离散数学(第2版)-在线作业-2
离散数学(第二版)课后习题答案详解(完整版)
![离散数学(第二版)课后习题答案详解(完整版)](https://img.taocdn.com/s3/m/b20470d609a1284ac850ad02de80d4d8d15a01b4.png)
离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
中农大网络教育离散数学(第2版)_在线作业
![中农大网络教育离散数学(第2版)_在线作业](https://img.taocdn.com/s3/m/57ef56d91a37f111f1855be6.png)
离散数学(第2版)_在线作业_1交卷时间2019-09-26 14:15:30一、单选题(每题5分,共20道小题,总分值100分)1.命题变元P和Q的极大项M1表示()。
(5分)┐P∨Q┐P∧QP∧┐QP∨┐Q正确答案您的答案是D回答正确展开2.设,下面集合等于A的是()。
(5分)ABCD正确答案您的答案是B回答正确展开3.下面既是哈密顿图又是欧拉图的是()。
(5分)ABCD正确答案您的答案是C回答正确展开4.下列语句中为命题的是()。
(5分)AB水开了吗?C再过5000年,地球上就没有水了D请不要抽烟!正确答案您的答案是C回答正确展开5.n个结点、m条边的无向连通图是树当且仅当m=()。
(5分)A2n-1B nC n-1D n+1正确答案您的答案是C回答正确展开6.命题变元P和Q的极小项m1表示()。
(5分)P∧┐Q┐P∧Q┐P∨QP∨┐Q正确答案您的答案是B回答正确展开7.公式的前束范式为()。
(5分)ABCD正确答案您的答案是D回答正确展开8.无向完全图有()条边。
(5分)A nB n2C n(n-1)D n(n-1)/2正确答案您的答案是D回答正确展开9.设无向图G的所有结点的度数之和为12,则G一定有()。
(5分)6条边5条边3条边4条边正确答案您的答案是A回答正确展开10.下列语句中不是命题的是()。
(5分)AB我是大学生C3是奇数D请勿吸烟!正确答案您的答案是D回答正确展开11.下列不一定是树的是()。
(5分)A每对结点之间都有通路的图B连通但删去一条边则不连通的图C有n个结点,n-1条边的连通图D无回路的连通图正确答案您的答案是A回答正确展开12.在有3个结点的图中,奇度数结点的个数为()。
(5分)A0或2B0C1D1或3正确答案您的答案是A回答正确展开13.集合的对称差运算不满足()。
(5分)A消去律B结合律C交换律D幂等律正确答案您的答案是D回答正确展开14.下列图中()是平面图。
精品文档-离散数学(第二版)(武波)-第2章
![精品文档-离散数学(第二版)(武波)-第2章](https://img.taocdn.com/s3/m/4894ece731126edb6e1a1074.png)
第2章 谓词逻辑
例如, “x是偶数”可以用谓词P(x)表示, P(2)、 P(3) 分别表示“2是偶数”、 “3是偶数”。 “x小于y”可以用 谓词Q(x, y)表示, Q(5, 7)、 Q(6, 5)分别表示“5小于 7”、 “6小于5”。 “x在y和z之间”可以用谓词R(x, y, z)表示, R(a, b, c)表示“a在b和c之间”。
第2章 谓词逻辑
定义2.3.3 设A是谓词公式, 如果对于任何赋值, A的 真值都为真, 则称谓词公式A是永真式; 如果对于任何赋值, A的真值都为假, 则称谓词公式A是永假式; 若存在一种赋 值, 使得A的真值为真, 则称谓词公式A是可满足式。
由定义可知, 对于任意谓词公式A, 若A是永真式, 则 A在特定论域E上永真; 若A是永假式, 则A在特定论域E上永 假; 若A在特定论域E上可满足, 则A是可满足式。
…… n元谓词用于刻画n个个体之间的关系, 由一个表示n个 个体关系的大写字母(称为n元谓词符、 n元关系符)和n个个 体常元或变元组成的表达式表示, 如R(a1, a2, …, an)、 R(x1, x2, …, xn )等。 根据以上约定, 谓词就可以简单地描述为是由一个谓词 符和若干具有有固定次序的个体常元或变元组成的表达式。 带有 n(n≥0)个个体的谓词称为n 元谓词。
所有命题, 如“所有的人都要呼吸”、 “有些有理数是自然
数”等。 为了刻画这类表示全称判断或特称判断的命题, 需
要引入量词( quantifier )。
1.
x表示“对于所有的x”、 “对于任一x”或“对于每
一个x”,
(universal
quantifier),x是量词 的作用变元(指导变元)。
第2章 谓词逻辑
离散数学及其应用第2版课后练习题含答案
![离散数学及其应用第2版课后练习题含答案](https://img.taocdn.com/s3/m/e6877e2a6fdb6f1aff00bed5b9f3f90f76c64dbc.png)
离散数学及其应用第2版课后练习题含答案1. 引言《离散数学及其应用》是一本经典的离散数学教材,是计算机科学和数学专业的必修课程。
本文将为读者提供《离散数学及其应用》第2版课后练习题的答案,并希望能够帮助读者加深对离散数学的理解。
2. 答案解析第一章习题 1.11.给定一组七个数字 {1, 3, 3, 4, 6, 9, 12},请给出这组数字的中位数。
答案:中位数为 4。
2.给出两个整数 a 和 b 的三进制表示: a = 111011,b = 101101。
求 a + b。
答案:a + b = 1011000。
3.证明奇奇数的积为奇数。
答案:令两个奇数分别为 2n + 1 和 2m +1,则有:(2n + 1) × (2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1,即奇奇数的积还是一个奇数。
习题 1.21.证明:如果一个整数 n 能同时被 2 和 3 整除,则它也能被 6 整除。
答案:首先,n 能同时被 2 和 3 整除,则分别有 n = 2k 和 n = 3m。
联立方程组 2k = 3m,得 k = (3/2)m。
因此,n = 2k = (3m/2) × 2 = 3m× (2/2) = 6m,可以被 6 整除。
2.求 10010 的八进制表示。
答案:将 10010 转换为四位一组的二进制数,得 0010 0100。
将 0010 和 0100 分别转换为八进制数,得 2 和 4。
因此,10010 的八进制表示为 24。
3.已知 547a5 是 11 的倍数,求 a 的值。
答案:根据 11 的倍数的规律,将 547a5 中的奇数位数字相加,再将偶数位数字相加,然后将两个和的差求出来: (5 + 7 + a) - (4 + 5) = 13 + a - 9 = a + 4。
因为547a5 是 11 的倍数,所以 a + 4 也必须是 11 的倍数。
离散数学第二版邓辉文编著第一章第二节习题答案
![离散数学第二版邓辉文编著第一章第二节习题答案](https://img.taocdn.com/s3/m/3357b6c8f46527d3250ce07c.png)
离散数学第二版邓辉文编著第一章第二节习题答案1.2 映射的有关概念习题1.21. 分别计算⎡1. 5⎤,⎡-1⎤,⎡-1. 5⎤,⎣1. 5⎦,⎣-1⎦,⎣-1. 5⎦.解⎡1. 5⎤=2,⎡-1⎤=-1,⎡-1. 5⎤=-1,⎣1. 5⎦=1,⎣-1⎦=-1,⎣-1. 5⎦=-2.2. 下列映射中,那些是双射? 说明理由.(1)f :Z →Z , f (x ) =3x .(2)f :Z →N , f (x ) =|x |+1.(3)f :R →R , f (x ) =x 3+1.(4)f :N ⨯N →N , f (x 1, x 2) =x 1+x 2+1.(5)f :N →N⨯N , f (x ) =(x , x +1).解 (1)对于任意对x 1, x 2∈Z,若f (x 1) =f (x 2) ,则3x 1=3x 2,于是x 1=x 2,所以f 是单射. 由于对任意x ∈Z,f (x ) ≠2∈Z,因此f 不是满射,进而f 不是双射.(2)由于2, -2∈Z且f (2) =f (-2) =3,因此f 不是单射. 又由于0∈N,而任意x ∈Z均有f (x ) =|x |+1≠0,于是f 不是满射. 显然,f 不是双射.(3)对于任意对x 1, x 2∈R,若f (x 1) =f (x 2) ,则x 1+1=x 2+1,于是x 1=x 2,所以f 是单射. 对于任意y ∈R,取x =(y -1) ,这时1⎡⎤3f (x ) =x +1=⎢(y -1) 3⎥+1=(y -1) +1=y ,⎣⎦33313所以f 是满射. 进而f 是双射.(4)由于(1, 2), (2, 1) ∈N⨯N 且(1, 2) ≠(2, 1) ,而f (1, 2) =f (2, 1) =4,因此f 不是单射. 又由于0∈N,而任意(x 1, x 2) ∈N⨯N 均有f (x 1, x 2) =x 1+x2+1≠0,于是f 不是满射. 显然,f 就不是双射.(5)由于x 1, x 2∈N,若f (x 1) =f (x 2) ,则(x 1, x 1+1) =(x 2, x 2+1) ,于是x 1=x 2,因此f 是单射. 又由于(0, 0) ∈N⨯N ,而任意x ∈N均有f (x ) =(x , x +1) ≠(0, 0) ,于是f 不是满射. 因为f 不是满射,所以f 不是双射.3. 对于有限集合A 和B ,假定f :A →B且|A |=|B |,证明: f 是单射的充要条件是f 是满射. 对于无限集合,上述结论成立吗?举例说明.证(⇒) 因为f 是单射,所以|A |=|f (A ) |. 由于|A |=|B |,所以|f (A ) |=|B |. 又因为B 有限且f (A ) ⊆B ,故f (A ) =B ,即f 是满射.(⇐) 若f 是满射,则f (A ) =B . 由于|A |=|B |,于是|A |=|f (A ) |. 又因为A 和B 是有限集合,因此f 是单射.对于无限集合,上述结论不成立. 例如f :N →N,f (x ) =2x ,f 是单射,但f 不是满射.4. 设f :A →B , 试证明:(1)f I B =f .(2)I A f =f .特别地,若f :A →A,则f I A =I A f =f .证 (1)对于任意x ∈A,由于f (x ) ∈B,所以(f I B )(x ) =I B (f (x )) =f (x ) ,因此f I B =f .(2)对于任意x ∈A,由于I A (x ) =x ,所以(I A f )(x ) =f (I A (x )) =f (x ) ,于是有I A f =f .由(1)和(2)知,若f :A →A,则f I A =I A f =f .5. 试举出一个例子说明f f =f 成立,其中f :A →A且f ≠I A . 若f 的逆映射存在,满足条件的f 还存在吗?解令A ={a , b , c },f (a ) =f (b ) =f (c ) =a ,即对于任意x ∈A,f (x ) =a ,显然f :A →A且f ≠I A . 而对于任意x ∈A,有(f f )(x ) =f (f (x )) =f (a ) =a ,因此f f =f .若f f =f 且f 的逆映射f -1存在,由第3题知f f =f =f I A ,所以-1-1于是利用定理7有(f f ) f =(f f ) I A ,f -1 (f f ) =f -1 (f I A ) ,进而I A f =I A I A ,因此f =I A . 所以若f 的逆映射存在,满足条件的f 不存在.6. 设f :A →B , g :B →C . 若f 和g 是满射,则f g 是满射,试证明.证因为f 是满射,所以f (A ) =B . 又因为g 是满射,所以g (B ) =C . 于是(f g ) (A ) =g (f (A )) =g (B ) =C ,因此f g 是A 到C 的满射.另证对于任意z ∈C,因为g 是满射,于是存在y ∈B使得g (y ) =z . 又因为f 是满射,存在x ∈A使得f (x ) =y . 因此,(f g )(x ) =g (f (x )) =g (y ) =z ,所以f g 是A 到C 的满射.7. 设f :A →B , g :B →C . 试证明: 若f g 是单射,则f 是单射. 试举例说明,这时g 不一定是单射.证对于任意x 1, x 2∈A,假定f (x 1) =f (x 2) ,则显然g (f (x 1)) =g (f (x 2)) ,即(f g )(x 1) =(f g )(x 2) . 因为f g 是单射,所以x 1=x 2,于是f 是单射.例如A ={a , b },B ={1, 2, 3},C ={α,β,γ,δ},令f (a ) =1, f (b ) =2,g (1) =α, g (2) =β, g (3) =β,则显然有(f g )(a ) =g (f (a )) =g (1) =α, (f g )(b ) =g (f(b )) =g (2) =β,于是f g 是A 到C 的单射,但g 显然不是单射.8. 设f :A →B , 若存在g :B →A,使得f g =I A 且g f =I B ,试证明: f 是双射且f -1=g .证因为f g =I A ,而I A 是单射,所以f 是单射. 又因为g f =I B ,而I B 是满射,所以f 是满射. 因此f 是双射.由于f 是双射,所以f而(f -1-1存在. 因为f g =I A ,于是f -1 (f g ) =f -1 I A . f ) g =f -1 I A 且I B g =f -1,所以有f -1=g .9. 设f :A →B , g :B →C . 若f 和g 是双射,则f g 是双射且(f g ) -1=g -1 f -1.-1-1证根据定理4(1)(2)知,f g 是双射. 下证(f g ) =g f -1. 因为(f g ) (g -1 f -1) =f (g g -1) f -1=f I B f -1=f f -1=I A , (g -1 f -1) (f g ) =g -1 (f -1 f ) g =g -1 I B g =g -1 g =I C ,在上面的推导中多次利用了定理7. 由第7题知,(f g ) -1=g -1 f10. 设G 是集合A 到A 的所有双射组成的集合,证明(1)任意f , g ∈G,有f g ∈G .(2)对于任意f , g , h ∈G,有(f g ) h =f (g h ).(3)I A ∈G且对于任意f ∈G,有I A f =f I A =f .(4)对于任意f ∈G,有f -1-1. ∈G且f f -1=f -1 f =I A .证 (1)由定理5.(2)由定理7.(3)由第3题.(4)由定理4.11. 若A = {a , b , c }, B = {1, 2}, 问A 到B 的满射、单射、双射各有多少个? 试推广你的结论.解将A 中的3个元素对应到B 中的2个元素,相当于将3个元素分成2部分,共有3种分法; 在计算A 到B 的满射个数时还需要将B 中元素进行排列,共有2种排列方式,于是A 到B 的满射共有3⨯2=6个(请自己分别写出A 到B 的6个满射).由于|A |=3, |B |=2,所以A 到B 的单射没有,进而A 到B 的双射也没有. 假设|A |=m , |B |=n .(1) A到B 的满射若m(2) A到B 的单射若m >n ,不存在单射;若m ≤n,由于B 中任意选取m 个m 元素,再将其进行全排列都得到A 到B 的单射,故A 到B 的单射共有C n ⋅m ! 个.(3)A 到B 的双射若m ≠n,不存在双射;若m =n ,此时B 中元素的任意一个排列均可得到一个A 到B 的双射,因此A 到B 的双射共有m ! 个.12. 设A , B , C , D 是任意集合,f 是A 到B 的双射, g 是C 到D 的双射,令h :A ⨯C →B⨯D ,对任意(a , c ) ∈A⨯C , h (a , c ) =(f (a ), g (c )). 证明:h 是双射.证对于任意(a 1, c 1) ∈A⨯C ,(a 2, c 2) ∈A⨯C ,假定h (a 1, c 1) =h (a 2, c 2) ,即(f (a 1), g (c 1)) =(f (a 2), g (c 2)) ,于是f (a 1) =f (a 2) 且g (c 1) =g (c 2) ,根据已知条件有a 1=a 2且c 1=c 2,进而(a 1, c 1) =(a 2, c 2) ,因此h 是单射.任意(b , d ) ∈B⨯D ,则b ∈B , d ∈D,由于f 是A 到B 的双射且g 是C 到D 的双射,于是存在a ∈A , c ∈C使得f (a ) =b , g (c ) =d ,因此h (a , c ) =(f (a ), g (c )) =(b , d ) ,所以h 是满射.故h 是双射.13. 设f :A →B , g :B →C , h :C →A,若f g h =I A ,g h f =I B ,h f g =I C ,则f , g , h 均可逆,并求出f -1, g -1, h -1.证因为恒等映射是双射,多次使用定理6即可得结论.由于f g h =I A ,所以f 是单射且h 是满射. 由于g h f =I B ,所以g 是单射且f 是满射. 由于h f g =I C ,所以h 是单射且g 是满射. 于是f , g , h 是双射,因此f , g , h 均可逆.由于f g h =I A ,所以f -1=g h 且h -1=f g ,进而g -1=h f .14. 已知Ackermann 函数A :N ⨯N →N的定义为(1)A (0, n ) =n +1, n ≥0;(2)A (m , 0) =A (m -1, 1), m >0;(3)A (m , n ) =A (m -1, A (m , n -1)), m >0, n >0.分别计算A (2, 3) 和A (3, 2) .解由已知条件有A (0, 1) =2,A (1, 0) =A (0, 1) =2,于是A (1, 1) =A (0, A (1, 0)) =A (0, 2) =2+1=3,A (1, 2) =A (0, A (1, 1)) =A (0, 3) =3+1=4,由此可进一步得出A (1, n ) =n +2,A (2, 0) =A (1, 1) =3,A (2, 1) =A (1, A (2, 0)) =A (1, 3) =3+2=5,A (2, 2) =A (1, A (2, 1)) =A (1, 5) =5+2=7, A (2, 3) =A (1, A (2, 2)) =A (1, 7) =7+2=9. 因此有A (2, n ) =2n +3,A (3, 0) =A (2, 1) =2⋅1+3=5,A (3, 1) =A (2, A (3, 0)) =A (2, 5) =2⋅5+3=13, A (3, 2) =A (2, A (2, 2)) =A (2,13) =2⋅13+3=29. 所以有A (2, 3) =9, A (3, 2) =29.。
离散数学答案第二版-高等教育出版社课后答案
![离散数学答案第二版-高等教育出版社课后答案](https://img.taocdn.com/s3/m/7803ec14581b6bd97e19ea03.png)
第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
离散数学第二版最全课后习题答案详解
![离散数学第二版最全课后习题答案详解](https://img.taocdn.com/s3/m/53561b635627a5e9856a561252d380eb62942327.png)
离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学答案 第二版 课后答案--
![离散数学答案 第二版 课后答案--](https://img.taocdn.com/s3/m/2a7f026287c24028905fc356.png)
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案
![国家开放大学电大本科《离散数学》网络课形考任务2作业及答案](https://img.taocdn.com/s3/m/394505bb3169a4517723a3af.png)
A. 有n个结点n-1条边的无向图都是树
B. 无向完全图都是平面图
C. 树的每条边都是割边
D. 无向完全图都是欧拉图
题目6
若G是一个欧拉图,则G一定是( ).
选择一项:
A. 汉密尔顿图
B. 连通图
C. 平面图
D. 对偶图
题目7
设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .
选择一项:
选择一项:
对
错
题目17
设G是一个图,结点集合为V,边集合为E,则 ( )
选择一项:
对
错
题目18
设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( )
选择一项:
对
错
题目19
如图九所示的图G不是欧拉图而是汉密尔顿图.( )
选择一项:
对
错
题目20
若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( )
题目8
图G如图三所示,以下说法正确的是 ( ).
选择一项:
A. {b, d}是点割集
B. {c}是点割集
C. {b, c}是点割集
D. a是割点
题目9
设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).
选择一项:
A. (a)是强连通的
B. (d)是强连通的
C. (c)是强连通的
选择一项:
对
错
题目12
汉密尔顿图一定是欧拉图.( )
选择一项:
对
农大在线业_离散数学(第2版)_在线作业_2
![农大在线业_离散数学(第2版)_在线作业_2](https://img.taocdn.com/s3/m/e772c29069dc5022aaea00ad.png)
离散数学(第2版)_在线作业_2一、单选题(每题5分,共20道小题,总分值100分)1.设R是实数集合,R上的运算*定义为,则为()。
(5分)A半群B代数系统C非代数系统D群正确答案您的答案是B回答正确展开2.无向图G具有一条欧拉回路,则G中所有点的度数都是()。
(5分)A偶数B1C奇数D素数正确答案您的答案是A回答正确展开3.下列语句中不是命题的是()。
(5分)明天是个阴天请不要生气!3是素数昨天是星期四正确答案您的答案是B回答正确展开4.谓词公式中变元()。
(5分)A不是自由出现,是约束出现B既不是自由出现又不是约束出现C是自由出现,不是约束出现D既是自由出现又是约束出现正确答案您的答案是D回答正确展开5.设上的关系,则R的定义域等于()。
(5分)ABCD正确答案您的答案是A回答正确展开6.集合的交运算不满足()。
(5分)A交换律B幂等律C结合律D消去律正确答案您的答案是D回答正确展开7.集合的并运算不满足()。
(5分)A幂等律B交换律C消去律D结合律正确答案您的答案是C回答正确展开8.设,下面命题为假的是()。
(5分)ABCD正确答案您的答案是B回答正确展开9.前提,,的逻辑结论不会是()。
(5分)ABCD正确答案您的答案是C回答正确展开10.下列是谓词公式的是()。
(5分)ABCD正确答案您的答案是B回答正确展开11.下列语句中是命题的是()。
(5分)A请不要随地吐痰B我真快乐!C今天是阴天D你身体好吗?正确答案您的答案是C回答正确展开12.下列公式是前束范式的是()。
(5分)ABCD正确答案您的答案是B回答正确展开13.设和都是A上的双射函数,则为()。
(5分)ABCD正确答案您的答案是D回答错误展开( 应该选B )14.设R是实数集合,函数,和,则复合函数是()。
(5分)ABCD正确答案您的答案是D回答正确展开15.下列公式是非永真式的可满足式的是()。
(5分)ABCD正确答案您的答案是B回答正确展开16.设上的关系,则R具有性质()。
离散数学课后习题答案二
![离散数学课后习题答案二](https://img.taocdn.com/s3/m/a268ac53ddccda38376baf7a.png)
习题3.71. 列出关系}6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。
解}6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z ,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><= ><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3,1,1,3,2,1,2,3,1,1,3,2,12. 列出二维表3.18所表示的多元关系中所有5元组。
假设不增加新的5元组,找出二维表3.18所有的主键码。
解 略3. 当施用投影运算5,3,2π到有序5元组><d c b a ,,,时你能得到什么?解 略4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量? 解 略5. 给出分别施用投影运算4,2,1π和选择运算Nadir航空公司=σ到二维表3.18以后得到的表。
解5,3,2πNadir 航空公司=6. 把连接运算3J 用到5元组二维表和8元组二维表后所得二维表中有序多元组有多少个分量?解 略7. 构造把连接运算2J 用到二维表3.19和二维表3.20所得到的二维表。
解 零件供应商二维表与零件数量和颜色代码二维表连接运算2结果第4章:群、环、域习题4.11. 判断下列集合对所给的二元运算是否封闭。
(1)集合}|{Z Z ∈⨯=z z n n 关于普通加法和普通乘法运算,其中n 是正整数。
(2)集合}12|{+∈-==Z n n x x S ,关于普通加法和普通乘法运算。
离散数学课后答案详解第二版
![离散数学课后答案详解第二版](https://img.taocdn.com/s3/m/cf6f0c2b2379168884868762caaedd3383c4b5b8.png)
离散数学课后答案详解第二版离散数学课后答案详解第二版是一本重要的参考书,在学习离散数学的过程中能够提供很大的帮助。
下面就是本书中的一些重要知识点和解答,希望对各位读者有所帮助。
一、命题逻辑1.什么是命题?命题是用来陈述某个陈述语句真假的陈述句。
2.什么是合取和析取?合取是将两个命题连接起来,且要求两者同时成立,符号用“∧”表示;析取是也将两个命题连接起来,但是只要求其中一个成立即可,符号用“∨”表示。
3.什么是条件和双条件?条件是指前者为真则后者为真,否则后者为假,符号用“→”表示;双条件是指前者为真则后者为真,否则后者为假;同时后者为真则前者也为真,反之后者为假则前者也为假,符号用“↔”表示。
4.什么是命题公式?命题公式是用变量、命题连接词和括号构成的表达式,构成命题公式的常常为命题或者是一些常用的命题连接词。
二、谓词逻辑1.什么是一阶逻辑?一阶逻辑是对命题进行量化的扩展。
除了命题外,一阶逻辑还包括了“个体”和它们之间的关系,以及用于描述这些关系的“量词”。
2.什么是量词?量词包括“存在量词∃”和“全称量词∀”,前者表示存在至少一个使谓词成立的个体,后者表示所有个体都满足该谓词。
3.什么是命题函数?命题函数是将数学函数和逻辑命题符号相结合的一种新型命题符号。
4.什么是名词?名词是指代对象的标签,它是一般化的名词。
例如,女人是一般化的名词,梅丽莎是特定的名词。
三、集合论和图论1.什么是集合?集合是指具有某种共同特征而组成的元素的整体。
2.什么是集合的理论?集合的理论是关于集合的性质、关系和操作的一种抽象理论。
3.什么是图?图是用来描述一些个体之间的关系的工具,由节点和边构成。
其中节点表示个体,边表示个体之间的某种关系。
4.什么是路径?路径是指通过边连接一些节点的一系列节点。
四、树和排序1.什么是树?树是一种数据结构,它由一组节点和边构成。
节点可以包含数据,边用于连接节点并表示关系。
2.什么是排序?排序是一种对数据进行重新排列的操作,目的是使数据具有某种有序结构。
离散数学(第2版-刘爱民)习题答案
![离散数学(第2版-刘爱民)习题答案](https://img.taocdn.com/s3/m/273694749e314332396893cf.png)
习题答案习题一答案1.1下列各语句中哪些是命题?1) 不是;2) 是;3) 不是;4) 不是;5) 不是;6) 是;7) 是;8) 不是9) 不是;10)是;11)不是;12)是。
1.2 将下列命题符号化。
1) p∧⌝q, p:太阳明亮,q:湿度高;2) q→⌝p, p:明天你看到我,q:我要去深圳。
3) p→q, p:我出校,q:我去图书城;4) q→p , p:你去,q:我去;5) 5.1) p∧q; 5.2) p∧⌝q; 5.3) p∧q; 5.4) p∧⌝q;6) 6.1) p∨q 6.2) ⌝(p ↔q) 6.3) p∧¬q6.4) ¬ (p∧r) 6.5) (p∧q) →r 6.6)¬ (r→ (p∧q))7) p:蓝色和黄色可以调配成绿色;8) ⌝(p↔q), p:李兰现在在宿舍, q:李兰在图书馆里;9) ¬p→¬ q, p:一个人经一事,q:一个人长一智;10) (p∧¬q) →⌝(r↔ s), p:晚上小王做完了做业, q: 晚上小王没有其他事情,r: 晚上小王看电视, s: 晚上小王看电影。
11) ⌝(r↔ s), r:小飞在睡觉, s:小飞在游泳;12) ¬p∧¬q∧r, p:这个星期天我看电视,q: 这个星期天我外出,r:这个星期天我在睡觉。
13) p→q , p:卫星上天了,q:国家强大了;14) p→q, p:今天没有课,q:我呆在图书馆里;15) p→q,p:我去图书城,q:我有时间;16) ¬p→¬q , p:人们辛劳,p: 人们收获1.3 1) 小李家住北大西门外, 他现在坐在公共汽车里看书,没有考虑问题;2) 小李在思考问题, 他没有乘坐公共汽车,也没有看书;3) 小李只要乘坐公共汽车,他就看书或考虑问题;4) 小李乘坐公共汽车,要么看书不考虑问题,要么考虑问题不看书,5) 同4);6) 如果小李家住北大西门外,则他现在没有乘坐公共汽车,没有看书,也没有考虑问题。
离散数学答案第二版-高等教育出版社课后答案
![离散数学答案第二版-高等教育出版社课后答案](https://img.taocdn.com/s3/m/fb63f88b3c1ec5da51e27043.png)
第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q 的真值为0;r、s 的真值为1,求下列各命题公式的真值。
( 1)p∨ (q∧ r) 0∨ (0∧ 1) 0( 2)( p? r)∧(﹁q∨ s) ( 0? 1)∧(1 ∨ 1) 0∧ 1 0.( 3)(p∧q∧r ) ? (p∧q∧﹁r) ( 1∧ 1∧1) ? (0 ∧0∧0) 0( 4)( r ∧ s)→ (p ∧ q) ( 0∧ 1)→ (1 ∧ 0) 0→0 117.判断下面一段论述是否为真:“ 是无理数。
并且,如果 3 是无理数,则 2 也是无理数。
另外6 能被2 整除,6 才能被4 整除。
答:p: 是无理数1q: 3 是无理数0r:2是无理数1s: 6 能被 2 整除1t: 6 能被 4 整除0命题符号化为:p∧(q→ r)∧(t→ s)的真值为1,所以这一段的论述为真19.用真值表判断下列公式的类型:4)(p→ q) →( q→p)5)(p∧ r) ( p∧q)6)((p→ q) ∧ (q→ r)) →(p→r)答: ( 4)p q p→q q p0 0 1 1 10 1 1 0 11 0 0 1 01 1 1 0 0所以公式类型为永真式( 5)公式类型为可满足式(方法如上例) q→ p111(p→q)→( q→ p)1111( 6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)](pAq-q)(2)(p^(pVq))V (p^r)⑶(pVq) 一(pAr)答:(2) (p一(pVq)) V(p-r)= (一pV(pVq))V(「pVr)=「pVpVqVru 1 所以公式类型为永真式⑶p q r PV q p A r (pV q) f (p/\「)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可涉足式4,用等值演算法证明下面等值式:⑵(p 一q)A(p—r) u (p 一(qAij)⑷(p A「q) V「pAq)u (p Vq) A」(p A q)证明(2) (p -q) A (p->r)u (」pVq) A(「pVr)u「P V (q A ij)u p一(q A r)(4) (pA「q) V(「pAq)u (p V(^pAq)) A(「qV(「pAq). (p V「p) A (p Vq) A (「qV「p) A(「qVq)u 1 A (p V q) A - (p A q) A 1u (p V q) A (p A q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(「p-q)-(「qVp)(2)](p - q) AqAr(3)(p V(q Ar)) 一(p VqVr)解:( 1)主析取范式( p→q)→( q p)(p q) ( q p)( p q) ( q p)( p q) ( q p) ( q p) (p q) (p q)( p q) (p q) (p q)m0 m2 m3∑ (0,2,3) 主合取范式:( p→q) →( q p)(p q) ( q p)( p q) ( q p)( p ( q p)) ( q ( q p))1 (p q)(p q) M1∏ (1)(2)主合取范式为:(p →q) q r ( p q) q r(p q) q r 0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为0(3)主合取范式为:(p (q r)) →(p q r)(p (q r)) →(p q r)( p ( q r)) (p q r)( p (p q r)) (( q r)) (p q r))11所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P 中构造下面推理的证明:(2)前提:p q, (q r),r结论:p(4)前提:q p,q s,s t,t r结论:p q证明: ( 2)①(q r) 前提引入②q r ①置换③q r ②蕴含等值式④r 前提引入⑤q ③④拒取式⑥p q 前提引入⑦¬p( 3) ⑤⑥拒取式证明( 4) :①t r 前提引入②t ①化简律③q s 前提引入④s t 前提引入⑤q t ③④等价三段论⑥( q t ) (t q) ⑤ 置换⑦( q t ) ⑥化简⑧q ②⑥ 假言推理⑨q p 前提引入15在自然推理系统 P 中用附加前提法证明下面各推理:(1) 前提:p(q r),s p,q结论:s r证明① s 附加前提引入 ② s p 前提引入 ③ p ①②假言推理 ④ p (q r)前提引入 ⑤ q r ③④假言推理 ⑥ q 前提引入 ⑦ r ⑤⑥假言推理16 在自然推理系统 P 中用归谬法证明下面各推理:(1) 前提: p q, r q,r s 结论: p证明:① p 结论的否定引入 ② p ﹁ q 前提引入 ③﹁q ①②假言推理 ④¬r q 前提引入 ⑤¬r ④化简律 ⑥ r ¬s 前提引入⑦ r ⑥化简律 ⑧ r ﹁r⑤⑦ 合取由于最后一步 r ﹁ r 是矛盾式 , 所以推理正确 .⑩p (11)p q ⑧⑨假言推第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化, 并分别讨论个体域限制为(a),(b) 条件时命题的真值:(1)对于任意x, 均有2=(x+ )(x ).(2)存在x, 使得x+5=9.其中(a) 个体域为自然数集合.(b) 个体域为实数集合.解:F(x): 2=(x+ )(x ).G(x): x+5=9.(1)在两个个体域中都解释为xF(x),在( a)中为假命题,在(b) 中为真命题。
19春天津大学《离散数学(2)》在线作业二100分答案
![19春天津大学《离散数学(2)》在线作业二100分答案](https://img.taocdn.com/s3/m/4b3bcd2de87101f69e3195ac.png)
《离散数学(2)-2》在线作业二-0001试卷总分:100 得分:100一、单选题 (共 20 道试题,共 100 分)1.设D=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是 ( )。
A.强连通图B.单向连通图C.弱连通图D.不连通图[试题分析]本题选择:C2.设集合{1 2 3 4 },A上的关系R={(1 2)(2 3)(2 4)(1 4)(3 4)}则R具有()A.反自反性B.传递性C.对称性D.以上答案都不对[试题分析]本题选择:A3.下面哪一种图不一定是树? ( )。
A.无回路的连通图B.有n个结点n-1条边的连通图C.每对结点间都有通路的图D.连通但删去一条边则不连通的图[试题分析]本题选择:C4.题面见图片:A.AB.BC.CD.D[试题分析]本题选择:A5.设R1,R2是集合A={a,b,c,d}上的两个关系,其中R1={(a,a),(b,b),(b,c),(d,d)},R2={(a,a),(b,b),(b,c),(c,b),(d,d)},则R2是R1的()闭包。
A.自反B.对称C.传递D.以上都不是[试题分析]本题选择:B6.具有6个结点的非同构的无向树的数目为()A.4B.5C.7D.8[试题分析]本题选择:C7.设G是n个顶点的无向简单图,则下列说法不正确的是 ( )A.若G是树,则其边数等于n-1B.若G是欧拉图,则G中必有割边C.若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D.若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路[试题分析]本题选择:D8.下面命题正确的是()A.自反性对合成运算封闭B.反自反性对合成运算封闭C.对称性对合成运算封闭D.反对称性对合成运算封闭[试题分析]本题选择:A9.设G=(n,m)且G中每个结点的度数不是k就是k+1,则G中度数为k的结点的个数是 ( )。
清华离散数学(第2版):14.3.1-2
![清华离散数学(第2版):14.3.1-2](https://img.taocdn.com/s3/m/107d3ea6f524ccbff1218460.png)
13
群中的术语(续 群中的术语 续)
定义14.16 设G是群,x∈G,n∈Z,则 x 的 n 次幂 xn 定 是群, ∈ , ∈ , 定义 是群 义为
n=0 e xn = xn1 x n > 0 ( x1 )m m = n, n < 0
n∈Z
实例 在<Z3,⊕ >中有 23=(21)3=13=1⊕1⊕1=0 ⊕ 中有 ⊕ ⊕ 在 <Z,+> 中有 (2)3=23=2+2+2=6
8
实例
其中为矩阵乘法 为矩阵乘法, 设半群 V1=<S,>,独异点 V2=<S,,e>. 其中 为矩阵乘法, , e 为2阶单位矩阵 且 阶单位矩阵, 阶单位矩阵
a 0 | a, d ∈ R S = 0 d
a 0 a 0 f 0 d = 0 0
( x1 x 2 ... x n ) 1 = x n x n1 ... x 2 x1
1
1
1
1
等式(5)只对交换群成立 如果G是非交换群 是非交换群, 等式 只对交换群成立. 如果 是非交换群,那么 只对交换群成立
( xy ) = ( xy )( xy )...( xy )
n n个
17
群的性质---群方程存在唯一解 群的性质 群方程存在唯一解
3
实例
是半群, 是普通 例1 (1) <Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>是半群,+是普通 是半群 加法, 其中除<Z 外都是独异点. 加法 其中除 +,+>外都是独异点 外都是独异点 (2) 设n是大于 的正整数 是大于1的正整数 是大于 的正整数,<Mn(R),+>和<Mn(R),>都是半群 和 都是半群 和独异点,其中+和 分别表示矩阵加法和矩阵乘法 分别表示矩阵加法和矩阵乘法. 和独异点,其中 和分别表示矩阵加法和矩阵乘法 (3) <P(B),⊕>为半群,也是独异点,其中⊕为集合的对称 为半群, ⊕ 为半群 也是独异点,其中⊕ 差运算. 差运算 (4) <Zn, ⊕>为半群,也是独异点,其中 n={0,1, … , n1}, 为半群, 为半群 也是独异点,其中Z , 为模n加法 加法. ⊕为模 加法 (5) <AA,>为半群,也是独异点,其中为函数的复合运算 为半群, 为半群 也是独异点,其中为函数的复合运算. (6) <R*,>为半群,其中 为非零实数集合,运算定义 为半群, 为非零实数集合, 为半群 其中R*为非零实数集合 如 下:x, y∈R*, xy = y. ∈ 4
离散数学答案屈婉玲版第二版高等教育出版社课后答案
![离散数学答案屈婉玲版第二版高等教育出版社课后答案](https://img.taocdn.com/s3/m/07bba0930029bd64783e2c9f.png)
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学(第2版)_在线作业_2
交卷时间:2017-01-12 10:56:42
一、单选题
1.
(5分)
设R是实数集合,R上的运算*定义为,则为( )。
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
2.
(5分)
•
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
3.
(5分)
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 C
解析
4.
(5分)
谓词公式中变元( )。
得分: 5
知识点:离散数学(第2版)
收起解析
答案 C
解析
5.
(5分)
设上的关系,则R的定义域等于( )。
• A.
• B.
• C.
• D.
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 D
解析
6.
(5分)
集合的交运算不满足( )。
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
7.
(5分)
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 A
解析
8.
(5分)
• B.
• C.
• D.
集合的并运算不满足( )。
设,下面命题为假的是( )。
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
9.
(5分)
• A. •
B.
• C.
•
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
10.
(5分)
•
A.
• B.
• C. •
D.
纠错
前提,,的逻辑结论不会是( )。
得分: 5
知识点:离散数学(第2版)
收起解析
答案 A
解析
11.
(5分)
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
12.
(5分)。
• A.
• B.
• C.
• D.
纠错
得分: 5
知识点:离散数学(第2版)
收起解析 答案 B 解析
13.
(5分)
•
A. •
B.
• C. •
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
14.
(5分)
• A.
• B. • C.
•
D.
纠错
设和都是A 上的双射函数,则为( )。
设R 是实数集合,函数,和,则
复合函数
是( )。
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
15.
(5分)
•
A.
• B.
• C. •
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 B 解析
16.
(5分)
纠错。
设
上的关系,则R 具有性
质( )。
得分: 5
知识点:离散数学(第2版)
收起解析
答案 C
解析
17.
(5分)
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 D
解析
18.
(5分)
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 A
解析
19.
(5分)
a*b=gcd(a,b)(a,b
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
20.
(5分)
•
纠错
得分: 5
知识点:离散数学(第2版)
收起解析
答案 B
解析
(注:可编辑下载,若有不当之处,请指正,谢谢!)。