动的轨迹足够长,方便观察和测量;选择合适的时间间隔可以确保能够捕捉到物体在不同时刻的运动状态。
高考物理一轮复习学案平抛运动常见题型总结(三)
平抛运动常见题型总结(三)类型五、飞机投弹例题1:某次训练中,舰载机在某一高度水平匀速飞行,离目标水平距离l 时投弹,精确命中目标。
现将舰载机水平飞行高度变为原来的94倍,飞行速度变为原来的1.5倍,要仍能命中目标,那么舰载机投弹时离目标的水平距离比原来要多〔不计炸弹飞行过程中的空气阻力〕〔〕A .lB .54l C .2l D .94l解析:炸弹被投下后做平拋运动,在水平方向上的分运动为匀速直线运动,在竖直方向上的分运动为自由落体运动,所以在竖直方向上212h gt =解得2h t g =在水平方向上002hl v t v g== 当舰载机飞行的高度变为原来的94倍,飞行速度变为原来的1.5倍时,飞机投弹时距离目标的水平距离092941.54hl vl g ⨯'== 飞机投弹时距离目标的水平距离比原来多54l l l l '∆=-=应选B 。
练习:1.在高空中匀速飞行的轰炸机,每隔时间t 投放一颗炸弹,假设不计空气阻力,那么投放的炸弹在空中的位置是选项中的〔图中竖直的虚线将各图隔离〕〔 〕 A.A B .B C .C D .D2.如图,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A 。
A 点高度为h ,山坡倾角为θ,由此可算出〔 〕 A.轰炸机的飞行高度 B .轰炸机的飞行速度 C .炸弹的飞行时间 D .炸弹击中目标时的速度3.如下图,在距地面高度肯定的空中,一架战斗机由东向西沿水平方向匀速飞行,发觉地面目标P 后,开头瞄准并投掷炸弹,炸弹恰好击中目标P 。
假设投弹后战斗机仍以原速度水平匀速飞行,空气阻力不计,那么〔 〕 A .投弹时战斗机在P 点的正上方B .炸弹落在P 点时,战斗机在P 点的正前上方C .战斗机飞行速度越大,投弹时战斗机到P 点的距离应越大D .无论战斗机飞行速度多大,投弹时战斗机到P 点的距离是肯定的 类型六、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动. 2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线. 3.讨论方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:匀变速直线运动. 4.根本规律以斜抛运动的抛出点为坐标原点O ,水平向右为x 轴的正方向,竖直向上为y 轴的正方向,建立如下图的平面直角坐标系xOy .初速度可以分解为v 0x =v 0cos θ,v 0y =v 0sin θ. 在水平方向,物体的位移和速度分别为 x =v 0x t =(v 0cos θ)t ① v x =v 0x =v 0cos θ②在竖直方向,物体的位移和速度分别为 y =v 0y t -12gt 2=(v 0sin θ)t -12gt 2③ v y =v 0y -gt =v 0sin θ-gt ④ 5.方法与技巧 (1)斜抛运动中的极值在最高点,v y =0,由④式得到t =v 0sin θg ⑤ 将⑤式代入③式得物体的射高y m =v 02sin 2θ2g ⑥物体落回与抛出点同一高度时,有y =0, 由③式得总时间t 总=2v 0sin θg ⑦将⑦式代入①式得物体的射程x m =v 02sin 2θg 当θ=45°时,sin 2θ最大,射程最大.所以对于给定大小的初速度v 0,沿θ=45°方向斜向上抛出时,射程最大. (2)逆向思维法处理斜抛问题对斜上抛运动从抛出点到最高点的运动,可逆过程分析,看成平抛运动,分析完整的斜上抛运动,还可依据对称性求解某些问题.例题1:某篮球运发动正在进行投篮训练,假设将篮球视为质点,忽视空气阻力,篮球的运动轨迹可简化如图,其中A 是篮球的投出点,B 是运动轨迹的最高点,C 是篮球的投入点。
平抛运动的几类题型
平抛运动的几类题型题型一:运用平抛运动特征解法:例1:在19.6m高的平台上以18m/s的速度水平抛出一个石块,求石块落地时间及水平射程。
[分析]平抛运动在空中运动时间t=,取决于高度h,与初速v0大小无关。
水平位移x=v0t=v0,由水平初速v0和下落高度h两者决定。
[解析] t=2s,x=36m题型二:运用平抛运动的分解法:例2:有一水平方向的水笼头,离地面高度为0.8米,从中放出的水的流速为2m/s,如图所示。
那么,地上盛水的木桶应放在何处才能接到水?水落入桶内的速度多大?(g取10m/s2) [分析]笼头中放出的水作平抛运动,根据平抛运动的规律,可由其高度求出时间,再由时间求出水落到地面的水平距离。
[解析]由h=gt2,得t =所以S = V0 t =V0 =2× = 0.8m木桶应放在离笼头水平距离0.8m处。
水落入木桶内的速度可由水平分速度和竖直分速度求得V x =V0 = 2m/sV Y = g t =g == = 4m/V === 4.5 m/s水落入桶内的速度大小为4.5 m/s。
题型三:水平匀变速直线运动相邻相等时间间隔位移差是一个常数。
示例3:图为一小球做平抛运动时闪光照片的一部分,图中背景是边长5cm的小方格,则闪光频率是_________Hz;小球运动的初速度是_______m/s;抛出点距图中A点水平距离是____cm,竖直距离是_____________cm。
(g取10m/)[分析]由于AB水平方向的距离与BC水平方向的距离相等,说明t AB=t BC,竖直方向上是做匀变速直线运动,可用⊿s=aT2求解。
[解析]平抛物体在竖直方向的运动符合:S2-S1= aT2S1=15cm,S2=25cm,a=10m/平抛物体在水平方向的运动符合:x=vtx=15cm,t=0.1s,题型四:灵活选取坐标系:例4:如图所示,AB为斜面,倾角为300,小球从A点以初速度v0=10m/s水平抛出,恰好落到B点。
平抛运动常见题型归类
平抛规律应用一、 知识点稳固:1.平抛的特点:①受力特点:只受到重力作用。
②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。
③运动性质:是加速度为g 的匀变速曲线运动。
2.平抛运动的规律:①速度公式:0x v v = y v gt = 合速度:()22220t x y v v v v gt =+=+②位移公式:20,2gt x v t y ==合位移222222012s x y v t gt ⎛⎫=+=+ ⎪⎝⎭ 0tan 2y gt x v θ==③平抛运动时间:2ht g=,由h,g 决定,与0v 无关。
④水平分位移:02hx v g=,由h,g, 0v 共同决定。
⑤任何相等的时间t ∆内,速度改变量v ∆= ,方向 。
⑥平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为… 竖直方向上在相等的时间内相邻的位移之差是一个恒量(T 表示相等的时间间隔〕。
Vy xS O x x 2/V y V 0V x =V 0P ()x y ,θαtan y xv gt v v α==V 1V 0V 2V 3V △V△V △⑦速度v的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,tanα变大,α↑,速度v与重力的方向越来越靠近,但永远不能到达。
⑧以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a〔一样、不一样〕,与初速度〔有关、无关〕,飞行的时间与有关。
二、平抛运动的常见问题及求解思路:1、根本规律应用采用运动的分解再合成思想,从同时经历两个运动的角度处理平抛运动。
例1、如下图,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?g取10m/s2。
例2、平抛物体落地时速度大小为50m/s,方向与水平方向成53o求:1)抛出点离水平地面的高度和水平射程2〕抛出3s末的速度2、飞机投弹问题例3、一架飞机水平匀速飞行,从飞机上每隔1s释放一个炮弹,不计空气阻力,在它们落地之前,对炮弹的描述正确的选项是〔〕A、在空中任何时刻总排成抛物线,落地点等间距B、在空中任何时刻总排成抛物线,落地点不等间距C、在空中任何时刻总在飞机正下方排成竖直线,落地点不等间距D、在空中任何时刻总在飞机正下方排成竖直线,落地点等间距x102km/h速度水平匀速飞行,为使飞机上投下的炮弹落在指定的目标上,应在何处投弹?例5、飞机离海面高H=500m,水平飞行速度V1=100m/s,追击一艘速度V2=20m/s同方向逃跑的敌舰,欲使投下的炸弹击中敌舰,那么飞机应在距离敌舰水平距离多远处投弹?3、平抛与斜面相结合的问题例6、如图甲所示,以10m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。
完整word版高考复习平抛运动解题方法归类解析
平抛运动解题方法归类例析一、平抛运动的研究方法运动的合成与分解是研究曲线运动的基本方法. 根据运动的合成与分解,可以把平抛运动分解为水平方向的匀速运动和竖直方向的自由落体运动,然后研究两分运动的规律,必要时可以再用合成方法进行合成。
二、平抛运动规律以抛出点为坐标原点,水平初速度v方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图所0示的坐标系,则平抛运动规律如下表:的飞镖以速处,将质量m h、离靶面距离L【典例精析1】:(双选)(2010 年广州一模)人在距地面高四个量中的一个,可使飞镖投中靶心v、L、m、水平投出,落在靶心正下方,如图所示.只改变hv度00) 的是(B.适当提高hv A.适当减小 0LD.适当减小C.适当减小m从题意中判断,要使飞镖投中靶心,可以在保持水平距离的条[解析]只会使下落时间更长,故v件下相应提升出手高度,或者,如出手高度不变,则需减少其下落时间,减小0BD。
应适当减小水平距离L。
质量对其运动无影响,综上,选【问题探究】:平抛物体落在水平面上时,物体在空中运动时间和水平射程分别由什么决定。
无关,而物体v][解析当平抛物体落在水平面上时,物体在空中运动的时间由高度h决定,与初速度0两者共同决定。
的水平射程由高度h及初速度v0三、对平抛运动规律的进一步理解1.速度的变化规律Δ时间,t,从抛出点起,每隔不变;竖直方向加速度恒为=vg,速度v=gtv水平方向分速度保持yx0速度的矢量关系如右图所示,这一矢量关系有三个特点;。
v(1)任意时刻的速度水平分量均等于初速度0ΔΔ的方向均竖直向内的速度改变量t(2)任意相等时间间隔vΔΔΔ=v=tg。
下,大小均为v y平抛运动的速率并不随时间均匀变化,但速度随时间是注意:均匀变化的。
随着时间的推移,末速度与竖直方向的夹角越来越大,但永(3) 远不会等于°。
90 1.位移的变化规律2ΔΔt。
(1)任意相等时间间隔内,水平位移不变,且=xv02ΔΔΔt内,竖直方向上的位移差不变,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例析平抛运动题型归类
一、类平抛运动问题
一般来说,质点受恒力作用具有恒定的加速度,初速度与恒力垂直,质点的运动就与平抛运动类似,通常我们把物体的这类运动称做类平抛运动。
对于类平抛运动都可以应用研究平抛运动的方法来研究、处理其运动规律。
例1. 如图1所示,将质量为m的小球从倾角为的光滑斜面上A点以速度水平抛出(即平行CD),小球沿斜面运动到B点。
已知A点的高度为h,则小球在斜面上运动的时间为多少?小球到达B点时的速度大小为多少?
图1
解析:小球在光滑斜面上做类平抛运动,沿斜面向下的加速度,
设由A运动到B的时间为t,则有
,解得
小球沿斜面向下的速度
因为,所以小球在B点的速度为
二. 分解末速度的平抛运动问题
例2. 如图2所示,以9.8m/s的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为:()
A. B. C. D.
图2
解析:把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向速度,垂直地撞在斜面上时,既有水平方向分速度,又有竖直方向的分速度。
物体速度的竖直分量确定后,即可求出物体飞行的时间。
如图2所示,把末速度分解成水平方向分速度和竖直方向的分速度,则有
①
②
解方程①②得
选项C正确。
三. 分解位移的平抛运动问题
例3. 如图3所示,在倾角为的斜面顶点,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L,求抛出的初速度?
图3
解析:钢球做平抛运动,初速度和时间决定水平位移
①
飞行时间由下落高度决定②
由方程①②得
即钢球抛出的初速度为
四. 由图象求解平抛运动的问题
例4. 某同学在做研究平抛运动的实验时,忘记记下斜槽末端位置,图4中的A点为小球运动一段时间后的位置,他便以A点为坐标原点,建立了水平方向和竖直方向的坐标轴,得到如图4所示的图象,试
根据图象求出小球做平抛运动的初速度(g取)。
图4
解析:从图象中可以看出小球的A、B、C、D位置间的水平距离是相等的,都是0.20m,由于小球在水平方向做匀速直线运动,于是可知小球由A运动到B,以及由B运动到C,由C运动到D所用的时间是相等的,设该时间为t,又由于小球在竖直方向做自由落体运动,加速度等于重力加速度g,可根据匀变速运动的规律求解,要特别注意在A点时竖直速度不为零,但做匀变速直线运动的物体在任意连续相等时
间内的位移差相等,即,本题中
水平方向①
竖直方向②
由②得
代入①得
五. 和体育运动相联系的平抛运动问题
例5. 如图5所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前将球水平击出。
(球在飞行过程中所受空气阻力不计)
(1)设击球点在3m线的正上方高度为2.5m,试问击球的速度在什么范围内才能使球既不触网也不越界。
(2)若击球点在3m线正上方的高度小于某个值,那么无论水平击球的速度多大,球不是触网就是越界,试求这个高度。
(g取10m/s2)
图5
解析:(1)球的运动可看作是平抛运动,如图6所示,设击球点高度为H,要使球不触网。
则当下落高时,它的水平射程满足①
图6
竖直高度②
水平射程③
由①②③有④
要使球不越界,则当竖直方向的位移为H时,球的水平射程⑤
竖直高度⑥
水平射程
由④⑤⑥得⑦
由上面分析知要使球既不触网,又不越界,
则由④⑦可得⑧
即
(2)由④式知,要使球不触网,由⑦式知要使球不越界,但若H一
定时满足时,则球不是触网,就是越界,即。
所以当击球高度小于时,球不是触网就是越界。