处理三力平衡问题的方法总结

合集下载

第1讲 三力平衡的解题思路与方法

第1讲 三力平衡的解题思路与方法

第1讲三力平衡的解题思路与方法物体的平衡问题涉及力的基本概念及平行四边形定则的直接应用,能比较好的考察学生分析问题、解决问题的能力,在高考中是考试热点。

共点力平衡问题在高考中往往以三力平衡的形式出现来考察学生,因此必须掌握好三力平衡的解题方法。

物体在三个力的作用下处于平衡状态,要求我们分析三力之间的相互关系的问题叫三力平衡问题,这是物体受力平衡中最重要、最典型也最基础的平衡问题。

这种类型的问题有以下几种常见题型。

(1)三个力中,有两个力互相垂直,第三个力角度(方向)已知。

例1、图中重物的质量为m,轻细线AO和BO的A、B端是固定的,平衡时AD是水平的,BO与水平面的夹角为θ.AO的拉力F1和BO的拉力F2的大小是:A、F1=m gcosθ;B、F1=mgctgθ;C、F2=m gsinθ;D、F2=mg/sinθ.(这是一种最常见的三力平衡问题。

通常利用上述解题步骤即可方便求解此类问题,若出现解题障碍的话,障碍就出在怎样确定研究对象上。

)(2)三个力互相不垂直,但夹角(方向)已知。

三个力互相不垂直时,无论是用合成法还是分解法,三力组成的三角形都不是直角三角形,造成求解困难。

因而这种类型问题的解题障碍就在于怎样确定研究方法上。

解决的办法是采用正交分解法,将三个不同方向的力分解到两个互相垂直的方向上,再利用平衡条件求解。

例2、如图示,BO为一轻杆,AO和CO为两段细绳,重物质量为m,在图示状态静止,求AO绳的张力。

(3)三个力互相不垂直,且夹角(方向)未知三力方向未知时,无论是用合成法还是分解法,都找不到合力与分力之间的定量联系,因而单从受力分析图去求解这类问题是很难找到答案的。

要求解这类问题,必须变换数学分析的角度,从我们熟悉的三角函数法变换到空间几何关系上去考虑,利用力的矢量三角形与几何三角形相识的方法得到比例关系,进而得到答案。

这种问题的障碍点是如何正确选取数学分析的方法。

例3、如图,半径为R的光滑半球的正上方,离球面顶端距离为h的O点,用一根长为l的细线悬挂质量为m 的小球,小球靠在半球面上.试求小球对球面压力的大小.(4)三力的动态平衡问题即三个力中,有一个力为恒力,另一个力方向不变,大小可变,第三个力大小方向均可变,分析第三个力的方向变化引起的物体受力的动态变化问题.这种类型的问题不需要通过具体的运算来得出结论,因而障碍常出现在受力分析和画受力分析图上。

动态平衡中的三力平衡

动态平衡中的三力平衡

动态平衡中的三力问题方法一:三角形图解法。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了.例1。

1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1—2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。

因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。

F 1的方向不变,但方向不变,始终与斜面垂直。

F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。

由此可知,F 2先减小后增大,F 1随β增大而始终减小.同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。

图1-1 图1-2F 1GF 2 图1-3 图1-4特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

三力平衡的求解方法

三力平衡的求解方法
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α 球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则):
所受三个力经平移首尾顺次相接,一定能
构成封闭三角形.
由三角形解得: FN1=mgtan α,
挡板受压力FN1′=FN1=mgtan α.
力的三角 形法
题型:三力平衡问题 例1.如图所示,在倾角为α 的斜面上, 放一质量为m的小球,小球被竖直 的木板挡住,不计摩擦,则球对挡板 的压力是( A.mgcos α C. mg
cosα
) B.mgtan α D.mg

【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
方法 正交分解 法 合成法 分解法 内容 将处于平衡状态的物体所受的力,分解为相互正 交的两组,每一组的力都满足二力平衡条件 物体受三个力的作用,任意两个力的合力与第三 个平衡 . 将某一个力按力的效果进行分解,则其分力和其 它力在所分解的方向上满足平衡条件. 物体受三个力作用,将这三个力的矢量箭头首尾 相接,构成一个闭合三角形,利用三角形定则, 根据正弦定理、余弦定理或矢量三角形与几何三 角形相似等数学知识可求解。
解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α 可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
解法二:(力的合成法): FN1 =mgtan α, 球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):

动态平衡中的三力问题 精简版

动态平衡中的三力问题 精简版

动态平衡中的三力问题(精简版)项城二高 物理组 孙云花在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,下面我们共同讨论一下。

方法一:解析法特点:利用物体受力平衡写出未知量与已知量的关系表达式,根据已知量的变化情况来确定未知量的变化情况,利用临界条件确定未知量的临界值。

原理:对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

例题 将物体换成挂在竖直墙上的球如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A 点,在缩短细绳小球缓慢上移的过程中,细绳对小球的拉力F 、墙壁对小球的弹力F N 的变化情况为( )A.F 、F N 都不变B.F 变大、F N 变小C.F 、F N 都变大D.F 变小、F N 变大解析:选C 。

以小球为研究对象,受力分析如图,设绳子与墙的夹角为θ,由平衡条件得:θcos mg F = ,FN=mgtan θ,把绳的长度减小,θ增加,cos θ减小,tan θ增大,则得到F 和FN 都增大,故选C 。

练习:如图所示,人站在岸上通过定滑轮用绳牵引小船,若水的阻力恒定不变,则在船匀速靠岸的过程中( )A. 绳的拉力不断增大B. 绳的拉力不断减小C. 船受到的浮力不变D. 船受到的浮力减小方法二:图解法。

特点:平行四边形(三角形)图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

处理平衡问题的几种方法

处理平衡问题的几种方法

处理平衡问题的几种方法一、合成、分解法利用力的合成与分解解决三力平衡的问题.具体求解时有两种思路:一是将某力沿另两个力的反方向进行分解,将三力转化为四力,构成两对平衡力;二是某二力进行合成,将三力转化为二力,构成一对平衡力.[例1] 如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g 。

若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为( )A.mg2sin α B.mg 2cos α C.12mg tan αD.12mg cot α[解析] 石块受力如图所示,由对称性可知两侧面所受弹力相等,设为F N ,由三力平衡可知四边形OABC 为菱形,故△ODC 为直角三角形,且∠OCD 为α,则由12mg =F N sin α,可得F N =mg 2sin α,故A 正确.[答案] A 二、图解法在共点力的平衡中,有些题目中常有“缓慢”一词,则物体处于动态平衡状态.解决动态平衡类问题常用图解法,图解法就是在对物体进行受力分析(一般受三个力)的基础上,若满足有一个力大小、方向均不变,另有一个力方向不变时,可画出这三个力的封闭矢量三角形来分析力的变化情况的方法,图解法也常用于求极值问题.[例2] 如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O 点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大[解析]小球受力如图甲所示,因挡板是缓慢转动,所以小球处于动态平衡状态,在转动过程中,此三力(重力、斜面支持力、挡板弹力)组成矢量三角形的变化情况如图乙所示(重力大小方向均不变,斜面对其支持力方向始终不变),由图可知此过程中斜面对小球的支持力不断减小,挡板对小球弹力先减小后增大,再由牛顿第三定律知B对.[答案] B三、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x合=0,F y合=0.为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则.[例3]如图所示,用与水平方向成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动.关于物块受到的外力,下列判断正确的是()A.推力F先增大后减小B.推力F一直减小C.物块受到的摩擦力先减小后增大D .物块受到的摩擦力一直不变[解析] 对物体受力分析,建立如图所示的坐标系.由平衡条件得F cos θ-F f =0F N -(mg +F sin θ)=0 又F f =μF N 联立可得F =μmgcos θ-μsin θ,可见,当θ减小时,F 一直减小,故选项B 正确.[答案] B 四、三力汇交原理物体受三个共面非平行外力作用而平衡时,这三个力必为共点力. [例4] 一根长2 m ,重为G 的不均匀直棒AB ,用两根细绳水平悬挂在天花板上,当棒平衡时细绳与水平面的夹角如图所示,则关于直棒重心C 的位置下列说法正确的是( )A .距离B 端0.5 m 处 B .距离B 端0.75 m 处C .距离B 端32 m 处 D .距离B 端33 m 处[解析] 当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把O 1A 和O 2B 延长相交于O 点,则重心C 一定在过O 点的竖直线上,如图所示.由几何知识可知:BO =12AB =1 m ,BC =12BO =0.5 m ,故重心应在距B 端0.5 m 处.A项正确.[答案] A五、整体法和隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.[例5]如图所示,顶端装有定滑轮的斜面体放在粗糙水平面上,A、B两物体通过细绳相连,并处于静止状态(不计绳的质量和绳与滑轮间的摩擦).现用水平向右的力F作用于物体B上,将物体B缓慢拉高一定的距离,此过程中斜面体与物体A仍然保持静止.在此过程中()A.水平力F一定变小B.斜面体所受地面的支持力一定变大C.物体A所受斜面体的摩擦力一定变大D.地面对斜面体的摩擦力一定变大[解析]隔离物体B为研究对象,分析其受力情况如图所示.则有F=mg tanθ,F T=mgcos θ,在物体B缓慢拉高的过程中,θ增大,则水平力F随之变大,对A、B两物体与斜面体这个整体而言,由于斜面体与物体A仍然保持静止,则地面对斜面体的摩擦力一定变大,但是因为整体竖直方向并没有其他力,故斜面体所受地面的支持力不变;在这个过程中尽管绳子张力变大,但是由于物体A所受斜面体的摩擦力开始并不知道其方向,故物体A所受斜面体的摩擦力的情况无法确定,所以答案为D.[答案] D六、临界问题的常用处理方法——假设法运用假设法解题的基本步骤是:(1)明确研究对象;(2)画受力图;(3)假设可发生的临界现象;(4)列出满足所发生的临界现象的平衡方程求解.[例6]倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施以一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值可能是()A.3 B.2C.1 D.0.5[解析]设物体刚好不下滑时F=F1,则F1cos θ+μF N=G sin θ,F N=F1sin θ+G cos θ.得:F1G=sin 37°-0.5×cos 37°cos 37°+0.5×sin 37°=0.21.1=211;设物体刚好不上滑时F=F2,则:F2cos θ=μF N+G sin θ,F N=F2sin θ+G cos θ,得:F2G=sin 37°+0.5×cos 37°cos 37°-0.5×sin 37°=10.5=2,即211≤FG≤2,故选B、C、D.[答案]BCD七、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应成比例,根据比值便可计算出未知力的大小与方向.[例7] 如图所示,一个重为G 的小球套在竖直放置的半径为R 的光滑圆环上,一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.[解析] 对小球B 受力分析如图所示,由几何关系有△AOB ∽△CDB ,则R AB =G F 又F =k (AB -L ) 联立可得AB =kRLkR -G在△AOB 中,cos φ=AB 2 R =AB 2R =kRL 2R (kR -G )=kL2(kR -G ).则φ=arccoskL 2(kR -G )[答案] arccoskL2(kR -G )八、正弦定理法三力平衡时,三力合力为零.三个力可构成一个封闭三角形,若由题设条件寻找到角度关系,则可由正弦定理列式求解.[例8] 一盏电灯重力为G ,悬于天花板上A 点,在电线O 处系一细线OB ,使电线OA 与竖直方向的夹角为β=30°,如图所示.现保持β角不变,缓慢调整OB 方向至OB 线上拉力最小为止,此时OB 与水平方向的夹角α等于多少?最小拉力是多少?[解析] 对电灯受力分析如图所示.据三力平衡特点可知:OA 、OB 对O 点的作用力F T A 、F T B 的合力F T 与G 等大反向,即F T =G ①在△OF T B F T 中,∠F T OF T B =90°-α又∠OF T F T B =∠F T OA =β,故∠OF T B F T =180°-(90°-α)-β=90°+α-β 由正弦定理得F T Bsin β=F Tsin (90°+α-β)②联立①②解得F T B =G sin βcos (α-β)因β不变,故当α=β=30°时,F T B 最小,且F T B =G sin β=G /2. [答案] 30° G 2。

三力平衡方法汇总

三力平衡方法汇总

三力平衡一、方法示例:1.如图所示,质量不计的AB杆可绕A端的轴在竖直面内转动,B端用细绳BC吊住,杆处于水平方向,BC绳与杆的夹角为30°,在杆B端挂一重100N的物体.求BC对杆的拉力F T和杆AB所受的力F的大小.2.如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与O点的连线与水平线的夹角为θ=60°.求两小球的质量比。

3.用三根轻绳将质量为m的物块悬挂在空中,如图所示,已知绳ac和bc与竖直方向的夹角分别为30°和45°,则ac绳和bc绳中的拉力4.半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一质量为m的小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,此时球到滑轮距离为L。

求半球对小球的支持力N和绳对小球的拉力T5.如图所示,不均匀的直细杆AB长1m,将它的两端用两根细绳拴住吊在两竖直墙上,当AB在水平方向平衡时,细绳AC与竖直方向的夹角θ1=60°,细绳BD与竖直方向的夹角为θ2=30°.求AB杆的重心距B端的距离.二、练习1.如图所示,一个重为G 的小环套在竖直放置的半径为R 的光滑大圆环上,一个劲度系数是k 、自然长度为L (L <2R )的轻质弹簧,其一端与小环相连,另一端固定在大环的最高点.求小环处于静止状态时,弹簧与竖直方向的夹角.(可以用三角函数表示)2.如图所示,两竖直墙壁间间距为3m ,一根不可伸长的长为5m 的柔软轻绳左右两端分别系于A 、B 两点,一质量为20KG 的物体用动滑轮悬挂在轻绳上,达到平衡时求绳中张力。

3.用与竖直方向成θ角(θ<45°)的倾斜轻绳a 和水平轻绳b 共同固定一个小球,这时绳b 的拉力为F1。

三力平衡的求解方法

三力平衡的求解方法
挡板受压力FN1′=FN1=mgtan α.
以上有不当之处,请大家给与批评指正, 谢谢大家!
9
力的三角 形法
物体受三个力作用,将这三个力的矢量箭头首尾 相接,构成一个闭合三角形,利用三角形定则, 根据正弦定理、余弦定理或矢量三角形与几何三 角形相似等数学知识可求解。
题型:三力平衡问题
例1.如图所示,在倾角为α的斜面上,
放一质量为m的小球,小球被竖直
的木板挡住,不计摩擦,则球N1 =mgtan α,
球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α
球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则): 所受三个力经平移首尾顺次相接,一定能 构成封闭三角形. 由三角形解得: FN1=mgtan α,
A.mgcos α
B.mgtan α
C. mg
D.mg
cosα
【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α
可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
方法 正交分解
法 合成法
分解法
内容
将处于平衡状态的物体所受的力,分解为相互正 交的两组,每一组的力都满足二力平衡条件
物体受三个力的作用,任意两个力的合力与第三 个平衡 .
将某一个力按力的效果进行分解,则其分力和其 它力在所分解的方向上满足平衡条件.

处理平衡问题的几种方法

处理平衡问题的几种方法

【例3】 半圆柱体P放在粗糙的水平地面上,其 右端有固定放置的竖直挡板MN.在P和MN之 间放有一个光滑均匀的小圆柱体Q,整个装置 处于静止.如图2-3所示是这个装置的纵截 面图.若用外力使MN保持竖直,缓慢地向右 移动,在Q落到地面以前,发现P始终保持静 止.在此过程中,下列说法中正确的是( ) A.MN对Q的弹力逐渐减小 B.地面对P的摩擦力逐渐增大 C.P、Q间的弹力先减小后增大 D.Q所受的合力逐渐增大
2.正交分解法 将各力分解到x轴和y轴上,运用两坐标轴上的合 力等于零(∑Fx=0,∑Fy=0)的条件解题,多用 于三个以上共点力作用下的物体的平衡问题.值 得注意的是,x、y方向选择的原则: ①在平衡状态下,少分解力或将容易分解的力分 解.(使尽可能多的力落在坐标轴上,没有落在 坐标轴上的力分解到坐标轴上;或根据对称性。) ②尽量不要分解未知力.
5.正弦定理法 三力平衡时,三力的合力为0,三个力可构成 一封闭三角形,若由题设条件寻找到角度关 系,则可用正弦定理列式求解.
Байду номын сангаас
【例5】一盏电灯重力为G,悬于天花板上A点, 在电线O处系一细线OB,使电线OA偏离竖直 方向的夹角为β=30°,如图2-5所示.现保 持β角不变,缓慢调整OB方向至OB线上拉力 最小为止,此时OB与水平方向的夹角α等于多 少?最小拉力是多少?
4.相似三角形法 “相似三角形”的主要性质是对应边成比例, 对应角相等.在物理中,一般当涉及矢量运算, 又构建了三角形时,若矢量三角形与图中的某 几何三角形为相似三角形,则可用相似三角形 法解题.
【例4】如图2-4所示,两球A、B用劲度系数为k1的 轻弹簧相连,球B用长为L的细绳悬于O点,球A固 定在O点正下方,且OA之间的距离恰为L,系统平 衡时绳子所受的拉力为F1.现把A、B间的弹簧换成 劲度系数为k2的轻弹簧,仍使系统平衡,此时绳 子所受的拉力为F2,则F1与F2的大小之间的关系 为 ( ) A.F1>F2 C.F1<F2 B.F1=F2 D.无法确定

动态平衡中的三力平衡

动态平衡中的三力平衡

动态平衡中的三力问题方法一:三角形图解法。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。

因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。

F 1的方向不变,但方向不变,始终与斜面垂直。

F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。

由此可知,F 2先减小后增大,F 1随β增大而始终减小。

同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。

图1-1 图1-2F 1G F 2 图1-3 图1-4特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

【受力分析】动态平衡中的三力问题

【受力分析】动态平衡中的三力问题

三力平衡通解技巧在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。

因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。

F 1的方向不变,但方向不变,始终与斜面垂直。

F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。

由此可知,F 2先减小后增大,F 1随β增大而始终减小。

同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合图1-1图1-2F 1GF 2图1-3三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

高三物理求解平衡问题的九种方法

高三物理求解平衡问题的九种方法

求解平衡问题的九种方法一、力的合成法物体在三个共点力的作用下处于平衡状态,如此任意两个力的合力一定与第三个力大小相等,方向相反;“力的合成法〞是解决三力平衡问题的根本方法.例1如图1甲所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端固定,平衡时AO 水平,B0与水平面的夹角为θ,AO 拉力1F 和BO 拉力2F 的大小是 () A 、1F mg = B.1cot F mg θ= C.2sin F mg θ= D.2sin mgF θ=解析 根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出图1所示矢量图,由三角形知识可得1cot F mg θ=,2sin mgF θ=.所以正确选项为BD二、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:0x F =合,0y F =合.为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原如此.例2 如图2甲所示,不计滑轮摩擦,A B 、两物体均处于静止状态.现加一水平力F 作用在B 上使B 缓慢右移,试分析B 所受力F 的变化情况.解析 对物体B 受力分析如图2所示,建立如图直角坐标系,在x 轴上有cos 0f A x F F F F θ=--=合①在y 轴上有sin 0N A B y F F F G θ=+-=合②又f N F F μ=③联立①②③得(cos sin )A B F F G θμθμ=-+. 可见,随着θ不断减小,水平力F 将不断增大. 三、整体法与隔离法整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉与研究系统而不涉与系统内部某些物体的受力和运动时,一般可采用整体法.隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进展分析的方法,其目的是便于进一步对该物体进展受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.例3有一直角支架AOB ,AO 水平放置,外表粗糙,OB 竖直向下,外表光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如下列图,现将P 环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡状态和原来的平衡状态比拟,AO 杆对P 环的支持力N F 和细绳拉力T F 的变化情况是:〔 〕 A 、N F 不变、T F 变大 B 、N F 不变、T F 变小 C 、N F 变大、T F 变大D 、N F 变大、T F 变小解析采取先“整体〞后“隔离〞的方法.以P 、Q 、绳为整体研究对象,受重力、AO 给的向上弹力、OB 给的水平向左弹力.由整体处于平衡状态知AO 给P 向右静摩擦力与OB 给的水平向左弹力大小相等;AO 给的竖直向上弹力与整体重力大小相等.当P 环左移一段距离后,整体重力不变,AO 给的竖直向上弹力也不变.再以Q 环为隔离研究对象,受力如图3乙所示,Q 环所受重力G 、OB 给Q 弹力F 、绳的拉力T F 处于平衡,P 环向左移动一小段距离的同时T F 移至'T F 位置,仍能平衡,即T F 竖直分量与G 大小相等,T F 应变小,所以正确答案为B 选项. 四、三角形法对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断.如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 () A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大解析 选0点为研究对象,受F 、A F 、B F 三力作用而平衡,此三力构成一封闭的动态三角形如图4乙.容易看出,当B F 与A F 垂直即090αβ+=时,B F 取最小值,所以D 选项正确. 五、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图申的几何三角形相似,进而力三角形与几何三角形对应成比例,根据比值便河计算出末知力的大小与方向.例5 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,如此此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ()A 、N F 不变、T F 不变 B.N F 不变、T F 变大 C ,N F 不变、T F 变小 D.N F 变大、T F 变小解析 小球受力如图5乙所示,根据平衡条件知,小球所受支持力'N F 和细线拉力T F 的合力F 跟重力是一对平衡力,即F G =.根据几何关系知,力三角形'N FAF 与几何三角形COA 相似.设滑轮到半球顶点B 的距离为h,线长AC 为L ,如此有'N T F F G RR hL==+,由于小球从A 点移向B 点的过程中,G R h 、、均不变,L 减小,故'N F 大小不变,T F 减小.所以正确答案为C 选项.六、正弦定理法正弦定理:在同一个三角形中,三角形的边长与所对角的正弦比值相等;在图6中有sin sin sin AB BC CAC A B ==同样,在力的三角形中也满足上述关系,即力的大小与所对角的正弦比值相等.例6 不可伸长的轻细绳AO 、BO 的结点为0,在0点悬吊电灯L ,OA 绳处于水平,电灯L 静止,如图图7甲所示,保持0点位置不变,改变OA 的长度使A 点逐渐上升至C 点,在此过程中绳OA 的拉力大小如何变化?解析 取0点为研究对象,0点受灯的拉力F(大小等于电灯重力G)、OA 绳的拉力1T 、OB 绳的拉力2T ,如图7乙所示.因为三力平衡,所以1T 、2T 的合力'G 与G 等大反向.由正弦定理得1sin sin T G θα=,即1sin sin G T θα=,由图知θ不变,α由小变大, α增大到090后再减小,所以据1T 式知1T 先变小后变大,当090α=时,1T 有最小值. 七,拉密原理法拉密原理:如果在三个共点力作用下物体处于平衡状态,那么各力的大小分别与另外两个力所夹角的正弦成正比.在图8所示情况下,原理表达式为312123sin sin sin F F F θθθ==例7 如图9甲所示装置,两根细绳拉住一个小球,保持两绳之间夹角θ不变;假设把整个装置顺时针缓慢转动090,如此在转动过程中,CA 绳拉力1T F 大小的变化情况是,CB 绳拉力2T F 大小的变化情况是 .解析 在整个装置缓慢转动的过程中,可以认为小球在每一位置都是平衡的.小球受到三个力的作用,如图9乙所示,根据拉密原理有12sin sin sin T T F F G βαθ==,由于θ不变,α由090逐渐变为0180,sin α会逐渐变小直到为零,所以2T F 逐渐变小直到为零;由于β由钝角变为锐角,sin β先变大后变小,所以1T F 先变大后变小. 八、对称法研究对象所受力假设具有对称性,如此求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性.例8 如图10甲所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成θ角,试求;(1)链条两端的张力大小. (2)链条最低处的张力大小.解析 (1)在求链条两端的张力时,可把链条当做一个质点处理.两边受力具有对称性使两端点的张力F 大小相等,受力分析如图10乙所示.取链条整体为质点研究对象.由平衡条件得竖直方向2Fsin =G θ,所以端点张力为GF=2sin θ(2)在求链条最低点张力时,可将链条一分为二,取一半研究,受力分析如图10丙所示,由平衡条件得水平方向所受力为'cos cos cot 2sin 2G G F F θθθθ===即为所求.九、力矩平衡法力矩平衡:物体在力矩作用下处于静止或匀速转动状态时,所受力矩达到平衡·力矩平衡条件:一般规定逆时针方向的力矩为正设为1M ,顺时针方向的力矩为负设为2M ,如此力矩平衡条件为120M M +=.例9 如图1l,AC 为竖直墙面,AB 为均匀横梁其重力为G ,处于水平位置;BC 为支撑横梁的轻杆,它与竖直方向的夹角为α,A B C 、、三处均用铰链连接,如此轻杆BC 所承受的力为多大?解析 以轻杆BC 为研究对象,由三力汇交原理可知,横梁AB 对它的作用力一定沿着轻杆BC.再以横梁AB 为研究对象,受力分析如图11所示,由力矩平衡可得cos 2AB GN AB α=,所以有2cos G N α=由牛顿第三定律可得,轻杆BC 所承受的力为'2cos G N N α==。

三力平衡的四种解法

三力平衡的四种解法

三力平衡的四种解法处理三个力的平衡时,有四种解法。

(一)分解法:(二)合成法:(三)三角形法:(四)正交分解法:三个共点力作用于物体使之平衡时,这三个力首尾相连,围成一个封闭的三角形.如有直角直接解直角三角形;如已知角用正余弦定理;如已知边,用力组成的三角形与边组成的三角形进行相似比。

例如图所示,一粗细不均匀的棒长L=6m,用轻绳悬挂于两壁之间,保持水平,已知α=450,β=300,求棒的重心位置。

解:三力平衡必共点,受力分析如图所示。

由正弦定理得:由直角三角形得:(三)有的多个力的平衡转化成三力的平衡求解:先把同一直线上的力先求和,后只剩下三个力的平衡,再求解。

例一重量为G的小环套在竖直放置的、半径为R的光滑大圆环上,一个倔强系数为k、自然长度为L(L<2R)的轻弹簧,其一端与小环相连,另一端固定在大环的最高点。

在不计摩擦时,静止的弹簧与竖直方向的夹角θ是多大?解:由三角形相似有由正弦定理有小结:(1)由分析得出弹簧是伸长的。

(2)同时用相似与正弦定理。

如图所示,一粗细不均匀的棒,棒长AB=6m,用轻绳悬挂于两壁之间,保持水平,已知α=45°, β=30°.求棒的重心位2010-11-16 12:24提问者:丶埘绱丿|悬赏分:20 |浏览次数:441次绳与壁的夹角为a b2010-11-16 17:07最佳答案设A、B端绳子的拉力分别为F1、F2。

重心距A为L,由水平方向受力平衡得:F1sin45°=F2sin30°以A端为支点,由杠杆平衡条件得:F2cos30°*AB=G*L再以B为支点,由杠杆平衡条件得:F1cos45°*AB=G*(AB-L)联立可求出L=3(3-√3)=3.8米在很多教学参考书和学习指导书中都能看到这样一个题目:一个质量为m的小环套在位于竖直平面内半径为R的光滑大圆环上.有一个劲度系数为k、自然长度为L(L<2R)的轻弹簧,其一端与小环相连,另一端固定在大环的最高点,如图1所示.当小环静止时,弹簧处于伸长还是压缩状态?弹簧与竖直方向的夹角θ是多少?一般书中都有答案:弹簧伸长.(kL)/(2(kR-mg)).图1 图2以上答案的求解过程如下:如图2所示,用“穷举法”可以证明,弹簧对小环的弹力只可能是向里的,即弹簧必定伸长.根据几何知识,“同弧所对的圆心角是圆周角的两倍”,即图中弹簧拉力T在重力mg和大环弹力N所夹角的角平分线上.所以计算可得N=mg,①T=2mgcosθ.②另外,根据胡克定律有T=k(2Rcosθ-L),③根据以上各式可得cosθ=(kL/2(kR-mg)).二、发现的问题到此似乎题目已经解决了,但是再仔细一想却发现了新的问题.因为cosθ的取值范围是-1≤cosθ≤1.而上面cosθ的表达式中,由于各个参数k、L、R、m等可以独立变化取不同的值(只要满足L<2R),因此表达式右边的值完全可能超出cosθ的值域,例如当m较大时(或L较大,或R、k较小,它们的效果是一样的),完全可能大于1,此时上式cosθ无解.(当m更大时甚至还可能是负的,θ也许有解,但这意味着θ是个钝角,显然也不符合实际.)但是,我们知道,无论m多大,小环必定会有一个平衡位置,θ必定会有一个确定的解,因此上面的解答必定是一个不完整的解.那么完整的解是怎样的呢?令cosθ=1,即θ=0得kL=2(kR-mg),即mg=(1/2)k(2R-L),这是一个重要的临界值.由cosθ的表达式可知,m越大,cosθ也越大,θ角就越小.当mg<(1/2)k(2R-L)时,θ>0,小环不在大环的最低点;随着m的逐步变大,θ逐步变小,当mg=(1/2)k(2R -L)时,θ=0,小环恰好降低到大环的最低点;以后随着m的再进一步变大,小环的位置不会再变化了(哪怕m增大到使cosθ的表达式变为负的).由此可见,θ(或者cosθ)的表达式应该是“分段函数”,cosθ=(kL)/(2(kR-mg)),mg≤(1/2)k(2R-L)1,mg≥(1/2)k(2R-L)这个问题还可以进一步研究下去.当mg≥(1/2)k(2R-L)以后,随着m的继续增大,θ≡0是不会再有变化了,但并不意味着就什么都不变.其实,当mg<(1/2)k(2R -L)时,随着m的增大,弹簧拉力T和大环弹力N的大小始终满足T=2mgcosθ和N=mg,而且方向也相应改变.但一旦当mg≥(1/2)k(2R-L)后,m再增大时,T和N两个力的方向就都保持在竖直方向(与mg在同一直线)而不再改变,改变的仅仅是力的大小了.也就是说,T和N也是“分段函数”.T= k(2Rcosθ-L),(1/2)k(2R-L)k(2R-L),(1/2)k(2R-L)N= mg,(1/2)k(2R-L)k(2R-L)-mg,(1/2)k(2R-L)我们看其中N的第二段表达式“N=k(2R-L)-mg”,N>0,表示N的方向向下,此时(1/2)k(2R-L)≤mg<k(2R-L);当N<0,表示N的方向向上,此时mg>k(2R-L);而当mg=k(2R-L)时,N=0.也就是说,当m逐渐增大到mg=(1/2)k(2R-L)时,小环恰好降到最低点(θ=0),此时大环对小环的弹力N方向仍然是向下,大小仍等于mg(跟θ≠0时的情况相同).不过随着m的进一步增大,N先是大小渐渐减小到0,然后再方向改变为向上并逐渐增大(弹簧弹力在这期间内则始终等于k(2R-L)).并不是小环一落到最低点大环对它的支持力马上变为向上的.有兴趣的读者可以自己画出T、N(的大小)还有θ随m的变化图线,都是一些“分段函数曲线”,其中都有一段水平段.度系数为弹簧与竖直方向的夹角,解得:联立求解得:。

三力动态平衡问题的几种解法

三力动态平衡问题的几种解法

三力动态平衡问题的几种解法物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。

因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。

因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据.下面就举例介绍几种这类题的解题方法.一,三角函数法例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。

现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:F1=mg,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图:得:,,解得:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确,BCD错误.故选A.点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题.二,图解法例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______.解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。

根据图像OA绳受力变小,OB绳受力先变小后变大.点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况.三,相似三角形法例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。

平衡问题的八种方法

平衡问题的八种方法

[典例2]
如图2-3所示,一小球在斜面上
处于静止状态,不考虑一切摩擦,如果把竖直 挡板由竖直位置缓慢绕O点转至水平位置,则 此过程中球对挡板的压力F1和球对斜面的压力
图 2- 3
F2的变化情况是
A.F1先增大后减小,F2一直减小 B.F1先减小后增大,F2一直减小 C.F1和F2都一直减小 D.F1和F2都一直增大
(1)明确研究对象; (2)画受力图; (3)假设可发生的临界现象; (4)列出满足所发生的临界现象的平衡方程求解。
[典例6]
倾角为θ=37°的斜面与水平面保持静止,斜面
上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。 现给A施以一水平力F,如图2-11所示。设最大静摩擦力与滑 动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在 斜面上静止,水平推力F与G的比值可能是( A.3 C.1 B.2 D.0.5
方法二:整体法
直角劈对地面的压力和地面对直角劈的支持力是一对作用力和 反作用力,大小相等、方向相反。而地面对直角劈的支持力、地面 对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个 问题,可以以整体为研究对象。整体在竖直方向上受到重力和支持
力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡
三、图解法 在共点力的平衡中,有些题目中常有“缓慢”一词,则物 体处于动态平衡状态。解决动态平衡类问题常用图解法,图
解法就是在对物体进行受力分析(一般受三个力)的基础上,若
满足有一个力大小、方向均不变,另有一个力方向不变时, 可画出这三个力的封闭矢量三角形来分析力的变化情况的方 法,图解法也常用于求极值问题。
[答案] A 图2-8
五、整体法和隔离法 选择研究对象是解决物理问题的首要环节。若一个系统 中涉及两个或者两个以上物体的平衡问题,在选取研究对象

正y型三力平衡的解题技巧

正y型三力平衡的解题技巧

正y型三力平衡的解题技巧《正“y”型三力平衡的解题技巧:轻松玩转物理难题》嘿,各位物理迷友们!今天咱就来唠唠正“y”型三力平衡的解题技巧,这可是物理世界里相当好玩的一部分哦。

想象一下,那些力就像一群调皮的小精灵,在题目里蹦蹦跳跳,等着咱去驯服它们。

而正“y”型三力平衡就像是一场特别的游戏,掌握了技巧,就能轻松通关!首先啊,咱得学会“察言观色”。

就像侦探破案一样,仔细观察题目中给出的各种信息,那些力的大小、方向啥的,都是重要线索。

可别小瞧了这一步,这可是解题的关键前奏呢!然后,咱就得掏出咱的秘密武器——三角函数啦!嘿,别被它吓着,其实它就是咱的好帮手。

通过三角函数,咱能把那些乱七八糟的力之间的关系给拎得清清楚楚。

比如说,角儿的大小一确定,力的比例关系也就出来啦。

举个例子吧,就像你有三个小伙伴,他们分别在不同方向拉着一个物体,你得搞清楚他们各自出了多少力才能让物体平衡。

这时候,咱就用三角函数来算算,看看每个人使了多大劲儿。

还有哦,记得要善用图形。

把那些力画出来,就像给小精灵们拍了张照片,一下子就能看清它们的位置和关系。

这时候,你再去分析,就跟在地图上找路一样简单。

有时候,遇到难题别慌,就把它当成一个挑战自己的游戏。

你想啊,咱要是一下就把这难题给攻克了,那得多有成就感!我记得有一次,遇到一道超级复杂的正“y”型三力平衡题,那几个力绕来绕去,把我都快绕晕了。

但我没放弃,静下心来,一步一步分析,嘿,还真就让我给搞定了!那感觉,就像是打通了游戏的最后一关,爽歪歪!总之呢,正“y”型三力平衡的解题技巧就像是一把钥匙,能打开物理难题的大门。

大家可别害怕,大胆去尝试,多玩玩,你就会发现物理其实很好玩。

加油哦,朋友们,让我们一起在物理的世界里畅游,把那些难题都给拿下!。

三力平衡的求解方法

三力平衡的求解方法

解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α
可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
解法二:(力的合成法): FN1 =mgtan α,
球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α
球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则): 所受三个力经平移首尾顺次相接,一定能 构成封闭三角形. 由三角形解得: FN1=mgtan α,
挡板受压力FN1′=FN1=mgtan α.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
题型:三力平衡问题
例1.如图所示,在倾角为α的ห้องสมุดไป่ตู้面上,
放一质量为m的小球,小球被竖直
的木板挡住,不计摩擦,则球对挡板
的压力是( )
A.mgcos α
B.mgtan α
C. m g
D.mg
co sα
【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理三力平衡问题的方法总结
一.三角形定则的应用
1.表达式法:多用于共点力的夹角出现900
训练1.如图,光滑的四分之一圆弧轨道AB固定在竖直平面内,A端与水平面相切.穿
在轨道上的小球在拉力F作用下,缓慢地由A向B运动,F始终沿轨道的切线方向,
轨道对球的弹力为N.在运动过程中( )
A.F增大,N减小B.F减小,N减小
C.F增大,N增大D.F减小,N增大
2.动态三角形:多用于三个力中,有一个力大小方向均不变,一个力的方向不变,求第三
个力的变化情况
训练 2.如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在
竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块
沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有( )
A.轻绳对小球的拉力逐渐增大
B.小球对斜劈的压力先减小后增大
C.竖直杆对小滑块的弹力先增大后减小
D.对小滑块施加的竖直向上的拉力逐渐增大
3.相似三角形:题目中明确指出长度问题,求力的变化。

(多用于三角形中没有直角,且
两个力的大小方向都变化)
训练3.如图所示,一轻杆两端固定两个小球A、B,m A=4m B,跨过定滑轮连接A、B的轻绳长为L,求平
衡时OA、OB分别为多长.
4.正弦定理:已知三角形中的各个角度,求力。

训练4.两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一
个光滑的半球面内,如图所示,已知细杆长度是球面半径的 2 倍,当两球
处于平衡状态时,细杆与水平面的夹角θ=15°,则小球a和b的质量之比为
( )
A.2∶1 B.3∶1
C.1∶ 3 D.2∶1
二.正交分解法的应用
1.斜面上重力的分解
训练5.如图所示,光滑斜面的倾角为30°,轻绳通过两个滑轮与A相连,轻绳的另一端固定于天花板
上,不计轻绳与滑轮的摩擦.物块A的质量为m,不计滑轮的
质量,挂上物块B后,当动滑轮两边轻绳的夹角为90°时,A、
B恰能保持静止,则物块B的质量为( )
A.
2
2
m B.2m
C.m D.2m
2.如果发现两个力关于第三个力对称,往往沿第三个力的方向建立坐标系比较简单
训练 6.如图所示,左侧是倾角为 60°的斜面、右侧是
1
4
圆弧面的物
体固定在水平地面上,圆弧面底端的切线水平,一根两端分别系有质
量为m1、m2小球的轻绳跨过其顶点上的小滑轮.当它们处于平衡状态
时,连接m2小球的轻绳与水平线的夹角为60°,不计一切摩擦,两
小球可视为质点.两小球的质量之比m1∶m2等于( )
A.1∶1 B.2∶3
C.3∶2 D.3∶4
训练7.如图,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简
易秋千,某次维修时将两轻绳各剪去一小段,但仍保持等长且悬挂点不变.木
板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,
则维修后( )
A.F1不变,F2变大B.F1不变,F2变小
C.F1变大,F2变大D.F1变小,F2变小。

相关文档
最新文档