最新高考创新方案一轮复习教案(新课标版)(数学理第1讲+任意角、弧度制及任意角的三角函数名师优秀教案
2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数
考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,
【新高考】高三数学一轮复习知识点讲解5-1 任意角和弧度制及任意角的三角函数
专题5.1 任意角和弧度制及任意角的三角函数【考纲解读与核心素养】1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2. 理解正弦函数、余弦函数、正切函数的定义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 4.高考预测:(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标. 5.备考重点:(1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.【知识清单】知识点1.象限角及终边相同的角 1.(1)任意角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度.若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180 rad .知识点2.三角函数的定义 1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 知识点3.扇形的弧长及面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度. (2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示名称 角度制 弧度制 弧长公式 l =n πr180l =__|α|r __ 扇形面积公式 S =n πr 2360S =|α|2r 2 = 12lr 注意事项r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长【典例剖析】高频考点一 象限角及终边相同的角【典例1】(2019·乐陵市第一中学高三专题练习)如果,那么与终边相同的角可以表示为A .B .C .D .【答案】B【解析】 由题意得,与终边相同的角可以表示为.故选B . 【规律方法】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式探究】若角α是第二象限角,试确定α2,2α的终边所在位置. 【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限. 【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限. 当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限. 综上所述,2α的终边在第一象限或第三象限.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角 集合表示第一象限角 {α|k ·360°<α<k ·360°+90°,k ∈Z } 第二象限角{α|k ·360°+90°<α<k ·360°+180°,k ∈Z }第三象限角 {α|k ·360°+180°<α<k ·360°+270°,k ∈Z } 第四象限角{α|k ·360°+270°<α<k ·360°+360°,k ∈Z }(2)轴线角:角的终边的位置集合表示终边落在x 轴的非负半轴上 {α|α=k ·360°,k ∈Z } 终边落在x 轴的非正半轴上 {α|α=k ·360°+180°,k ∈Z } 终边落在y 轴的非负半轴上 {α|α=k ·360°+90°,k ∈Z } 终边落在y 轴的非正半轴上 {α|α=k ·360°+270°,k ∈Z } 终边落在y 轴上 {α|α=k ·180°+90°,k ∈Z } 终边落在x 轴上 {α|α=k ·180°,k ∈Z } 终边落在坐标轴上{α|α=k ·90°,k ∈Z }高频考点二 三角函数的定义 【典例2】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B 【解析】 由题意可知,,,是第三象限角,可得, 即,解得,故选B. 【典例3】已知角的终边落在直线y =2x 上,求sin α、cos α、tan α的值. 【答案】【解析】当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2. 当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-12+-22=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.【典例4】(2011·江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【规律方法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【变式探究】1.(浙江省嘉兴市第一中学期中)已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B 【解析】由三角函数的定义可得.故选B .2.已知角的终边在射线上,则等于( )A.B.C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为:A.【总结提升】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=aa 2+b2,正切值tan α=ab. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. 高频考点三:三角函数值的符号判定 【典例5】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.【典例6】确定下列各式的符号: (1)sin105°·cos230°; (2)sin 7π8·tan 7π8;(3)cos6·tan6. 【答案】【解析】先确定角所在象限,进而确定各式的符号. (1)∵105°、230°分别为第二、第三象限角, ∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0. (2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin 7π8·tan 7π8<0.(3)∵3π2<6<2π,∴6是第四象限角.∴cos6>0,tan6<0,则cos6·tan6<0. 【总结提升】判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果角不能确定所在象限,那就要进行分类讨论求解. 【变式探究】1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.2.(1)判断下列各式的符号: ①sin3·cos4·tan5;②α是第二象限角,sin α·cos α.(2)若cos θ<0且sin θ>0,则θ2是第( )象限角.A .一B .三C .一或三D .任意象限角【答案】(1)①正,②负;(2)C【解析】 (1)①π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0. ②∵α是第二象限角,∴sin α>0,cos α<0,∴sin αcos α<0.(2)由cos θ<0且sin θ>0,知θ是第二象限角,所以θ2是第一或三象限角.高频考点四:扇形的弧长及面积公式【典例7】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,) A .15 B .16 C .17 D .18【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例8】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【典例9】已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【答案】r=10cm, θ==2rad, 100 cm 2【解析】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20) ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).【总结提升】1.(1) 弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.2.当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想. 【变式探究】1.(2019·甘肃高三月考(理))若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 【答案】B 【解析】因为扇形的周长与面积的数值相等,所以设扇形所在圆的半径为R ,扇形弧长为l ,则lR=2R+l ,所以即是lR=4R+2l , ∴l=∵l>0,∴R>2 故选:B .2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A. 1 B. 4 C. 1或4 D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .3.一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【特别提醒】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决; (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.。
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)任意角和弧度制及任意角的三角函数教学案
第一节任意角和弧度制及任意角的三角函数[知识能否忆起]1.任意角 (1)角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数 (1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.[小题能否全取]1.-870°的终边在第几象限( ) A .一 B .二 C .三D .四解析:选C 因-870°=-2×360°-150°.-150°是第三象限角. 2.已知角α的终边经过点(3,-1),则角α的最小正值是( ) A.2π3 B.11π6 C.5π6D.3π4解析:选B ∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.3.(教材习题改编)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C 由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限.4.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________.解析:因tan 2π3=-3=-y ,∴y = 3.答案: 35.弧长为3π,圆心角为135°的扇形半径为________,面积为________. 解析:弧长l =3π,圆心角α=34π,由弧长公式l =α·r 得r =lα=3π34π=4,面积S =12lr =6π. 答案:4 6π1.对任意角的理解(1)“小于90°的角”不等同于“锐角”“0°~90°的角”不等同于“第一象限的角”.其实锐角的集合是{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同,终边相同的角的同一三角函数值相等.2.三角函数定义的理解三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x.典题导入[例1] 已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2×180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系.[自主解答] (1)所有与角α有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:MN .由题悟法1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如k α,π±α等形式的角终边的方法:先表示角α的范围,再写出k α、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.以题试法1.(1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四角限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)如果角α是第二象限角,则π-α角的终边在第________象限.解析:(1)-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.(2)由已知π2+2k π<α<π+2k π(k ∈Z ),则-π-2k π<-α<-π2-2k π(k ∈Z ),即-π+2k π<-α<-π2+2k π(k ∈Z ),故2k π<π-α<π2+2k π(k ∈Z ),所以π-α是第一象限角. 答案:(1)C (2)一典题导入[例2] (1)已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1B .2C.12D. 2(2)(2012·大庆模拟)已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6[自主解答] (1)根据已知条件得tan α=t 2+1t =t +1t≥2,当且仅当t =1时,tan α取得最小值2.(2)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.[答案] (1)B (2)D由题悟法定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.以题试法2.(1)(2012·东莞调研)已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α=( ) A. 3 B .± 3 C.33D .±33(2)(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114B.114C .-4D .4解析:(1)选B 由|OP |2=x 2+34=1,得x =±12,tan α=± 3.(2)选C 由题意可知,cos α=m m 2+9=-45, 又m <0,解得m =-4.典题导入[例3] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [自主解答] (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +r θ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100, 当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2.答案: 2由题悟法1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.以题试法3.若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值? 解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R=2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2,因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l ,则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎪⎨⎪⎧l =4r =1或⎩⎪⎨⎪⎧l =2,r =2.故扇形的圆心角的弧度数是4或1.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B ∵θ是第三象限角,∴θ2为第二或第四象限角.又∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,知θ2为第二象限角.5.(2012·宜春模拟)给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin 7π10cos πtan 17π9=-sin7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0.6.已知sin θ-cos θ>1,则角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由已知得(sin θ-cos θ)2>1,1-2sin θcos θ>1,sin θcos θ<0,且sin θ>cos θ,因此sin θ>0>cos θ,所以角θ的终边在第二象限.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________,tan β=________.解析:因为β的终边所在直线经过点P ⎝⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.如图,角α的终边与单位圆(圆心在原点,半径为1)交于第二象限的点A ⎝⎛⎭⎪⎫cos α,35,则cos α-sin α=________.解析:由题图知sin α=35,又点A 在第二象限,故cos α=-45.∴cos α-sin α=-75.答案:-7510.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解:设圆的半径为r cm ,弧长为l cm , 则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).11.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解:(1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 12.(1)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值;(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ. 解:(1)∵r =x 2+5,∴cos α=xx 2+5, 从而24x =xx 2+5, 解得x =0或x =± 3. ∵90°<α<180°, ∴x <0,因此x =- 3.故r =22,sin α=522=104,tan α=5-3=-153.(2)∵θ的终边过点(x ,-1), ∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.1.(2013·聊城模拟)三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A-cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( ) A .1B .-1C .3D .4解析:选B 因为三角形ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1. 2.(2012·山东高考)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎪⎫2-π2=2-sin 2,y =1+1×sin ⎝⎛⎭⎪⎫2-π2=1-cos 2, ∴OP 的坐标为(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2)3.(1)确定-cos 8·tan 5的符号; (2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角,∴tan(-3)>0,tan 5<0,cos 8<0,∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α, ∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1. 由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π. 于是有sin α-cos α>0.1.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是( )A.⎝⎛⎭⎪⎫π2,3π4∪⎝ ⎛⎭⎪⎫π,5π4 B.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,5π4 C.⎝ ⎛⎭⎪⎫π2,3π4∪⎝ ⎛⎭⎪⎫5π4,3π2 D.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫3π4,π 解析:选B 由已知sin α-cos α>0,tan α>0故⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4. 2.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2=t 2+-3t 2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35, cos α=x r =4t 5t =45, tan α=y x =-3t 4t =-34; 当t <0时,r =-5t ,sin α=y r =-3t -5t =35, cos α=x r =4t -5t =-45, tan α=y x =-3t 4t =-34. 综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34. 3.已知0<α<π2,求证: (1)sin α+cos α>1;(2)sin α<α<tan α.证明:如图,设α的终边与单位圆交于P 点,作PM ⊥x 轴,垂足为M ,过点A (1,0)作AT ⊥x 轴,交α的终边于T ,则sin α=MP ,cos α=OM ,tan α=AT .(1)在△OMP中,∵OM+MP>OP,∴cos α+sin α>1.(2)连接PA,则S△OPA<S扇形OPA<S△OTA,即12OA·MP<12OA·α<12OA·AT,即sin α<α<tan α.。
2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念
第一节任意角和弧度制及三角函数的概念【课程标准】1.了解任意角的概念和弧度制;2.能进行弧度与角度的互化;3.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【考情分析】考点考法:高考命题常以角为载体,考查扇形的弧长、面积、三角函数的定义;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类按旋转方向正角、负角、零角按终边位置象限角和轴线角(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为__-α__.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.(2)公式角α的弧度数公式|α|=l r(弧长用l表示)角度与弧度的换算1°=180rad;1rad=(180)°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数(1)任意角的三角函数的定义(推广):设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=, cosα=,tanα=(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.(3)三角函数的定义域三角函数sinαcosαtanα定义域R R{α|α≠kπ+π2,k∈Z}【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列说法正确的是()A.-π3是第三象限角B.若角α的终边过点P(-3,4),则cosα=-35C.若sinα>0,则α是第一或第二象限角D.若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2【解析】选BD.因为-π3是第四象限角,所以选项A错误;由三角函数的定义可知,选项B正确;由sinα>0可知,α是第一或第二象限角或终边在y轴的非负半轴上,所以选项C错误;由扇形的面积公式可知,选项D正确.2.(必修第一册P175练习T1改题型)-660°等于()A.-133πB.-256πC.-113πD.-236π【解析】选C.-660°=-660×π180=-113π.3.(必修第一册P176习题T2改条件)下列与角11π4的终边相同的角的表达式中正确的是()A.2kπ+135°(k∈Z)B.k·360°+11π4(k∈Z)C.k·360°+135°(k∈Z)D.kπ+3π4(k∈Z)【解析】选C.与11π4的终边相同的角可以写成2kπ+3π4(k∈Z)或k·360°+135°(k∈Z),但是角度制与弧度制不能混用,排除A,B,易知D错误,C正确.4.(忽视隐含条件)设α是第二象限角,P(x,8)为其终边上的一点,且sinα=45,则x=()A.-3B.-4C.-6D.-10【解析】选C.因为P(x,8)为其终边上的一点,且sinα=45,所以sinα=45,解得x=±6,因为α是第二象限角,所以x=-6.【巧记结论·速算】α所在象限与2所在象限的关系α所在象限一二三四α2所在象限一、三一、三二、四二、四【即时练】设θ是第三象限角,且|cos2|=-cos2,则2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.因为θ是第三象限角,所以2的终边落在第二、四象限,又|cos2|= -cos2,所以cos2<0,所以2是第二象限角.【核心考点·分类突破】考点一象限角及终边相同的角[例1](1)(2023·宁波模拟)若α是第二象限角,则()A.-α是第一象限角B.2是第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或在y轴负半轴上【解析】选D.因为α是第二象限角,可得π2+2kπ<α<π+2kπ,k∈Z,对于A,可得-π-2kπ<-α<-π2-2kπ,k∈Z,此时-α位于第三象限,所以A错误;对于B,可得π4+kπ<2<π2+kπ,k∈Z,当k为偶数时,2位于第一象限;当k为奇数时,2位于第三象限,所以B错误;对于C,可得2π+2kπ<3π2+α<5π2+2kπ,k∈Z,即2(k+1)π<3π2+α<π2+2(k+1)π,k∈Z,所以3π2+α位于第一象限,所以C错误;对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.(2)在-720°~0°内所有与45°终边相同的角为-675°和-315°.【解析】所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.【解题技法】1.知α确定kα,(k∈N*)的终边位置的步骤(1)写出kα或的范围;(2)根据k的可能取值确定kα或的终边所在位置.2.求适合某些条件的角的方法(1)写出与这个角的终边相同的角的集合;(2)依据题设条件,确定参数k的值,得出结论.【对点训练】已知角θ在第二象限,且|sin2|=-sin2,则角2在()A.第一象限或第三象限B.第二象限或第四象限C.第三象限D.第四象限【解析】选C.因为角θ是第二象限角,所以θ∈(π2+2kπ,π+2kπ),k∈Z,所以2∈(π4+kπ,π2+kπ),k∈Z,所以角2在第一或第三象限.又|sin2|=-sin2,所以sin2<0,所以角2在第三象限.考点二弧度制及其应用[例2]已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l.(2)(一题多法)若扇形的周长是16cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.【解析】(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)方法一:由题意知2R+l=16,所以l=16-2R(0<R<8),则S=12lR=12(16-2R)R=-R2+8R=-(R-4)2+16,当R=4cm时,S max=16cm2,l=16-2×4=8(cm),α==2,所以S的最大值是16cm2,此时扇形的半径是4cm,圆心角α=2rad.方法二:S=12lR=14l·2R≤14·(r22)2=16,当且仅当l=2R,即R=4cm时,S的最大值是16cm2.此时扇形的圆心角α=2rad.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)cm2.【解题技法】应用弧度制解决问题时的注意事项(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.(3)在解决弧长和扇形面积问题时,要合理地利用圆心角所在的三角形.【对点训练】若扇形的周长是16cm,圆心角是360π度,则扇形的面积(单位cm2)是16.【解析】设扇形的半径为r cm,圆心角弧度数为α=360π·π180=2,所以αr+2r=16即4r=16,所以r=4,所以S=12αr2=12×2×16=16.答案:【加练备选】已知弧长为60cm的扇形面积是240cm2,求:(1)扇形的半径;(2)扇形圆心角的弧度数.【解析】设扇形的弧长为l,半径为r,面积为S,圆心角为α.(1)由题意得S=12lr=12×60r=240,解得r=8(cm),即扇形的半径为8cm.(2)α==608=152,所以扇形圆心角的弧度数为152rad.考点三三角函数的定义及应用【考情提示】三角函数的定义主要考查利用定义求三角函数值及三角函数值符号的应用,常与三角函数求值相结合命题,题目多以选择题、填空题形式出现.角度1利用定义求三角函数值[例3](1)已知角α的终边经过点P(2,-3),则sinα=-31313,tanα=-32.【解析】因为x=2,y=-3,所以点P到原点的距离r=22+(-3)2=13.则sinα===-31313,tanα==-32.(2)若角60°的终边上有一点A(4,a),则a=43.【解析】由题设知:tan60°=4=3,即a=43.角度2三角函数值的符号[例4](1)若sinαtanα<0,且cos tan>0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.由sinαtanα<0,知α是第二象限或第三象限角,由cos tan>0,知α是第一象限或第二象限角,所以角α是第二象限角.(2)sin2cos3tan4的值()A.小于0B.大于0C.等于0D.不存在【解析】选A.因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0.所以sin2cos3tan4<0.【解题技法】与三角函数定义有关的解题策略(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.【对点训练】1.(多选题)设△ABC的三个内角分别为A,B,C,则下列各组数中有意义且均为正值的是()A.tan A与cos BB.cos B与sin CC.tan2与cos2D.tan2与sin C【解析】选CD.因为A,B的范围不确定,所以A选项不满足条件;cos B与sin C都有意义,但cos B不一定为正值,故B选项不满足条件;因为B,C∈(0,π),所以2,2∈(0,π2),所以C选项满足条件;因为0<A<π,所以0<2<π2,所以tan2>0,又因为0<C<π,所以sin C>0,故D选项满足条件.2.已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.211C.-2或211D.1【解析】选B.由题设可知=35且2a+1>0,即a>-12,所以42+4r152+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,所以a=211.【加练备选】已知角α的终边上一点P的坐标为(sin5π6,cos5π6),则角α的最小正值为5π3.【解析】因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sinα=cos5π6=-32,故角α的最小正值为α=2π-π3=5π3.。
2020年高三数学第一轮复习教案-三角函数-第一节 任意角和弧度制及任意角的三角函数
【知识必备】
知识点三 任意角的三角函数
【典型例题】
【典型例题】
【典型例题】
【典型例题】
【典型例题】
ห้องสมุดไป่ตู้典型例题】
【典型例题】
【典题演练】
C B
D
【典题演练】
D
【典题演练】
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(十七)
再见
2.角度制和弧度制的互化:180°=π rad,1°=1π80 rad,1 rad=1π80°.
3.扇形的弧长公式:l=|α|·r,扇形的面积公式:S=12lr=12|α|·r2.
【知识必备】
知识点三 任意角的三角函数
任意角α的终边与单位圆交于点P(x,y)时, 则sinα=y,cosα=x,tanα=(x≠0).
第四章 三角函数、解三角形
第一节 任意角和弧度制及任意角的三角函数
【知识必备】
知识点一 角的概念 1.任意角 2.所有与角α终边相同的角,连同角α在内,构成的角的集合
是S={β|β=k·360°+α,k∈Z}.
3.象限角
【知识必备】
知识点二 弧度制 1.定义:把长度等于半径长的弧所对的圆心角叫做1弧 度的角,用符号rad表示,读作弧度,
创新方案高考数学一轮复习第四章三角函数与解三角形第一节任意角和蝗制及任意角的三角函数课件理
α+k·360°,k∈Z
}或{β|β=α+2kπ,k∈Z}.
2.弧度制
(1)1 弧度的角
长度等于 半径长 的圆弧所对的圆心角叫做 1 弧度的角.
(2)角 α 的弧度数
如果半径为 r 的圆的圆心角 α 所对弧的长为 l,那么,角 α 的
l
弧度数的绝对值是|α|= r .
第五页,共34页。
(3)角度与弧度的换算
第三十页,共34页。
已知半径为 10 的圆 O 中,弦 AB 的长为 10. (1)求弦 AB 所对的圆心角 α 的大小; (2)求 α 所在的扇形弧长 l 及弧所在的弓形的面积 S.
第三十一页,共34页。
解:(1)在△AOB 中,AB=OA=OB=10, ∴△AOB 为等边三角形.因此弦 AB 所对的圆心角 α=π3. (2)由扇形的弧长与扇形面积公式,得 l=α·R=π3×10=103π, S 扇形=12R·l=12α·R2=503π. 又 S△AOB=12OA·OB·sinπ3=25 3. ∴弓形的面积 S=S 扇形-S△AOB=50π3- 23.
解析:l=3π,θ=135°=34π,所以 r=θl =33ππ=4, 4
答案:4 6π
第十页,共34页。
5.已知角 θ 的终边经过点 P(-12,5),则 cos θ=________, sin θ=________,tan θ=________.
答案:-1123
5 13
-152
6.若角 α 终边上有一点 P(x,5),且 cos α=1x3(x≠0),则 sin
第三十二页,共34页。
[方法技巧] 三角函数的定义及单位圆的应用技巧 (1)在利用三角函数定义时,点 P 可取终边上异于原点的任 一点,如有可能则取终边与单位圆的交点,|OP|=r 一定是正值. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一 个小技巧.
数学一轮复习第三章三角函数解三角形第1讲任意角和蝗制及任意角的三角函数学案含解析
第三章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数[考纲解读]1。
了解任意角的概念及弧度制的概念,能进行弧度与角度的互化.(重点)2.理解任意角的三角函数(正弦、余弦、正切)的定义,并能熟练运用基本知识与基本技能、转化与化归思想等.(重点、难点)[考向预测]从近三年高考情况来看,本讲内容属于基础考查范围.预测2021年高考会考查三角函数的定义、根据终边上点的坐标求三角函数值或根据三角函数值求参数值.常以客观题形式考查,属中、低档试题.1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着错误!端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于错误!半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
(2)公式3.任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=错误!y,cosα=错误!x,tanα=错误!错误!.1.概念辨析(1)锐角是第一象限的角,第一象限的角也都是锐角.()(2)角α的三角函数值与其终边上点P的位置无关.()(3)不相等的角终边一定不相同.()(4)三角形的内角必是第一、第二象限角.()答案(1)×(2)√(3)×(4)×2.小题热身(1)下列与错误!的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+错误!(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)答案C解析角度制与弧度制不能混用,排除A,B;因为错误!=2π+π4,所以与错误!终边相同的角可表示为k·360°+45°(k∈Z)或k·360°-315°等,故选C。
高三数学一轮复习精品教案8:任意角、弧度制及任意角的三角函数教学设计
4.1 任意角、弧度制及任意角的三角函数考纲索引1.任意角的概念.2.弧度与角度的互化.3.任意角的三角函数.教学目标1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.知识梳理1.任意角(1)角的概念的推广①按旋转方向不同分为、、.②按终边位置不同分为和.(2)终边相同的角终边与角α相同的角可写成_______2.弧度与角度的互化(1)1弧度的角长度等于长的弧所对的圆心角叫做1弧度的角,用符号rad表示.(2)角α的弧度数如果半径为r的圆的圆心角α所对弧的长为l,那么角α的弧度数的绝对值是|α|= ______.(3)角度与弧度的换算①1°=rad;②1rad=180π︒⎛⎫⎪⎝⎭(4)扇形的弧长、面积公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=rα,扇形的面积为S= =.3.任意角的三角函数(1)定义:设角α的终边与单位圆交于P(x,y),则sinα=,cosα=,tanα= (x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.三角函数线(Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ)有向线段为正弦线;有向线段为余弦线;有向线段为正切线基础自测1.下列与94π的终边相同的角的关系式中正确的是().2.若sinα<0且tanα>0,则α是().A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知角α的终边上一点A(2,2),则α的大小为().4.已知角α的终边经过点P(-x,-6),且5cos13α=-,则x的值为.5.弧长为3π,圆心角为135°的扇形半径为,面积为.指点迷津◆一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.◆两个技巧(1)在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点,|OP|=r一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.◆三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用,不可写α=2kπ+60°,k∈Z.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.◆四个公式(1)与α终边相同的角度公式(2)角的弧度数(弧长公式)(3)扇形面积公式(4)三角函数定义公式考点透析考向一角的概念及表示例1(1)如果α是第三象限的角,那么-α,2α的终边落在何处?(2)写出终边在直线上的角的集合.『审题视点』利用象限角及终边相同的角的表示方法求角.『课堂记录』『方法总结』(1)利用终边相同的角的集合S={β|β=2kπ+α,k∈Z}判断一个角β所在的象限时,只需把这个角写成『0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.变式训练1.若角θ的终边与角的终边相同,求在『0,2π)内终边与角的终边相同的角.考向二三角函数的定义例2已知角θ的终边经过点P(-,m)(m≠0)且sinθ=,试判断角θ所在的象限,并求cosθ和tanθ的值.『审题视点』根据三角函数定义求m,再求cosθ和tanθ.『方法总结』1.三角函数定义的理解在直角坐标系xOy中,设P(x,y)是角α终边上任意一点,且|PO|=r,则.2.定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.变式训练2.角α终边上一点P(4m,-3m)(m≠0),则2sinα+cosα的值为.考向三弧度制的应用例3已知半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形弧长l及弧所在的弓形的面积S.『审题视点』△AOB是等边三角形,∠AOB=60°,S弓=S扇-S△AOB.『方法总结』(1)引进弧度制后,实现了角度与弧度的相互转化,在弧度制下可以应用弧长公式:l=r|α|,扇形面积公式:S=lr=r2|α|,求弧长和扇形的面积.(2)应用上述公式时,要先把角统一用弧度制表示.利用弧度制比角度制解题更为简捷、方便.变式训练3.已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四三角函数线及应用例4在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:『审题视点』作出满足的角的终边,然后根据已知条件确定角α终边的范围.『方法总结』利用单位圆解三角不等式(组)的一般步骤是:(1)用边界值写出角的终边位置;(2)根据不等式(组)定出角的范围;(3)求交集,找单位圆中公共的部分;(4)写出角的关系式.变式训练4.求函数y=lg(3-4sin2x)的定义域.经典考题典例已知角θ的终边上一点P(3a,4a)(a≠0),求角θ的正弦、余弦和正切值.真题体验1. (2014·全国大纲)已知角α的终边经过点(-4,3),则cosα等于().2.若tanα>0,则().A. sinα>0B. cosα>0C. sin2α>0D. cos2α>0答案知识梳理1. (1) ①正角负角零角②象限角轴线角(2) α+k·360°(k∈Z)或α+k·2π (k∈Z)2. (1) 半径3. (1) y x(2) MP OM AT基础自测1. C2. C3. C4.5. 46π考点透析所以角-α的终边在第二象限.所以角2α的终边在第一、二象限及y轴的非负半轴.(2) 在(0, π)内终边在直线上的角是,所以终边在直线上的角的集合为.『例4』(1) 作直线交单位圆于A, B两点,连接OA, OB,则OA与OB围成的区域(图(1)中阴影部分)即为角α的终边的范围,故满足条件的角α的集合为.(1) (2)(2) 作直线交单位圆于C, D两点,连接OC, OD,则OC与OD围成的区域(图(2)中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.变式训练4. (1) 因为3-4sin2x>0, 所以sin2x<, 所以.利用三角函数线画出x满足条件的终边范围(如图阴影部分所示),所以(k∈Z).(第4题)经典考题真题体验1. D『解析』根据题意, .2. C『解析』因为,所以选C.。
(word完整版)高三一轮复习、三角函数教案
富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:1审核人签字:3年级:高三(文) 科目:数学授课人:富县高级中学集体备课教案5审核人签字:年月日富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:7审核人签字:年月日富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:9审核人签字:年月日富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:COS a ;(4)sin a± e os 2sin a±n .4.函数f( a=) acos oF bsin a (a b 为常数),可化为 f( a 寸 a2+ b2 sin( a f( e) a2+ b2 cos(方$)其中$可由a , b 的值唯一确定.二:题型归类 深度剖析 题型一:三角函数式的化简与求值1 t a【例1】(1)化简:+ atan 2tanz9, sin a 3 = I ,求 cos( a B 的值.题型三:三角函数的给值求角1 II【例I 】 已知cos %=-,cos(尸3 e —,且O v 37 14v aV n ,求 3.题型四:三角变换的综合应用1【例4】 已知f(x) =1 + sin2x —tanxn n2sin x + 4 sin x — 4 .(1) 若 tan = 2,求 f( 0的值; (2) 若 x €,n ,求f(x)的取值范围.归纳小结:(1) 拆角、拼角技巧:2 a= ( aF 3F ( — 3,a= ( a、a+ 3 a — 3 a — 3 3 a+ 3— 3 3= 2 - 2 , 2 = a+ 2 - 2F 3 .(2) 化简技巧:切化弦, “1的代换等.a-• 1 + tan (2)求值:[2si n50 ° +sinlO (°tanlO ° \2sin280题型二:三角函数的给值求值 n【例2】已知0V 3V 2< aVn,且 cos a —㊁审核人签字:年月日富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:过程1(3) S = 尹 + b+ c)(r为内切圆半径).1(4) 设p = 2(a+ b + c),则S=寸p p—a p —b p—c .4•解二角形问题一般可用以下几步解答:第一步:利用正弦定理或余弦定理实现边角互化(本题为边化角)第二步:三角变换、化简、消兀,从而向已知角(或边)转化第三步:代入求值第四步:反思回顾,查看关键点,易错点,如本题中公式应用是否正确二:题型归类深度剖析题型一:利用正弦定理解三角形【例1 】在厶ABC 中,a=^/3, b=^, B = 45° 求A, C 和边c.题型二:利用余弦定理解三角形【例2】在厶ABC中,a、b、c分别是角A、B、cosB bC的对边,且cosC=—2a+ c.(1) 求角B的大小;(2) 若b =浙3, a+ c= 4,求厶ABC的面积. 题型三:正弦定理、余弦定理的综合应用【例3】已知a, b, c分别为△ ABC三个内角A, B , C 的对边,acosC+Q3asinC—b—c = 0.(1) 求A;(2) 若a= 2,A ABC的面积为寸3,求b, c.归纳小结:(1)已知两边及一边的对角,利用正弦定理求其他边或角•可能有一解、两解、无解.(2)判定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.审核人签字:富县高级中学集体备课教案年级:高三(文) 科目:数学授课人:审核人签字:年月日。
2025届高中数学一轮复习课件:第五章 第1讲任意角、弧度制及三角函数的概念(共71张ppt)
高考一轮总复习•数学
第28页
题型 弧长与扇形的面积公式
典例 3(1)如图所示,在平面直角坐标系 xOy 中,将一个半径为 1 的圆盘固定在平面上,
圆盘的圆心与原点重合,圆盘上缠绕着一条没有弹性的细线,细线的端头 M(开始时与圆盘
上点 A(1,0)重合)系着一支铅笔,让细线始终保持与圆盘相切的状态展开,切
2.任意角的三角函数的定义(推广) 设 P(x,y)是角 α 终边上异于原点的任意一点,其到原点 O 的距离为 r,则 sin α=yr, cos α=xr,tan α=yx(x≠0).
高考一轮总复习•数学
第9页
3.三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.
高考一轮总复习•数学
第20页
1.终边相同的角的集合的应用 利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相 同的所有角的集合,然后通过对集合中的参数 k 赋值来求得所需角. 2.象限角的两种判断方法 (1)图象法:在平面直角坐标系中作出已知角,并根据象限角的定义直接判断已知角是 第几象限角. (2)转化法:先将已知角化为 2kπ+α(α∈[0,2π),k∈Z)的形式,即找出与已知角终边相 同的角 α,再由角 α 终边所在的象限判断已知角是第几象限角.
答案
高考一轮总复习•数学
第22页
解析:(1)由于 M 中,x=2k·180°+45°=k·90°+45°=(2k+1)·45°,2k+1 是奇数;而 N 中,x=4k·180°+45°=k·45°+45°=(k+1)·45°,k+1 是整数,因此必有 M⊆N.
(2)如图,在坐标系中画出直线 y= 3x,可以发现它与 x 轴的夹角 是π3,在[0,2π)内,终边在直线 y= 3x 上的角有两个:π3,43π;在[-2π, 0)内满足条件的角有两个:-23π,-53π,故满足条件的角 α 构成的集合 为-53π,-23π,π3,43π.
高三数学一轮复习优质教案6:任意角、弧度制及任意角的三角函数教学设计
4.1 任意角、弧度制及任意角的三角函数『知识能否忆起』1.任意角(1)角的分类:①按旋转方向不同分为 、 、 . ②按终边位置不同分为 和 . (2)终边相同的角:终边与角α相同的角可写成 . (3)弧度制:①1弧度的角:把长度等于 的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为 ,负角的弧度数为 ,零角的弧度数为 ,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小 ,仅与_________有关.④弧度与角度的换算:360°= 弧度;180°= 弧度. ⑤弧长公式: ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数(1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=___,cos α= ,tan α=yx ,它们都是以角为 ,以单位圆上点的坐标或坐标的比值为 的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为 ,即 ,其中cos α= ,sin α= ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α= .我们把有向线段OM 、MP 、AT 叫做α的 、 、 .三角函数线有向线段 为正弦线有向线段 为余弦线有向线段 为正切线『小题能否全取』1.-870°的终边在第几象限( )A .一B .二C .三D .四2.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3 B.11π6 C.5π6D.3π43.若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________.5.弧长为3π,圆心角为135°的扇形半径为________,面积为________.1.对任意角的理解(1)“小于90°的角”不等同于“锐角”“0°~90°的角”不等同于“第一象限的角”.其实锐角的集合是{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同,终边相同的角的同一三角函数值相等.2.三角函数定义的理解三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx.考点一角的集合表示及象限角的判定典题导入『例1』 已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系. 由题悟法1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.以题试法1.(1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四角限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)如果角α是第二象限角,则π-α角的终边在第________象限.考点二三角函数的定义 典题导入『例2』 (1)已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12D.2(2)(2012·大庆模拟)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.以题试法2.(1)已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .±3 C.33D .±33(2)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114B.114 C .-4D .4考点三扇形的弧长及面积公式典题导入『例3』 (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.由题悟法1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.3.若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值? 解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R =2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2, 因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.1.已知点P (sin α-cos α,tan α)在第一象限,则在『0,2π』内,α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π2.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.3.已知0<α<π2,求证:(1)sin α+cos α>1; (2)sin α<α<tan α.答案1.(1)①正角、负角、零角. ②象限角 轴线角 (2)α+k ·360°(k ∈Z ). (3) ①半径长②正数 负数 零 ③ 无关 角的大小 ④ 2π π ⑤ l =|α|r 2.(1) y x 自变量 函数值3.(cos α,sin α) P (cos α,sin α) OM MP AT 余弦线、正弦线、正切线. MPOMAT『小题能否全取』1.『解析』选C 因-870°=-2×360°-150°.-150°是第三象限角. 2.『解析』选B ∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.3.『解析』选C 由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限. 4.『解析』因tan 2π3=-3=-y ,∴y = 3.『答案』3 5.『解析』弧长l =3π,圆心角α=34π,由弧长公式l =α·r 得r =l α=3π34π=4,面积S =12lr =6π.『答案』4 6π『例1』『自主解答』 (1)所有与角α有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M N .1.『解析』(1)-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.(2)由已知π2+2k π<α<π+2k π(k ∈Z ),则-π-2k π<-α<-π2-2k π(k ∈Z ),即-π+2k π<-α<-π2+2k π(k ∈Z ),故2k π<π-α<π2+2k π(k ∈Z ),所以π-α是第一象限角. 『答案』(1)C (2)一 『例2』『自主解答』 (1)根据已知条件得tan α=t 2+1t =t +1t ≥2,当且仅当t =1时,tan α取得最小值2.(2)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 『答案』 (1)B (2)D 2.『解析』(1)选B 由|OP |2=x 2+34=1,得x =±12,tan α=± 3.(2)选C 由题意可知,cos α=m m 2+9=-45,又m <0,解得m =-4.『例3』『自主解答』 (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r ) =-(r -10)2+100≤100, 当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.『解析』设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2. 『答案』23.解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R=2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2, 因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.1.『解析』选B 由已知sin α-cos α>0,tan α>0故⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4. 2.解:∵角α的终边在直线3x +4y =0上, ∴在角α的终边上任取一点P (4t ,-3t )(t ≠0), 则x =4t ,y =-3t , r =x 2+y 2=4t2+-3t 2=5|t |,当t >0时,r =5t , sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.3.证明:如图,设α的终边与单位圆交于P 点,作PM ⊥x 轴,垂足为M ,过点A (1,0)作AT ⊥x 轴,交α的终边于T ,则sin α=MP ,cos α=OM ,tan α=AT .(1)在△OMP 中,∵OM +MP >OP , ∴cos α+sin α>1.(2)连接P A ,则S △OP A <S 扇形OP A <S △OTA , 即12OA ·MP <12OA ·α<12OA ·AT ,即sin α<α<tan α.。
高考数学一轮复习 第四章 第一节 任意角、弧度制及任意角的三角函数教案 文(含解析)
【第一节 任意角、弧度制及任意角的三角函数】之小船创作1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cosαyx叫做α的正切,记作tan α一+++各象限符号二+--三--+四-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线1.(2019·海门一中月考)若角α满足α=45°+k·180°,k∈Z,则角α的终边落在第________象限.答案:一、三2.(2018·南京调研)已知角α的终边过点P(-5,12),则cos α=________.答案:-5 133.已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=yx,但若不是单位圆时,如圆的半径为r,则sin α=yr,cos α=xr,tan α=yx.[小题纠偏]1.(2019·如皋模拟)-10π3为第________象限角.答案:二2.若角α终边上有一点P(x,5),且cos α=x13(x≠0),则sin α=________.答案:5 13考点一角的集合表示及象限角的判定基础送分型考点——自主练透[题组练透]1.(2019·海安模拟)若α是第二象限角,则α2是第______象限角.解析:∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.故α2是第一或三象限角.答案:一或三2.在-720°~0°范围内所有与45°终边相同的角为________.解析:所有与45°有相同终边的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°,得-765°≤k×360°<-45°,解得-765360≤k<-45360, 从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________.解析:如图,在平面直角坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3 4.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z),则k π+π2<α2<k π+3π4(k ∈Z),故α2是第二或第四象限角.由⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,知sinα2<0,所以α2只能是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定kα,αk(k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在位置.考点二 扇形的弧长及面积基础送分型考点——自主练透[题组练透]1.(2019·盐城模拟)在半径为1的圆中,3弧度的圆心角所对的弧长为________.解析:在半径为1的圆中,3弧度的圆心角所对的弧长l =|α|r =3×1=3.答案:32.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案:1或43.如果一个扇形的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.解析:设圆的半径为r ,弧长为l ,则其弧度数为lr.将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l12r=3·lr,即弧度数变为原来的3倍.答案:3[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l=|α|r,扇形的面积公式是S=12lr=12|α|r2(其中l是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.考点三三角函数的定义题点多变型考点——多角探明[锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.常见的命题角度有:(1)三角函数定义的应用;(2)三角函数值的符号判定; (3)三角函数线的应用.[题点全练]角度一:三角函数定义的应用1.(2019·淮安调研)已知角α的终边经过点(4,a ),若sin α=35,则实数a 的值为________.解析:∵角α的终边经过点(4,a ),∴sin α=35=a16+a2,解得a =3. 答案:32.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:因为角α的终边经过点P (-x ,-6),且cos α=-513,所以cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),所以P ⎝⎛⎭⎪⎪⎫-52,-6, 所以sin α=-1213,所以tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.答案:-23角度二:三角函数值的符号判定3.若sin αtan α<0,且cos αtan α<0,则点(cos α,-sin α)在第________象限.解析:由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角. 故α为第三象限角,所以cos α<0,-sin α>0.故点(cos α,-sin α)在第二象限. 答案:二角度三:三角函数线的应用4.(2018·汇龙中学测试)设MP和OM分别是角17π18的正弦线和余弦线,给出以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM.其中正确的是________(填序号).解析:因为sin 17π18=MP>0,cos17π18=OM<0,所以OM<0<MP.答案:②[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P的坐标,可求角α的三角函数值.先求P到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.(2019·无锡调研)如图,已知点A 为单位圆上一点,∠xOA =π4,将点A 沿逆时针方向旋转角α到点B ⎝ ⎛⎭⎪⎪⎫35,45,则sin 2α=________.解析:由题意可得,cos ⎝ ⎛⎭⎪⎪⎫π4+α=35,α∈⎝⎛⎭⎪⎪⎫0,π4, ∴cos ⎝ ⎛⎭⎪⎪⎫π2+2α=2cos 2⎝ ⎛⎭⎪⎪⎫π4+α-1 =2×925-1=-725,即-sin 2α=-725,∴sin 2α=725. 答案:7252.(2018·扬州调研)在平面直角坐标系xOy 中,O 是坐标原点,点A 的坐标为(3,-1),将OA 绕O 逆时针旋转450°到点B ,则点B 的坐标为________.解析:设B (x ,y ),由题意知OA =OB =2,∠BOx =60°,且点B 在第一象限,所以x =2cos 60°=1,y =2sin 60°=3,所以点B 的坐标为(1,3).答案:(1,3)一抓基础,多练小题做到眼疾手快1.(2019·如东模拟)与-600°终边相同的最小正角的弧度数是________.解析:-600°=-720°+120°,与-600°终边相同的最小正角是120°,120°=2π3.答案:2π32.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为________.解析:设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,所以α= 3.答案:33.(2019·苏州期中)已知扇形的圆心角为θ,其弧长是其半径的2倍,则sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=________.解析:圆心角θ=l r =2,∵π2<2<π,∴sin θ>0,cos θ<0,tan θ<0,∴sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=1-1-1=-1.答案:-14.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.解析:因为sin θ=y42+y2=-255,所以y<0,且y2=64,所以y=-8.答案:-85.已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,则m=________.解析:由题设知点P的横坐标x=-3,纵坐标y=m,所以r2=|OP|2=(-3)2+m2(O为原点),即r=3+m2.所以sin α=mr=2m4=m22,所以r=3+m2=22,即3+m2=8,解得m=± 5.答案:±56.已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k ·π2,k ∈Z ,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k π±π2,k ∈Z ,则M ,N 之间的关系为 ________.解析:k π±π2=(2k ±1)·π2是π2的奇数倍,所以N ⊆M .答案:N ⊆M二保高考,全练题型做到高考达标1.(2019·常州调研)若扇形OAB 的面积是1 cm 2,它的周长是4 cm ,则该扇形圆心角的弧度数为________.解析:设该扇形圆心角的弧度数是α,半径为r , 根据题意,有⎩⎪⎨⎪⎧2r +αr =4,12α·r 2=1,解得α=2,r =1.故该扇形圆心角的弧度数为2. 答案:22.(2018·黄桥中学检测)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan 2α=________.解析:由三角函数的定义可得cos α=x x 2+42.因为cosα=15x ,所以x x 2+42=15x ,又α是第二象限角,所以x <0,解得x =-3,所以cos α=-35,sin α=1-cos 2α=45,所以 tan α=sin αcos α=-43,所以tan 2α=2tan α1-tan 2α=247.答案:2473.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α=________.解析:因为r =2sin 22+-2cos 22=2,由任意三角函数的定义,得sin α=yr=-cos 2.答案:-cos 24.已知角2α的终边落在x 轴上方,那么α是第________象限角.解析:由题知2k π<2α<π+2k π,k ∈Z ,所以k π<α<π2+k π,k ∈Z.当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角,所以α为第一或第三象限角.答案:一或三5.与2 017°的终边相同,且在0°~360°内的角是________.解析:因为2 017°=217°+5×360°,所以在0°~360°内终边与2 017°的终边相同的角是217°.答案:217°6.(2019·淮安调研)已知α为第一象限角,sin α=35,则cos α=________.解析:∵α为第一象限角,sin α=35,∴cos α=1-sin2α=1-925=4 5.答案:4 57.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎪⎫2r 32πr 2=527,所以α=5π6. 所以扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.答案:5188.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为_____________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎪⎫π4,5π4. 答案:⎝ ⎛⎭⎪⎪⎫π4,5π4 9.(2019·镇江中学高三学情调研)点P 从(1,0)出发,沿单位圆x 2+y 2=1按顺时针方向运动π3弧长到达点Q ,则点Q 的坐标为________.解析:由题意可得点Q 的横坐标为cos ⎝ ⎛⎭⎪⎪⎫-π3=12,Q 的纵坐标为sin ⎝⎛⎭⎪⎪⎫-π3=-sin π3 =-32,故点Q 的坐标为⎝⎛⎭⎪⎪⎫12,-32. 答案:⎝ ⎛⎭⎪⎪⎫12,-32 10.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解:设α终边上任一点为P (k ,-3k ), 则r =k 2+-32=10|k |.当k >0时,r =10k ,所以sin α=-3k 10k =-310,1cos α=10 kk =10,所以10sin α+3cos α=-310+310=0;当k <0时,r =-10k ,所以sin α=-3k -10k =310,1cos α=-10kk =-10,所以10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,所以α=l r =23或α=lr=6.(2)法一:因为2r +l =8,所以S 扇=12lr =14l ·2r ≤14⎝ ⎛⎭⎪⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4.所以圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:因为2r +l =8,所以S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4.所以弦长AB =2sin 1×2=4sin 1.三上台阶,自主选做志在冲刺名校1.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP―→的坐标为________.解析:如图,作C Q ∥x 轴,P Q ⊥C Q ,Q 为垂足.根据题意得劣弧D P =2,故∠DCP =2弧度,则在△PC Q 中,∠PC Q =⎝ ⎛⎭⎪⎪⎫2-π2弧度,C Q =cos ⎝ ⎛⎭⎪⎪⎫2-π2=sin 2,P Q =sin ⎝ ⎛⎭⎪⎪⎫2-π2=-cos 2,所以P 点的横坐标为2-C Q =2-sin 2,P 点的纵坐标为1+P Q =1-cos2,所以P 点的坐标为(2-sin 2,1-cos 2),此即为向量OP―→的坐标.答案:(2-sin 2,1-cos 2)2.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限; (3)试判断 tan α2sin α2cos α2的符号. 解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧ α⎪⎪⎪⎪⎭⎪⎬⎪⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限.(3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
适用于新教材2024版高考数学一轮总复习:任意角蝗制及三角函数的概念课件北师大版
3
3
3
终边不相同,故 B 错误;对于
故 D 错误.故选 C.
2π
5π
2π
D,(2k+1)π+ 3 =2kπ+ 3 (k∈Z)与 3 的终边不相同,
(3)因为角 α 的终边与 300°角的终边重合,所以 α=300°+k·360°(k∈Z),所以
=150°+k·180°(k∈Z),当
2
象限角.故选 BD.
rad;
180
360
180°
360°
=
≈57°18'
π
2π
弧长公式
弧长 l=
扇形面积公式
1
扇形的弧长和面积公式中角的 S=2lr=
单位必须是弧度
|α|r
1
|α|r2
2
微点拨 有关弧度制的注意点:(1)角度制与弧度制可利用180°=π rad进行互
化,在同一个式子中,采用的度量制度必须一致,不可混用.(2)注意扇形圆心
D.第一或第二象限角
答案 C
解析 依题意0°<α<90°,所以0°<2α<180°,因此2α是小于180°的正角.
6. 已知角θ的终边过点P(-12,5),求θ的三角函数值.
解 依题意,x=-12,y=5,所以 r=
tan
5
θ=- .
12
2
+
2 =13,于是
sin
5
θ=13 ,cos
12
θ=-13 ,
3π
-α
4
π
3π
α+4 =-α
4
3π
+π,而 -α
【2020创新设计一轮复习数学学案】第五章 第1节 任意角、弧度制及任意角三角函数
第1节任意角、弧度制及任意角的三角函数考试要求 1.了解任意角的概念和弧度制的概念;2.能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识梳理1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算①1°=π180rad;②1rad=180π°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线[常用结论与易错提醒]1.象限角2.轴线角基础自测1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,反之亦然.()(3)将表的分针拨快5分钟,则分针转过的角度是30°.()(4)若αtan α>α>sin α.()(5)相等的角终边一定相同,终边相同的角也一定相等.()解析(1)(2)第一象限角不一定是锐角.(3)顺时针旋转得到的角是负角.(5)终边相同的角不一定相等.答案(1)×(2)×(3)×(4)√(5)×2.角-870°的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析由-870°=-3×360°+210°,知-870°角和210°角的终边相同,在第三象限.答案C3.下列与9π4的终边相同的角的表达式中正确的是()A.2k π+45°(k ∈Z ) B.k ·360°+94π(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )解析与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有C 正确.答案C4.已知角α的终边经过点(-4,3),则cos α=()A.45B.35C.-35D.-45解析∵角α的终边经过点(-4,3),∴x =-4,y =3,r =5.∴cos α=x r =-45,故选D.答案D5.(必修4P10A6改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度.解析该弦与两条半径构成等边三角形,故圆心角为60°,即π3.答案π36.弧长为3π,圆心角为135°的扇形半径为________,面积为________.解析135°=135×π180=3π4(弧度),由α=l r ,得r =l α=3π3π4=4,S 扇形=12lr =12×4×3π=6π.答案46π考点一角的概念及其集合表示【例1】(1)若角α是第二象限角,则α2是()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.解析(1)∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α-53π,-23π,π3,43π答案(1)C -53π,-23π,π3,43π规律方法(1)利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角.(2)确定kα,αk(k∈N*)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出kα或αk的范围,然后根据k的可能取值讨论确定kα或αk的终边所在位置.【训练1】(1)(一题多解)设集合M=x|x=k2·180°+45°,k∈Z,N=x|x=k4·180°+45°,k∈Z()A.M=NB.M⊆NC.N⊆MD.M∩N=∅(2)α|kπ+π4≤α≤kπ+π2,k∈Z(阴影部分)是()解析(1)法一由于M x|x=k2·180°+45°,k∈Z{…,-45°,45°,135°,225°,…},N x|x=k4·180°+45°,k∈Z{…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M⊆N,故选B.法二由于M中,x=k2·180°+45°=k·90°+45°=(2k+1)·45°,2k+1是奇数;而N中,x=k4·180°+45°=k·45°+45°=(k+1)·45°,k+1是整数,因此必有M⊆N,故选B.(2)当k=2n(n∈Z)时,2nπ+π4≤α≤2nπ+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+5π4≤α≤2n π+3π2,此时α表示的范围与5π4≤α≤3π2表示的范围一样,故选C.答案(1)B(2)C考点二弧度制及其应用【例2】已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若α=60°,R =10cm ,求扇形的弧长l ;(2)已知扇形的周长为10cm ,面积是4cm 2,求扇形的圆心角;(3)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解(1)α=60°=π3rad ,∴l =α·R =π3×10=10π3(cm).(2)+Rα=10,·R 2=4,=1,=8(舍去)=4,=12.故扇形圆心角为12.(3)由已知得,l +2R =20.所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.规律方法应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【训练2】已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=90°,R =10cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?解(1)设弧长为l ,弓形面积为S 弓,则α=90°=π2,R =10,l =π2×10=5π(cm),S 弓=S 扇-S △=12×5π×10-12×102=25π-50(cm 2).(2)扇形周长C =2R +l =2R +αR ,∴R =C 2+α,∴S 扇=12α·R 2=12α=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2时,扇形面积有最大值C 216.考点三三角函数的概念【例3】(1)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A.-12 B.12C.-32D.32(2)(2018·北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是()A.AB ︵B.CD ︵C.EF︵ D.GH︵(3)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在()A.第一象限B.第二象限C.第三象限D.第四象限解析(1)∵r =64m 2+9,∴cos α=-8m64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,即m =12,故选B.(2)设点P 的坐标为(x ,y ),∵tan α<cos α<sin α,利用三角函数的定义可得yx <x <y ,所以-1<x <0,0<y <1,所以P 所在的圆弧是EF ︵,故选C.(3)由sin θ<0知θ的终边在第三、四象限或y 轴负半轴上,由tan θ<0知θ的终边在第二、四象限,故选D.答案(1)B(2)C(3)D规律方法(1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(2)根据三角函数定义中x ,y 的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.(3)利用三角函数线解三角不等式时要注意边界角的取舍,结合三角函数的周期性正确写出角的范围.【训练3】(1)已知角α的终边与单位圆的交点-12,sin α·tan α=()A.-33 B.±33C.-32 D.±32(2)(2019·丽水测试)已知αa =sin α,b =cos α,c =tan α,那么a ,b ,c 的大小关系是()A.a >b >cB.b >a >cC.a >c >bD.c >a >b(3)满足cos α≤-12的角α的集合为________.解析(1)由|OP |2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.(2)当αsin αcos α-22,tan α∈(-∞,-1),所以sin α>cos α>tan α,即a >b >c ,故选A.(3)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α|2k π+23π≤α≤2k π+43π,k ∈答案(1)C(2)A|2k π+23π≤α≤2k π+43π,k ∈基础巩固题组一、选择题1.已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A.-3B.3C.163D.±3解析sin θ=m 16+m 2=35,易知m >0,解得m =3.答案B2.已知点P (tan α,cos α)在第三象限,则角α的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析由题意知tanα<0,cosα<0,∴α是第二象限角.答案B3.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个解析-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.答案C4.点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()-12,-32,--12,--32,解析由三角函数定义可知Q点的坐标(x,y)满足x=cos 2π3=-12,y=sin2π3=32.答案A5.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α的弧度数为()A.π3B.π2C.3D.2解析设圆半径为r,则其内接正三角形的边长为3r,所以3r=α·r,∴α= 3.答案C6.设θ是第三象限角,且|cosθ2|=-cosθ2,则θ2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析由θ是第三象限角,知θ2为第二或第四象限角,∵|cos θ2|=-cosθ2,∴cosθ2≤0,综上知θ2为第二象限角.答案B7.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.-45B.-35C.3 5D.4 5解析由题意知,tanθ=2,即sinθ=2cosθ,将其代入sin2θ+cos2θ=1中可得cos2θ=15,故cos2θ=2cos 2θ-1=-35.答案B8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.4解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin5π6,但π6与5π6的终边不相同,故④错;当cosθ=-1,θ=π时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.答案A二、填空题9.设P 是角α终边上一点,且|OP |=1,若点P 关于原点的对称点为Q ,则Q 点的坐标是________.解析由已知P (cos α,sin α),则Q (-cos α,-sin α).答案(-cos α,-sin α)10.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________.解析在[0,2π),56π所以,所求角的集合为|2k π+π<α<2k π+5π6(k ∈Z答案|2k π+π4<α<2k π+5π6(k ∈Z 11.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.解析设扇形半径为r ,弧长为l=π6,=π3,=π3,=2.答案π312.函数y =2sin x -1的定义域为________.解析∵2sin x -1≥0,∴sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x∈2kπ+π6,2kπ+5π6(k∈Z).答案2kπ+π6,2kπ+5π6(k∈Z)13.(2019·北京东城区检测)在平面直角坐标系xOy中,以Ox为始边的角θ的终边sinθ=________,tan2θ=________.解析=1,∴x2+y2=1上,由三角函数的定义知sinθ=45,cosθ=35,∴tanθ=43,∴tan2θ=2tanθ1-tan2θ=2×431=-247.答案45-24714.若θ是第二象限角,则sin(cosθ)的符号为________,cos(sinθ)的符号为________.解析∵θ是第二象限角,∴-1<cosθ<0,0<sinθ<1,∴sin(cosθ)<0,cos(sinθ)>0.答案负正能力提升题组15.已知角α的终边与单位圆x2+y2=1交于点y2cos2α-1=()A.-12B.1 2C.-32D.1解析由三角函数的定义知,cosα=12,∴2cos2α-1=2-1=-12.答案A16.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=15x,则tanα等于()A.4 3B.3 4C.-34D.-43解析因为α是第二象限角,所以cosα=15x<0,即x<0.又cosα=15x=xx2+16,解得x=-3,所以tanα=4x=-43.答案D17.已知圆O:x2+y2=4与y轴正半轴的交点为M,点M沿圆O顺时针运动π2弧长到达点N,以ON为终边的角记为α,则tanα=()A.-1B.1C.-2D.2解析圆的半径为2,π2的弧长对应的圆心角为π4,故以ON为终边的角为α=2kπ+π4,k∈Z,故tanα=1.答案B18.已知角α的终边经过点(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是________.解析∵cosα≤0,sinα>0,∴角α的终边落在第二象限或y轴的正半轴上.a-9≤0,+2>0,∴-2<a≤3.答案(-2,3]19.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(单位:cm)表示成t(单位:s)的函数,则d=________(其中t∈[0,60]);d的最大值为________cm.解析根据题意,得∠AOB=t60×2π=πt30,故d=2×5sin∠AOB2=10sinπt60(t∈[0,60]).∵t∈[0,60],∴πt60∈[0,π],当t=30时,d最大为10cm.答案10sin πt601020.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解析如图,作CQ ∥x 轴,PQ ⊥CQ,Q 为垂足.根据题意得劣弧DP ︵=2,故∠DCP=2,则在△PCQ 中,∠PCQ =2-π2,CQ =sin 2,PQ =cos 2,所以P 点的横坐标为2-CQ =2-sin 2,P 点的纵坐标为1+PQ =1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2),故OP →=(2-sin 2,1-cos 2).答案(2-sin 2,1-cos 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲任意角、弧度制及任意角的三角函数【2013年高考会这样考】1.考查三角函数的定义及应用.2.考查三角函数值符号的确定.【复习指导】从近几年的高考试题看,这部分的高考试题大多为教材例题或习题的变形与创新,因此学习中要立足基础,抓好对部分概念的理解.基础梳理1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角终边与角α相同的角可写成α+k²360°(k∈Z).(3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值与所取的r的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度.⑤弧长公式:l=|α|r,扇形面积公式:S扇形=lr=|α|r2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(r>0),那么角α的正弦、余弦、正切分别是:sin α=,cos α=,tan α=,它们都是以角为自变量,以比值为函数值的函数.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),即P(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.(2)终边落在x轴上的角的集合{β|β=kπ,k∈Z};终边落在y轴上的角的集合;终边落在坐标轴上的角的集合可以表示为.两个技巧(1)在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点,|OP|=r一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与的终边相同的角的表达式中正确的是( ).A.2kπ+45°(k∈Z) B.k²360°+π(k∈Z)C.k²360°-315°(k∈Z) D.kπ+(k∈Z)解析与的终边相同的角可以写成2kπ+π(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.答案 C2.若α=k²180°+45°(k∈Z),则α在( ).A.第一或第三象限 B.第一或第二象限C.第二或第四象限 D.第三或第四象限解析当k=2m+1(m∈Z)时,α=2m²180°+225°=m²360°+225°,故α为第三象限角;当k=2m(m∈Z)时,α=m²360°+45°,故α为第一象限角.答案 A3.若sin α<0且tan α>0,则α是( ).A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角解析由sin α<0知α是第三、四象限或y轴非正半轴上的角,由tan α>0知α是第一、三象限角.∴α是第三象限角.答案 C4.已知角α的终边过点(-1,2),则cos α的值为( ).A.- B. C.- D.-解析由三角函数的定义可知,r=,cos α==-.答案 A5.(2011²江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-,则y=________.解析根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角,∴y<0,sin θ==-⇒y=-8.答案-8考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=x上的角的集合;(2)若角θ的终边与角的终边相同,求在[0,2π)内终边与角的终边相同的角;(3)已知角α是第二象限角,试确定2α、所在的象限.[审题视点] 利用终边相同的角进行表示及判断.解(1)在(0,π)内终边在直线y=x上的角是,∴终边在直线y=x上的角的集合为.(2)∵θ=+2kπ(k∈Z),∴=+(k∈Z).依题意0≤+<2π⇒-≤k<,k∈Z.∴k=0,1,2,即在[0,2π)内终边与相同的角为,,.(3)∵α是第二象限角,∴k²360°+90°<α<k²360°+180°,k∈Z.∴2k²360°+180°<2α<2k²360°+360°,k∈Z.∴2α是第三、第四象限角或角的终边在y轴非正半轴上.∵k²180°+45°<<k²180°+90°,k∈Z,当k=2m(m∈Z)时,m²360°+45°<<m²360°+90°;当k=2m+1(m∈Z)时,m²360°+225°<<m²360°+270°;∴为第一或第三象限角.(1)相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y轴非正半轴上的角的集合可以表示为,也可以表示为.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k²360°+β(k∈Z)D.α=k²360°±180°+β(k∈Z)解析对于角α与角β的终边互为反向延长线,则α-β=k²360°±180°(k∈Z).∴α=k²360°±180°+β(k∈Z).答案 D考向二三角函数的定义【例2】►已知角θ的终边经过点P(-,m)(m≠0)且sin θ=m,试判断角θ所在的象限,并求cos θ和tan θ的值.[审题视点] 根据三角函数定义求m,再求cos θ和tan θ.解由题意得,r=,∴=m,∵m≠0,∴m=±,故角θ是第二或第三象限角.当m=时,r=2,点P的坐标为(-,),角θ是第二象限角,∴cos θ===-,tan θ===-.当m=-时,r=2,点P的坐标为(-,-),角θ是第三象限角.∴cos θ===-,tan===.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练2】(2011²课标全国)已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则cos 2θ=( ).A.- B.- C. D.解析取终边上一点(a,2a),a≠0,根据任意角的三角函数定义,可得cos θ=±,故cos 2θ=2cos2θ-1=-.答案 B考向三弧度制的应用【例3】►已知半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.[审题视点] (1)由已知条件可得△AOB是等边三角形,可得圆心角α的值;(2)利用弧长公式可求得弧长,再利用扇形面积公式可得扇形面积,从而可求弓形的面积.解(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=.(2)由(1)可知α=,r=10,∴弧长l=α²r=³10=,∴S扇形=lr=³³10=,而S△AOB=²AB²=³10³=,∴S=S扇形-S△AOB=50.弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?解设圆心角是θ,半径是r,则2r+rθ=40,S=lr=r(40-2r)=r(20-r)≤2=100.当且仅当r=20-r,即r=10时,S max=100.∴当r=10,θ=2时,扇形面积最大,即半径为10,圆心角为2弧度时,扇形面积最大.考向四三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:(1)sin α≥;(2)cos α≤-.[审题视点] 作出满足sin α=,cos α=-的角的终边,然后根据已知条件确定角α终边的范围.解(1)作直线y=交单位圆于A、B两点,连接OA、OB,则OA与OB围成的区域(图中阴影部分)即为角α的终边的范围,故满足条件的角α的集合为.(2)作直线x=-交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.利用单位圆解三角不等式(组)的一般步骤是:(1)用边界值定出角的终边位置;(2)根据不等式(组)定出角的范围;(3)求交集,找单位圆中公共的部分;(4)写出角的表达式.【训练4】求下列函数的定义域:(1)y=; (2)y=lg(3-4sin2x).解(1)∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边范围(如图阴影部分所示).∴定义域为(k∈Z).(2)∵3-4sin2x>0,∴sin2x<,∴-<sin x<.利用三角函数线画出x满足条件的终边范围(如图阴影部分所示),∴定义域为(k∈Z).规范解答7——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P(不与原点重合)的坐标为(x,y),它到原点的距离是r(r=>0),则sin α=、cos α=、tan α=分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x,y的符号由α终边所在象限确定,r的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x,y,r的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011²龙岩月考)已知角α终边经过点P(x,-)(x≠0),且cos α=x,求sin α、tan α的值.只要确定了r的值即可确定角α经过的点P的坐标,即确定角α所在的象限,并可以根据三角函数的定义求出所要求的值.[解答示范] ∵P(x,-)(x≠0),∴P到原点的距离r=,(2分)又cos α=x,∴cos α==x,∵x≠0,∴x=±,∴r=2.(6分)当x=时,P点坐标为(,-),由三角函数定义,有sin α=-,tan α=-;(9分)当x=-时,P点坐标为(-,-),∴sin α=-,tan α=.(12分)当角的终边经过的点不固定时,需要进行分类讨论,特别是当角的终边在过坐标原点的一条直线上时,在根据三角函数定义求解三角函数值时,就要把这条直线看做两条射线,分别求解,实际上这时求的是两个角的三角函数值,这两个角相差2kπ+π(k∈Z),当求出了一种情况后也可以根据诱导公式求另一种情况.【试一试】已知角α的终边在直线3x+4y=0上,求sin α+cos α+tan α. [尝试解答] 取直线3x+4y=0上的点P1(4,-3),则|OP1|=5,则sin α=-,cos α=,tan α=-,故sin α+cos α+tan α=-++³=-;取直线3x+4y=0上的点P2(-4,3),则sin α=,cos α=-,tan α=-.故sin α+cos α+tan α=-+³=-.综上,sin α+cos α+tan α的值为-或-.文档已经阅读完毕,请返回上一页!。