统计学基础 第八章 相关与回归分析
第八章相关与回归分析Correlation and Regression Analysis
n xt yt xt yt
83142 73 321
2 2 [8713 (73) ][8 14111 (321) ]
50
40
30
0.886
20
10
0 0 2 4 6 8 10 12 14
树干的直径, x
r = 0.886 → 表明 x 和 y 具有高度线 性相关关系。
Chap 08-12
2
假定3:误差项之间不存在序列相关关系,其协方差为零; 假定4:自变量是给定的变量,与随机误差项线性无关;
假定5:随机误差项服从正态分布;
Chap 08-22
最小二乘估计
在根据样本数据确定样本回归方程时,总是希望 y 的 估计值 尽可能地接近其实际观测值,即残差 et 的总 量越小越好。由于 et 有正有负,简单的代数和会相互 抵消,因此为了数学上便于处理,我们采用残差平方 和作为衡量总偏差的尺度。 所谓最小二乘法,就是根据这一思路,通过使残差平 方和最小来估计回归系数的方法。
Excel 输出结果
Excel 相关分析的输出结果 工具 / 数据分析 / 相关系数
树的高度 树的高度 树干的直径 1 0.886231 树干的直径 1
树的高度与树干的直径 的相关系数
Chap 08-13
相关系数的特点
r的取值在-1与1之间; 当r=0时,X与Y的样本观测值之间没有线性关系; 在大多数情况下,0<|r|<1,即X与Y的样本 观测值之间存在着一定的线性关系,当r>0时,X 与Y为正相关,当r<0时,X与Y为负相关。 如果|r|=1,则表明X与Y完全线性相关,当r =1时,称为完全正相关,而r=-1时,称为完全 负相关。 r是对变量之间线性相关关系的度量。r=0只是表 明两个变量之间不存在线性关系,但它并不意味着X 与Y之间不存在其他类型的关系。
统计学中的相关分析与回归分析的关系
统计学中的相关分析与回归分析的关系统计学是一门研究如何收集、整理、描述和解释数据的学科。
在统计学中,相关分析和回归分析是两个重要的方法,用于了解和探究变量之间的关系。
尽管相关分析和回归分析在某些方面有相似之处,但它们在目的、数据类型和结果解释方面存在一些差异。
相关分析是一种用于衡量和描述两个或多个变量之间关联关系的方法。
相关分析可以帮助我们确定变量之间的线性相关程度,即一个变量的变化伴随着另一个变量的变化。
通过计算相关系数,我们可以了解这种关系的强度和方向。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼等级相关系数。
与此不同,回归分析旨在建立一个数学模型,以描述和预测因变量与自变量之间的关系。
回归分析可以通过拟合曲线或平面来表示变量之间的关系,并用方程式来描述这种关系。
回归分析使用的模型可以是线性回归、多项式回归、对数回归等。
通过回归分析,我们可以根据自变量的值来估计因变量的值,并评估自变量对因变量的影响程度。
虽然相关分析和回归分析在某些情况下可互相转化,但它们具有不同的目标和应用范围。
相关分析主要用于探索变量之间的关系,确定它们之间的关联强度和方向,但不提供因果关系。
而回归分析则旨在建立一个模型,通过这个模型可以对未知的因变量进行预测,并且可以评估自变量对因变量的影响。
此外,相关分析和回归分析适用于不同类型的数据。
相关分析通常用于分析连续变量之间的关系,而回归分析可以应用于连续变量、二分类变量和多分类变量之间的关系。
在实际应用中,相关分析和回归分析常常结合使用。
首先,我们可以通过相关分析来初步检验变量之间是否存在关系。
如果相关分析结果显示两个变量之间存在显著相关性,我们可以进一步使用回归分析来建立一个模型,以更好地理解和预测这种关系。
在总结中,统计学中的相关分析和回归分析是两个相互关联的方法。
相关分析用于探究变量之间的关系和相关性,而回归分析则用于建立一个数学模型,描述和预测因变量与自变量之间的关系。
第八章 相关与回归分析
相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。
2015年《统计学》第八章 相关与回归分析习题及满分答案
2015年《统计学》第八章相关与回归分析习题及满分答案一、单选题1.相关分析研究的是( A )A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着(A )。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着(B)。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系4.相关系数等于零表明两变量(B)。
A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是(B)。
A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系6.时间数列自身相关是指( C )。
A、两变量在不同时间上的依存关系B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间(D)。
A、不存在相关关系B、相关程度很低C、相关程度很高D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间(C)。
A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9.相关分析对资料的要求是(A)。
A.两变量均为随机的B.两变量均不是随机的C、自变量是随机的,因变量不是随机的D、自变量不是随机的,因变量是随机的10.回归分析中简单回归是指(D)。
A.时间数列自身回归B.两个变量之间的回归C.变量之间的线性回归D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为10 00时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为( A )A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则(B) A.表明现象正相关B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有(ABD )。
统计学中的相关性和回归分析
统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。
它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。
本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。
一、相关性分析相关性是指一组变量之间的关联程度。
相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。
常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。
皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。
它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。
例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。
斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。
它的取值也在-1到1之间,含义与皮尔逊相关系数类似。
判定系数是用于衡量回归模型的拟合程度的指标。
它表示被解释变量的方差中可由回归模型解释的部分所占的比例。
判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。
二、回归分析回归分析是一种用于建立变量之间关系的统计方法。
它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。
回归模型可以是线性的,也可以是非线性的。
线性回归是最常见的回归分析方法之一。
它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。
线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。
非线性回归则适用于自变量和因变量之间存在非线性关系的情况。
非线性回归模型可以是多项式回归、指数回归、对数回归等。
回归分析在实践中有广泛的应用。
例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。
MBA管理统计学(中科大万红燕)第八章回归分析和相关分析
2010-7-23
销售额
12
第二节 相关分析
例1解:
xi = 2139, ∑ yi = 11966, ∑ xi2 = 179291 ∑ yi2 = 6947974, ∑ xi y i = 1055391, n = 30 ∑ r= n∑ xi yi ∑ xi ∑ yi (∑ xi ) 2 n∑ yi2 (∑ yi ) 2
2010-7-23
4
第一节 相关与回归分析的基本概念
三.相关分析与回归分析
相关分析和回归分析是研究现象之间相关关系 的两种基本方法. 相关分析:研究两个或两个以上随机变量之间 相关关系密切程度和相关方向的统计分析方法. 回归分析:研究某一随机变量(因变量)与其 他一个或几个变量(自变量)之间数量变动关 系形式的统计分析方法.
一.一元线性回归模型的建立 设因变量y(通常是随机变量)和一个自变量 (非随机变量)X之间有某种相关关系.在x的 不全相同的取值点x1,x2,…,xn作为独立观 察得到y的个观察值y1,y2,… ,yn记为( x1, y1 )( x2 , y2 ), … ,(xn , yn ). 根据这组数据寻求X与Y之间关系. 设一元线性回归模型为:yi=a+bxi+ ei
r=0.955248
2010-7-23 14
第二节 相关分析
25000 税收收入(亿元 亿元) 20000 15000 10000 5000 0
0 20000 40000 60000 80000 100000 120000 140000
GDP(亿元)
2010-7-23
15
第二节 相关分析
二.有序数据的相关系数(等级相关系数)
2010-7-23
8
统计学各章练习——相关与回归分析
第八章 相关与回归分析一、名词1、相关关系:是现象间确实存在的,但是不完全确定的,一种非严格的依存关系。
2、回归分析:是对具有相关关系的两个或两个以上变量之间数量变化的一般关系进行测定,确定一个相应的数学表达式,以便从一个已知量来推测另一个未知量,这种处理具有相关关系变量之间的统计方法。
3、相关系数:是测定变量之间相关密切程度和相关方向的代表性指标。
4、估计标准误差:就是回归分析的估计值与观测值(实际值)之间的平均误差大小的指标。
二、填空1.在自然界和社会现象中,现象之间的相互依存关系可以分为两种,一种是(函数关系),一种是(相关关系)。
2.相关关系按相关程度可分为(完全相关)、(不完全相关)和(不相关);按相关性质可分为(正相关)和(负相关);按相关形式可分为(直线相关)和(曲线相关);按影响因素多少可分为(单相关)和(复相关)。
3.互为因果关系的两个变量x 和Y ,可编制两个回归方程,一个是(y 倚x 回归方程)回归方程;另一个是(x 倚y 回归方程)回归方程。
4.相关分析是(回归分析)的基础,回归分析是(相关分析)的继续。
5.在回归分析中,因变量是(随自变量而变化的量),自变量是(主动变化的量)。
6.建立一元直线回归方程的条件是:两个变量之间确实存在(相关关系),而且其(相关的密切程度)必须是显著的。
一元直线回归方程的基本形式为:(Yc =a+bx )。
7.估计标准误可以说明回归方程的(代表性大小);说明回归估计值的(准确程度);说明两个变量x 和Y 之间关系的(密切程度)。
8.当相关系数(r)越大时,估计标准误差S Y 就(越小),这时相关密切程度就(越高),回归直线的代表性就(大);当r 越小时,S Y 就(越大),这时相关密切程度就(越低),回归直线的代表性就(小)。
三、判断1.正相关是指两个变量之间的变化方向都是上升的趋势,而负相关是指两个变量之间的变化方向都是下降的趋势。
(×)2.负相关是指两个量之间的变化方向相反,即一个呈下降(上升)而另一个呈上升(下降)趋势。
统计学第八章练习题
第八章相关与回归分析一、填空题8.1.1客观现象之间的数量联系可以归纳为两种不同的类型,一种是_____________ ,另一种是__________________ 。
8.1.2回归分析中对相互联系的两个或多个变量区分为__________________ 和___________ 。
8.1.3 _____________ 是指变量之间存在的严格确定的依存关系。
8.1.4 变量之间客观存在的非严格确定的依存关系,称为_____________________ 。
8.1.5按 ____________ 的多少不同,相关关系可分为单相关、复相关和偏相关。
8.1.6两个现象的相关,即一个变量对另一个变量的相关关系,称为。
8.1.7在某一现象与多个现象相关的场合,当假定其他变量不变时,其中两个变量的相关关系称为____________________________ 。
8.1.8按变量之间相关关系的 _______________ 不同,可分为完全相关、不完全相关和不相关。
8.1.9按相关关系的 ____________________ 不同可分为线性相关和非线性相关。
8.1.10 线性相关中按_________________ 可分为正相关和负相关。
8.1.11 研究一个变量与另一个变量或另一组变量之间相关方向和相关密切程度的统计分析方法,称为__________________ 。
8.1.12当一个现象的数量由小变大,另一个现象的数量也相应由小变大,这种相关称为。
8.1.13当一个现象的数量由小变大,而另一个现象的数量相反地由大变小,这种相关称为。
8.1.14 当两种现象之间的相关只是表面存在,实质上并没有内在的联系时,称之为__________________ 。
8.1.15根据相关关系的具体形态,选择一个合适的数学模型来近似地表达变量间平均变化关系的统计分析方法,称为_____________________ 。
第八章相关与回归分析Correlation and Regression Analysis
象的相关关系必须借助于统计学中的相关与回归分析方法。
Chap 08-4
相关关系的类型
从相关关系涉及的变量数量看:单相关和复相关 一个变量对另一变量的相关关系,称为单相关; 一个变量对两个以上变量的相关关系时,称为复相关; 从变量相关关系的表现形式看:线性相关和非线性相关 从变量相关关系变化的方向看:正相关和负相关 从变量相关的程度看:完全相关〔函数关系〕、不完全相
或:
r
n xtyt xt yt
[n ( xt2)( xt)2]n [( yt2)( yt)2]
Chap 08-7
2 简单线性相关与回归分析
2.1 简单线性相关系数及检验 2.2 总体回归函数与样本回归函数 2.3 回归系数的估计 2.4 简单线性回归模型的检验 2.5 简单线性回归模型预测
Chap 08-8
相关系数
总体相关系数〔 population correlation coefficient〕 ρ 是反映两变量之间线性相关程度的 一种特征值,表现为一个常数。
关、不相关
Chap 08-5
相关分析与回归分析
而样本回归函数中 的和 是随机变量,其具体数值随所抽取的样本观测值不同而变动。
是当 x 等于 0 时 y 的平均估计值 S越小说明实际观测点与所拟合的样本回归线的离差程度越小,即样本回归线具有较强的代表性,反之,S越大说明实际观测点与所拟 合的样本回归线的离差程度越大,即回归线的代表性越差。
Chap 08-1
本节学习目标
通过本节的学习,你应该能够:
理解和掌握相关分析和回归分析的原理 估计一元线性回归模型,并对模型进行检验 利用计算机软件估计多元线性回归模型,并对模型进行
统计学原理第八章相关与回归分析
答案: 9x ? 17 ? kx 可以转化为 (9 ? k)x ? 17 即: x ? 17 ,x 为正整数 ,则 k ? 8或-8 9? k
测一测 3: 【中】 m 为整数,关于 x 的方程 x ? 6 ? mx 的解为正整数,求 m ? _____ 答案: 由原方程得: x ? 6 , x 是正整数,所以 m ? 1 只能为 6 的正约数,
a ? ____ b ? ____
答案: ?2a ? 12?x ? 5 ? ab . 要使 x 有无穷多个解,则 2a ? 12 ? 0 ab ? 5 ? 0
得到 a ? 6;b ? 5 6
测一测 2: 【中】
已知关于 x 的方程 2a ?x ? 1?? ?5 ? a?x ? 3b 有无数多个解,那么
m?1 m ? 1 ? 1,2,3,6 所以 m ? 0,1, 2,5
2. 两个一元一次方程同解问题
例题 2:⑴ 【易】若方程 ax ? 2x ? 9 与方程 2x ? 1 ? 5 的解相同,则 a 的值为 _________
【答案】 D
第一个方程的解为 x ? 1 ,将 x ? 1 代入到第二个方程中得: 2 ? a ? 1 =0 ,解得 a ? 5 2
答案:原方程可以转化为 ?3 ? m?x ? 4 ? n
⑴ 当 m ? 3,n为任意值时,方程有唯一解;
⑵ 当 m ? 3,n ? 4时,方程有无数解;
⑶ 当 m ? 3, n ? ? 4时,无解
测 一 测 1 :【 中 】 若 关 于 x 的 方 程 a ?2x ? b?? 12x ? 5 有 无 穷 多 个 解 。 求
a 当 a ? 0,b ? 0时,方程无解
当 a ? 0, b ? 0. 方程的解为任意数 .
统计学中的相关分析与回归分析
统计学中的相关分析与回归分析统计学中的相关分析与回归分析是两种重要的数据分析方法。
它们帮助研究人员理解和解释变量之间的关系,并预测未来的趋势。
在本文中,我们将深入探讨相关分析和回归分析的定义、应用和原理。
第一部分:相关分析相关分析是用来衡量和评估两个或更多变量之间相互关系的统计方法。
通过相关系数来量化这种关系的强度和方向。
相关系数的取值范围在-1到+1之间,其中-1表示完全负相关,+1表示完全正相关,0表示没有相关性。
相关分析通常用于发现变量之间的线性关系。
例如,研究人员想要了解身高和体重之间的关系。
通过相关分析,他们可以确定是否存在正相关关系,即身高越高,体重越重。
相关分析还可以帮助确定不同变量对某一结果变量的影响程度。
第二部分:回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以用来预测因变量的值,并了解自变量对因变量的影响程度。
回归分析可分为简单回归和多元回归两种类型。
简单回归分析适用于只有一个自变量和一个因变量的情况。
例如,研究人员想要预测一个人的体重,他们可以使用身高作为自变量。
通过建立线性回归模型,他们可以得到身高对体重的影响,从而预测一个人的体重。
多元回归分析适用于有多个自变量和一个因变量的情况。
例如,研究人员想要了解影响一个城市房价的因素,他们可以考虑多个自变量,如房屋面积、地理位置、房龄等。
通过建立多元回归模型,他们可以确定每个因素对房价的影响程度,并进行预测。
第三部分:相关分析与回归分析的应用相关分析和回归分析在各个领域都有广泛的应用。
在医学研究中,相关分析可以帮助确定两个疾病之间的关联性,并为疾病的预防和治疗提供依据。
回归分析可以用来预测患者的生存率或疾病的发展趋势。
在经济学中,相关分析可以用来研究经济变量之间的关系,如GDP 与通货膨胀率之间的关系。
回归分析可以用来预测经济增长率,并评估政治和经济因素对经济发展的影响。
在市场营销中,相关分析可以帮助企业了解产品销售和广告投放之间的关系,并制定有效的市场推广策略。
统计学原理第8章相关与回归分析[精]
估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:
式
或
式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,
第八章 相关与回归分析习题
第八章相关与回归分析练习题一、填空题1.相关关系依影响因素的多少分为和;依相关方向不同分为和;依相关的表现形式不同分为和。
2.在判定现象相关关系密切程度时,主要用进行一般性判断,用进行数量上的说明。
3.两个变量之间的相关关系称为;在具有相关关系的两个变量中,当一个变量的数值由小变大,而另一个变量的数值却由大变小时,这两个变量之间的关系称为。
4.进行分析时,首先要确定哪个是自变量,哪个是因变量,在这一点上与分析不同。
5.估计标准误差是与之间的标准差,它是说明的综合指标。
6.相关系数的取值范围是。
7.完全相关即是关系,其相关系数为。
8.相关系数是用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
9.直线相关系数等于零,说明两变量之间;直线相关系数等于1,说明两变量之间;直线相关系数等于-1,说明两变量之间。
10.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
11.回归方程y=a+bx中的参数a是, b是。
在统计中估计待定参数的常用方法是。
12.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
13.用来说明回归方程代表性大小的统计分析指标是。
二、单项选择题l. 相关分析研究的是( )。
A.变量间的相互依存关系 B.变量间的因果关系C.变量间严格的一一对应关系D.变量间的线性关系2.下列情况中称为正相关的是( )A.随一个变量增加,另一个变量减少B.随一个变量减少,另一个变量增加C.随一个变量增加,另一个变量相应增加D.随一个变量增加,另一个变量不变3.相关系数的取值范围是( )。
A.一1<r<1B.0<r<1 C.一l≤r≤1 D. r>14.相关系数等于零表明两个变量( )。
A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线相关关系5.相关分析对资料的要求是( )。
统计学原理第八章相关分析与回归分析
21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6
∑
24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。
第八章 相关与回归分析-一元线性回归
12
1、散点图
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8 6
4
2
0 0
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图不来自贷款不良贷款14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14
2
本章主要内容
➢ 相关分析
• 相关关系度量 • 相关关系显著性检验
➢ 一元线性回归分析
• 一元线性回归模型 • 参数的最小二乘估计 • 回归直线的拟合优度 • 显著性检验
➢ 利用回归方程进行预测
➢ 残差分析
3
第一节 直线相关分析 一、变量间的关系
函数关系
相关关系
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可 表示为 y = px (p 为单价)
儿子与父亲的身高关系:Y=33.73+0.516X(英寸)
24
一、概述——什么是回归分析(Regression )?
1. 从一组样本数据出发,确定变量之间的数学关系式 2. 对这些关系式的可信程度进行各种统计检验,并从
影响某一特定变量的诸多变量中找出哪些变量的影 响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的取值来 预测或控制另一个特定变量的取值,并给出这种预 测或控制的精确程度
统计学原理第8章相关与回归分析
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。
统计学的相关与回归分析
统计学的相关与回归分析统计学是一门研究数据收集、分析和解释的学科。
相关与回归分析是统计学中常用的两种方法,用于探索和解释变量之间的关系。
本文将介绍相关与回归分析的基本概念、应用和意义。
一、相关分析相关分析用于确定两个或多个变量之间的关联程度。
相关系数是用来衡量变量之间线性相关关系强弱的统计指标。
相关系数的取值范围为-1到+1,其中-1表示完全负相关,+1表示完全正相关,0表示无相关关系。
相关分析的步骤如下:1. 收集数据:收集相关的数据,包括两个或多个变量的观测值。
2. 计算相关系数:使用合适的统计软件计算相关系数,如皮尔逊相关系数(Pearson)或斯皮尔曼等级相关系数(Spearman)。
3. 判断相关性:根据相关系数的取值范围,判断变量之间的关系。
相关系数接近于-1或+1时,表明变量之间线性相关性较强,接近于0时表示无相关性。
4. 解释结果:根据相关分析的结果,解释变量之间关联的程度和方向。
相关分析的应用:- 市场调研:通过相关分析可以了解产品的市场需求和用户行为之间是否存在相关关系,以指导市场决策。
- 医学研究:相关分析可以帮助医学研究人员确定疾病与危险因素之间的相关性,从而提供预防和治疗方案。
二、回归分析回归分析用于描述和预测因变量与自变量之间的关系。
通过回归分析可以建立一个数学模型,根据自变量的取值来预测因变量的值。
回归分析常用的方法包括线性回归、多项式回归和逻辑回归等。
回归分析的步骤如下:1. 收集数据:收集因变量和自变量之间的观测数据。
2. 建立模型:选择适当的回归模型,如线性回归模型、多项式回归模型或逻辑回归模型。
3. 拟合模型:使用统计软件对回归模型进行拟合,得到回归系数和拟合优度指标。
4. 检验模型:通过假设检验和拟合优度指标来评估回归模型的适应程度和预测能力。
5. 解释结果:根据回归系数和显著性水平,解释自变量对因变量的影响程度和方向。
回归分析的应用:- 经济预测:回归分析可以用于预测国民经济指标、股票价格和消费行为等。
相关与回归分析统计学
• 一、函数关系和相关关系 • (一)函数关系和相关关系的区别与联系。 • 客观现象总是普遍联系、相互依存、相互制约
的,当我们用变量来反映这些现象的特征时, 便表现为变量之间的依存关系。变量之间就其 关系的变化来说可分为函数关系和相关关系。
整理课件
当一个或几个变量取一定的值时,另一个变量有确定值 与之相对应,我们称这种确定性的一一对应关系为函数关 系。如圆的周长与其半径之间的关系即为函数关系。
整理课件
变量之间的函数关系和相关关系,在一定条件 下是可以相互转化的。
本来具有函数关系的变量,当存在观测误差 时,其函数关系往往以相关关系的形式表现出来。 而对于具有相关关系的变量之间的联系,如果我们 对它们有了深刻的规律性认识,并且能把影响因变 量变动的因素全部纳入方程,这时的相关关系也可 能转化为函数关系。客观现象的函数关系可以用数 学分析的方法去研究,而研究客观现象的相关关系 则要借助于统计学中的相关与回归分析方法。
关和偏相关的基础。单相关有线性相关和非线性相关 两种表现形式。测定线性相关系数的方法是最基本的 相关分析,是测定其他相关系数方法的基础。 • 单相关系数或简单相关系数可简称相关系数。
• 相关系数是在直线相关条件下,对变量之间相关关系 密切程度的度量。把若干个相关系数加以比较,可以 发现现象发展中具有决定意义的因素,因而相关系数 在多个因素的作用判断中亦有重要作用。
• 判断真实相关与虚假相关,必须依靠有关的实 质性科学提供的知识做定性分析,而不能靠数 学公式或简单的数学图表来作出判断。
整理课件
二、相关关系的分析
• 相关分析就是对变量之间相关关系的描述与度量。 • 其基本内容包括: • 1、直观地判断变量之间是否存在相关关系及其相关关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2.明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1.相关关系、相关分析和回归分析的概念2.相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3.回归系数的计算4.估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。
这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。
有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。
这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系。
有些现象间的依存关系则没有那么严格。
当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。
一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响。
社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。
在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点1.现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化。
在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。
例如,把身高作为自变量,则体重就是因变量。
2.现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。
这意味着一个变量虽然受另一个(或一组)变量的影响,却并不由这一个(或一组)变量完全确定。
例如,前面提到的身高和体重之间的关系就是这样一种关系。
三、相关关系的种类现象之间的相互关系很复杂,它们涉及的变动因素多少不同,作用方向不同,表现出来的形态也不同。
相关关系大体有以下几种分类:(一)正相关与负相关按相关关系的方向分,可分为正相关和负相关。
当两个因素(或变量)的变动方向相同时,即自变量x值增加(或减少),因变量y值也相应地增加(或减少),这样的关系就是正相关。
如家庭消费支出随收入增加而增加就属于正相关。
如果两个因素(或变量)变动的方向相反,即自变量x值增大(或减小),因变量y值随之减小(或增大),则称为负相关。
如商品流通费用率随商品经营的规模增大而逐渐降低就属于负相关。
(二)单相关与复相关按自变量的多少分,可分为单相关和复相关。
单相关是指两个变量之间的相关关系,即所研究的问题只涉及到一个自变量和一个因变量,如职工的生活水平与工资之间的关系就是单相关。
复相关是指三个或三个以上变量之间的相关关系,即所研究的问题涉及到若干个自变量与一个因变量,如同时研究成本、市场供求状况、消费倾向对利润的影响时,这几个因素之间的关系是复相关。
(三)线性相关与非线性相关按相关关系的表现形态分,可分为线性相关与非线性相关。
线性相关是指在两个变量之间,当自变量x值发生变动时,因变量y值发生大致均等的变动,在相关图的分布上,近似地表现为直线形式。
比如,商品销售额与销售量即为线性相关。
非线性相关是指在两个变量之间,当自变量x值发生变动时,因变量y值发生不均等的变动,在相关图的分布上,表现为抛物线、双曲线、指数曲线等非直线形式。
比如,从人的生命全过程来看,年龄与医疗费支出呈非线性相关。
(四)完全相关、不完全相关与不相关按相关程度分,可分为完全相关、不完全相关和不相关。
完全相关是指两个变量之间具有完全确定的关系,即因变量y值完全随自变量x值的变动而变动,它在相关图上表现为所有的观察点都落在同一条直线上,这时,相关关系就转化为函数关系。
不相关是指两个变量之间不存在相关关系,即两个变量变动彼此互不影响。
自变量x值变动时,因变量y值不随之作相应变动。
比如,家庭收入多少与孩子多少之间不存在相关关系。
不完全相关是指介于完全相关和不相关之间的一种相关关系。
比如,农作物产量与播种面积之间的关系。
不完全相关关系是统计研究的主要对象。
第二节相关分析一、相关分析的主要内容相关分析是指对客观现象的相互依存关系进行分析、研究,这种分析方法叫相关分析法。
相关分析的目的在于研究相互关系的密切程度及其变化规律,以便作出判断,进行必要的预测和控制。
相关分析的主要内容包括:(一)确定现象之间有无相关关系这是相关与回归分析的起点,只有存在相互依存关系,才有必要进行进一步的分析。
(二)确定相关关系的密切程度和方向确定相关关系密切程度主要是通过绘制相关图表和计算相关系数。
只有对达到一定密切程度的相关关系,才可配合具有一定意义的回归方程。
(三)确定相关关系的数学表达式为确定现象之间变化上的一般关系,我们必须使用函数关系的数学公式作为相关关系的数学表达式。
如果现象之间表现为直线相关,我们可采用配合直线方程的方法;如果现象之间表现为曲线相关,我们可采用配合曲线方程的方法。
(四)确定因变量估计值误差程度使用配合直线或曲线的方法可以找到现象之间一般的变化关系,也就是自变量x变化时,因变量y将会发生多大的变化。
根据得出的直线方程或曲线方程我们可以给出自变量的若干数值,球的因变量的若干个估计值。
估计值与实际值是有出入的,确定因变量估计值误差大小的指标是估计标准误差。
估计标准误差大,表明估计不太精确;估计标准误差小,表明估计较精确。
二、相关关系的测定相关分析的主要方法有相关表、相关图和相关系数三种。
现将这三种方法分述如下:(一)相关表在统计中,制作相关表或相关图,可以直观地判断现象之间大致存在的相关关系的方向、形式和密切程度。
在对现象总体中两种相关变量作相关分析,以研究其相互依存关系时,如果将实际调查取得的一系列成对变量值的资料顺序地排列在一张表格上,这张表格就是相关表。
相关表仍然是统计表的一种。
根据资料是否分组,相关表可以分为简单相关表和分组相关表。
1.简单相关表简单相关表是资料未经分组的相关表,它是把自变量按从小到大的顺序并配合因变量一一对应平行排列起来的统计表。
【案例】为研究分析产量(x)与单位产品成本(y)之间的关系,从30个同类型企业调查得到的原始资料并将产量按从小到大的顺序排列,可编制简单相关表,结果见表8-2所示。
表8-2 产量和单位产品成本原始资料从表8-2中可以看出,随着产量的提高,单位产品成本却有相应降低的趋势,尽管在同样产量的情况下,单位产品成本存在差异,但是两者之间仍然存在一定的依存关系。
2.分组相关表在大量观察的情况下,原始资料很多,运用简单相关表表示就很难使用。
这时就要将原始资料进行分组,然后编制相关表,这种相关表称为分组相关表。
分组相关表包括单变量分组相关表和双变量分组相关表两种。
(1)单变量分组表。
在原始资料很多时,对自变量数值进行分组,而对应的因变量不分组,只计算其平均值,根据资料具体情况,自变量可以是单项式,也可以是组距式。
【案例】以上例原始资料为例,将同类型30个企业的产量(x )与单位产品成本(y )原始资料,按产量分组编制单变量分组表,结果见表8-3。
表8-3 产量和单位产品成本简单相关表 从表8-3中可以较明显地看出二者之间存在正相关关系。
(2)双变量分组表。
对两种有关变量都进行分组,交叉排列,并列出两种变量各组间的共同次数,这种统计表称为双变量分组相关表。
这种表格形似棋盘,故又称棋盘式相关表。
【案例】仍以原始资料为例,将同类型30个企业的产量(x )与单位产品成本(y )原始资料,编制双变量分组相关表,结果见表8-4。
表8-4 产量和单位产品成本双变量分组相关表从表8-4看出,产量集中在左上角到右下角的对角斜线上,表明产量与单位产品成本是负相关关系。
制作双变量分组相关表,须注意自变量为纵栏标题,按变量值从小到大自左向右排列,因变量为横行标题,按变量值从大到小自上而下排列。
这样做的目的是将相关表与相关图结合起来,便于一致性判断相关关系的性质。
(二)相关图相关图又称散点图。
它是以直角坐标系的横轴代表自变量x,纵轴代表因变量y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
相关图可以按未经分组的原始资料来编制,也可以按分组的资料,包括按单变量分组相关表和双变量分组相关表来编制。
通过相关图将会发现,当y对x是函数关系时,所有的相关点都会分布在某一条线上;在相关关系的情况下,由于其他因素的影响,这些点并非处在一条线上,但所有相关点的分布也会显示出某种趋势。
所以相关图会很直观地显示现象之间相关的方向和密切程度。
【案例】以上例原始资料中编制的产量与单位产品成本单变量分组相关表为例,绘制相关图,结果见图8-1。
从图8-1中可以看出,单位产品成本随着产量增加而降低,并且散布点的分布近似地表现为一条直线。
由此可以判断产量与单位产品成本两个变量之间存在着直线负相关关系。
(三)相关系数相关表和相关图大体说明变量之间有无关系,但它们的相关关系的紧密程度却无法表达,因此,需运用数学解析方法,构建一个恰当的数学模型来显示相关关系及其密切程度。
对现象之间的相关关系的紧密程度做出确切的数量说明,就需要计算相关系数。
1.相关系数的计算相关系数是在直线相关条件下,说明两个现象之间关系密切程度的统计分析指标,记为γ。
相关系数的计算公式为()()()()∑∑∑∑----==222111y y nx x n y y x x nyx xyσσσγ式中 n ——资料项数;x ——x 变量的算术平均数;y ——y 变量的算术平均数x σ——x 变量的标准差; y σ——y 变量的标准差; xy σ——xy 变量的协方差。
在实际问题中,如果根据原始资料计算相关系数,可运用相关系数的简捷法计算,其计算公式为()()2222∑∑∑∑∑∑∑---=y y n x x n y x xy n γ【案例】根据教材中表8-5中的资料,已知居民家庭月收入与消费支出之间为直线相关,计算居民家庭月收入与消费支出的相关系数(见表8-6)。
表8-399.034915571104652975110349465214291022=-⨯⨯-⨯⨯-⨯=γ2.相关系数的分析明晰相关系数的性质是进行相关系数分析的前提。
现将相关系数的性质总结如下: (1)相关系数的数值范围,是在-1和+1之间,即:-1≤γ≤1。