2009级(即2012年)各地中考数学压轴题及答案
2012年中考数学压轴题精选附答案
25、如图:∠MON = 90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON 上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1。
(1)连续D1D,求证:∠ADD1= 90°;(2)连结CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断。
26、如图:正方形ABCO的边长为3,过A点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动。
(1)求直线AD的解析式;(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;(3)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出来;若没有,请说明理由。
24.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥3,AD=12.BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=5⑴求证:△ANM≌△ENM;⑵求证:FB是⊙O的切线;⑶证明四边形AMEN是菱形,并求该菱形的面积S.7),且顶点C的横坐标为4,该图象在x 轴上截25.如图,二次函数的图象经过点D(0,39得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.七、(本大题8分)20.如图8,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.21.如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S =?若存在,求点E 的坐标;若不存在,请说明理由.P BC EA (图8)23.(本小题9分)如图,AB 是⊙O 的直径,C 是AB 延长线上一点,CD 与⊙O 相切于点E ,AD ⊥CD (1)求证:AE 平分∠DAC ; (2)若AB=3,∠ABE=60°,①求AD 的长;②求出图中阴影部分的面积。
2012年全国各地中考数学压轴题精选(解析版...
2012年全国各地中考数学压轴题精选(解析版二)11.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.解题思路:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤时,当<t≤2时,当2<t≤时,当<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.12.(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.解题思路:(1)利用待定系数法求抛物线的解析式.因为已知A(3,0),所以需要求得B点坐标.如答图1,连接OB,利用勾股定理求解;(2)由∠PBO=∠POB,可知符合条件的点在线段OB的垂直平分线上.如答图2,OB的垂直平分线与抛物线有两个交点,因此所求的P点有两个,注意不要漏解;(3)如答图3,作MH⊥x轴于点H,构造梯形MBOH与三角形MHA,求得△MAB面积的表达式,这个表达式是关于M点横坐标的二次函数,利用二次函数的极值求得△MAB面积的最大值.解答:解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB==∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得,解得,∴y=﹣x2+x+.(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,),O(0,0),∴直线l的表达式为y=.代入抛物线的表达式,得﹣x2+x+=;解得x=1±,∴P(1±,).(3)如答图3,作MH⊥x轴于点H.设M(x m,y m),则S△MAB=S梯形MBOH+S△MHA﹣S△OAB=(MH+OB)•OH+HA•MH﹣OA•OB =(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣∵y m=﹣x m2+x m+,∴S△MAB=x m+(﹣x m2+x m+)﹣=x m2+x m=(x m﹣)2+∴当x m=时,S△MAB取得最大值,最大值为.13.(2012•铜仁地区)如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C (1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.解题思路:(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.解答:解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组…3分解得:∴抛物线的解析式为y=x2﹣4x+3 …5分(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)…7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)…10分(3)如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|…11分∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解…12分②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.…14分14.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.解题思路:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△AGH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.解答:解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△AGH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m=.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,此时点E的坐标是(0,4);(II)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,(i)若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1﹣m)=m,∴m=,此时点E的坐标是(,0);(ii)若点E在y轴上(如图4),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴1﹣m=1,∴m=0(舍去),综上所述,当m=2时,点E的坐标是(0,2)或(0,4),当m=时,点E的坐标是(,0).15.(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.题思路:(1)首先求得m的值和直线的解析式,根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;(2)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.如答图1所示,过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解;(3)本问较为复杂,如答图2所示,分几个步骤解决:第1步:确定何时△ACP的周长最小.利用轴对称的性质和两点之间线段最短的原理解决;第2步:确定P点坐标P(1,3),从而直线M1M2的解析式可以表示为y=kx+3﹣k;第3步:利用根与系数关系求得M1、M2两点坐标间的关系,得到x1+x2=2﹣4k,x1x2=﹣4k﹣3.这一步是为了后续的复杂计算做准备;第4步:利用两点间的距离公式,分别求得线段M1M2、M1P和M2P的长度,相互比较即可得到结论:=1为定值.这一步涉及大量的运算,注意不要出错,否则难以得出最后的结论.答:解:(1)∵经过点(﹣3,0),∴0=+m,解得m=,∴直线解析式为,C(0,).∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),∴另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x﹣5),∵抛物线经过C(0,),∴=a•3(﹣5),解得a=,∴抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,又∵,∴△CAO≌△EFG,∴EG=CO=,即y E=,∴=x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,同理可求得E′(+1,),S▱ACE′F′=.(3)要使△ACP的周长最小,只需AP+CP最小即可.如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).∵B(5,0),C(0,),∴直线BC解析式为y=x+,∵x P=1,∴y P=3,即P(1,3).令经过点P(1,3)的直线为y=kx+3﹣k,∵y=kx+3﹣k,y=x2+x+,联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).根据两点间距离公式得到:M1M2==== ∴M1M2===4(1+k2).又M1P===;同理M2P=∴M1P•M2P=(1+k2)•=(1+k2)•=(1+k2)•=4(1+k2).∴M1P•M2P=M1M2,∴=1为定值.16.(2012•梅州)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是(6,2);②∠CAO=30度;③当点Q与点A重合时,点P的坐标为(3,3);(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.解题思路:(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案;(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.解答:解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②∵tan∠CAO===,∴∠CAO=30°;③如下图:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE==3,∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②30,③(3,3);(2)情况①:MN=AN=3,则∠AMN=∠MAN=30°,∴∠MNO=60°,∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合,∴点P与D重合,∴此时m=0,情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴;MJ=MQ•sin60°=AQ•sin60°=(OA﹣IQ﹣OI)•sin60°=(3﹣m)=AM=AN=,可得(3﹣m)=,解得:m=3﹣,情况③AM=NM,此时M的横坐标是4.5,过点P作PI⊥OA于I,过点M作MG⊥OA于G,∴MG=,∴QK===3,GQ==,∴KG=3﹣0.5=2.5,AG=AN=1.5,∴OK=2,∴m=2,(3)当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,可得,EF=(3+x),此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x),当3<x≤5时,S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣(x﹣3)2,当5<x≤9时,S=(BE+OA)•OC=(12﹣x),当9<x时,S=OA•AH=.17.(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.解题思路:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.解答:解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0)…(1分)将x=0,y=2代入y=﹣x2+bx+c得c=2…(2分)将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2…(3分)(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t…(5分)∴当t=2时,MN有最大值4…(6分)(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分)(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2)…(8分)(ii)当D不在y轴上时,由图可知D为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)…(9分)故所求的D点坐标为(0,6),(0,﹣2)或(4,4)…(10分)18.(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.解题思路:(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;(2)如答图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如答图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.解答:解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.过O点作OF⊥AD于F,则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图3,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=,此时原方程的解为x=,即x R=,而y R=x R2﹣2x R=∴点R的坐标为R(,).19.(2012•凉山州)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c 经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.题思路:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标;(2)关键是求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值;(3)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标.注意“△MON是等腰三角形”,其中包含三种情况,需要逐一讨论,不能漏解.答:解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4)抛物线y=﹣x2+bx+c经过A、B两点,可得,解得,∴抛物线解析式为y=﹣x2﹣3x+4.令y=0,得﹣x2﹣3x+4=0,解得x1=﹣4,x2=1,∴C(1,0).(2)如答图1所示,设D(t,0).∵OA=OB,∴∠BAO=45°,∴E(t,t),P(t,﹣t2﹣3t+4).PE=y P﹣y E=﹣t2﹣3t+4﹣t=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,线段PE的长度有最大值4,此时P(﹣2,6).(3)存在.如答图2所示,过N点作NH⊥x轴于点H.设OH=m(m>0),∵OA=OB,∴∠BAO=45°,∴NH=AH=4﹣m,∴y Q=4﹣m.又M为OA中点,∴MH=2﹣m.△MON为等腰三角形:①若MN=ON,则H为底边OM的中点,∴m=1,∴y Q=4﹣m=3.由﹣x Q2﹣3x Q+4=3,解得x Q=,∴点Q坐标为(,3)或(,3);②若MN=OM=2,则在Rt△MNH中,根据勾股定理得:MN2=NH2+MH2,即22=(4﹣m)2+(2﹣m)2,化简得m2﹣6m+8=0,解得:m1=2,m2=4(不合题意,舍去)∴y Q=2,由﹣x Q2﹣3x Q+4=2,解得x Q=,∴点Q坐标为(,2)或(,2);③若ON=OM=2,则在Rt△NOH中,根据勾股定理得:ON2=NH2+OH2,即22=(4﹣m)2+m2,化简得m2﹣4m+6=0,∵△=﹣8<0,∴此时不存在这样的直线l,使得△MON为等腰三角形.综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(,3)或(,3)或(,2)或(,2).20.(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x 轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.解题思路:(1)抛物线y=ax2+bx+c经过点O、A、C,利用待定系数法求抛物线的解析式;(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出t的值,从而可解.结论:存在点P(,),使得四边形ABPM为等腰梯形;(3)本问关键是求得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值.解答中提供了三种求解面积S表达式的方法,殊途同归,可仔细体味.解答:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P的横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P的坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x轴于K,交OC于R.求得过A、C的直线为y AC=﹣x+3,可设点A′的横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q的坐标为(a,).解法一:设AB与OC相交于点J,∵△ARQ∽△AOJ,相似三角形对应高的比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R的坐标为R(2a﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵tan∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(xQ﹣xR)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.。
2009中考数学压轴题精选12题
2009中考数学压轴题精选12题2009年9月11日星期五1、(四川省达州市)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.2、(四川省资阳市)如图9,已知抛物线y =12x 2–2x +1的顶点为P ,A 为抛物线与y 轴的交点,过A 与y 轴垂直的直线与抛物线的另一交点为B ,与抛物线对称轴交于点O ′,过点B 和P 的直线l 交y 轴于点C ,连结O ′C ,将△ACO ′沿O ′C 翻折后,点A 落在点D 的位置.(1) (3分) 求直线l 的函数解析式; (2) (3分) 求点D 的坐标;(3) (3分) 抛物线上是否存在点Q ,使得S △DQC = S △DPB ? 若存在,求出所有符合条件的点Q 的坐标;若不存在,请说明理由.3、(四川省绵阳市)如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.(3)若m = tn (t >1)时,试探究点E 在边OB 的何处时,使得EF =(t + 1)AE 成立?并求图9出点E 的坐标.4、(四川省眉山市)已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x轴交于B 、C 两点,且B点坐标为 (1,0). (1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.(3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标. 5、(四川省成都市)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=10。
2009-2012年重庆市中考压轴题及答案
1、.(2009年)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.1.解:(1)由已知,得(30)C ,,(22)D ,,90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯= .∴(01)E ,. ··········································································································· (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,··································································································· (2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++.··························································· (3分)(2)2E F G O =成立. ························································································ (4分)26题图x点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125. ······················································································· (5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+. ········································································ (6分) ∴(03)F ,,2E F =. ·························································································· (7分) 过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.又90F A D G K D ∠=∠= °,D AF D K G ∴△≌△. 1K G A F ∴==.1G O ∴=. ··········································································································· (8分) 2E F G O ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.①若P G P C =,则2222(1)2(3)2t t -+=-+,解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ·········································································································· (9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴.G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ·······································································································(10分)x③若P C G C =,则222(3)22t -+=,解得3t =,(32)P ∴,,此时2PC G C ==,PC G △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,则QH GH =,设QH h =,(1)Q h h ∴+,. 2513(1)(1)166h h h ∴-++++=.解得12725h h ==-,(舍去). 12755Q ⎛⎫∴ ⎪⎝⎭,. ··········································· (12分) 综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫ ⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.x2(2010年).已知:如图(1),在平面直角坐标xOy 中,边长为2的等边△OAB 的顶点B在第一象限,顶点A 在x 轴的正半轴上.另一等腰△OCA 的顶点C 在第四象限,OC =AC ,∠C =120°.现有两动点P 、Q 分别从A 、O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A →O →B 运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围;(2)在等边△OAB 的边上(点A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图(2),现有∠MCN =60°,其两边分别与OB 、AB 交于点M 、N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M 、N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.图2图1解:(1)如图,过点Q 作QE 垂直x 轴,垂足为E ,过点C 作CF 垂直x 轴,垂足为F ,在Rt ⊿OQE 中,∵OQ =t ,∠EOQ =30°,sin 30QEOQ︒=,∴sin 302t O E Q O =⨯︒=第一种情况,点P 运动到O 点前: 在⊿OQP 中∵OP =2-3t ,∴11(3)(3)2224O P Q t t t S O P Q E t ∆-=⨯=⨯-=(0<t <23)第二种情况,点Q 运动到C 点前:在⊿OQP 中,∵∠AOQ =30°, ∠BOA =60°,∴∠POQ =90°∴11(32)(32)222O P Q t tS O P O Q t t ∆-=⨯=⨯-=(23<t <3)(2)如图可以看到有三个点:1D (23,0),2D 3,1),3D (433(3)如图将C N A ∆绕着点C 旋转120°(A '与O 重合)使得C N A ∆落到C N A ''∆处.则C N A ∆≌C N A ''∆(旋转的性质)∴C N '=CN , A N ''=AN ,∠NCA =∠N C A '',∴∠NCM =∠N C M '在M C N ∆和C N M '∆中∠NCM =∠N C M ',C N '=CN ,CM =CM ,∴M C N ∆≌C N M '∆,∴M N =N M ',即M N =A N ''+A M ',∴M N =AN +OM , 则△BMN 的周长为:BM +BN +MN =BM +BN +AN +OM =OB +AB =4 所以则△BMN 的周长为定值,这个定值是4.3、(2011•重庆)如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AO H是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形。
2012中考数学压轴题29例及答案
2012中考数学压轴题及答案1.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22) 2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (11浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 7.(2011浙江义乌)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =12,求22BE DG +的值. 8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2011淅江宁波)2011年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(2011淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2的短开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ; 第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则:AD AB 的值是 ,AD AB ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.(2011山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形. ②本题中所求边长或面积都用含a 的代数式表示.14.(2011山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平移4个单位,然后再向上平移2个单位,得到线段P 1Q 1,则点P 1的坐标为 ,点Q 1的坐标为 . 15.(2011湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.16.(2011年浙江省绍兴市)将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2011年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2011年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2011年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2011年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.21.(2011年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式(3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由 22.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22) 23.(天津市2011年)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.(2011年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.25. (2011年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.26. (2011年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60的23km 处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27. (2011年山东省青岛市)已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28. (2011年江苏省南通市)已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k y x =上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线k y x =于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.29.(2011年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)压轴题答案1.解:(1)由已知得:310cb c=⎧⎨--+=⎩解得c=3,b=2∴抛物线的线的解析式为223y x x=-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形 =111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+= DE=22222425DF EF +=+=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆.2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠, ∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´,∴△A ´TA 是等边三角形,且A T TP '⊥,∴)t 10(2360sin )t 10(TP -=︒-=,)t 10(21AT 21AP P A -===', ○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----= 当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅= 综上所述,S 的最大值是34,此时t 的值是2t 0≤<.3. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+.(3)存在,分三种情况: ①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===. tan QR BA C CR CA==,366528x -+∴=,152x ∴=. 综上所述,当x 为185或6或152时,PQR △为等腰三角形.4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC . ∴ AM AN AB AC =,即43x AN =. ∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC . ∴ AM MN AB BC =,即45x MN =. ∴ 54MN x =, ∴ 58OD x =. …………………5分 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt△BMQ 与Rt△BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA . ∴ BM QM BC AC=. ∴ 55258324x BM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==. ∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x .又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形.∴ FN =BM =4-x .∴ ()424PF x x x =--=-.又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分 5. 解:(1)(-4,-2);(-m,-k m) (2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ 一定是平行四边形②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,的以直线AB 的解析式为 (2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2) ∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=32,DH=GH+GD=32+23=532, ∴GB=32BD=32,OH=OE+HE=OE+BG=37222+= ∴D(532,72) (3)设OP=x,则由(2)可得D(323,22x x ++)若ΔOPD 的面积为:133(2)224x x += 解得:23213x -±=所以P(23213-±,0)(1)①,BG DE BG DE =⊥ ………………………………………………………………2分②,BG DE BG DE =⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠=∴BCG DCE ∠=∠…………………………………………………………………1分∴BCG DCE ∆≅∆ (SAS )………………………………………………………1分∴BG DE = C B G C D E∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >)∴ BC CG b DC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+ 又∵3a =,2b =,k =12∴ 222222365231()24BD GE +=+++= ………………………………………………1分 ∴22654BE DG +=………………………………………………………………………1分 (1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分 (2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4),E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类):第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22b y b x -=-+,令4y =得3(8,4)2bP -.由已知可得2PE DE =即222232(8)(42)42b b b b ⨯-+-=+化简得2332640b b -+=解得121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即2222(48)(42)4b b b b -+-=+化简得22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即2222844b b +=+解得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下 11. 解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米, 由题意得1201023x x+=, ··········································································································· 2分 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ·················································· 4分 (2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元. ························ 6分(3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=, ·································································· 8分 整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ······································································ 9分∴这批货物有8车. ···············································································································10分12. 解:(1)21244a a ,,. ······························································································ 3分 (2)相等,比值为2. ··········· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠=,90HGF ∠=,90DHG CGF DGH ∴∠=∠=-∠,HDG GCF ∴△∽△,12DG HG CF GF ∴==, 22CF DG x ∴==. ················································································································ 6分同理BEF CFG ∠=∠.EF FG =, FBE GCF ∴△≌△,14BF CG a x ∴==-. ··········································································································· 7分CF BF BC +=,12244x a x a ∴+-=, ················································································· 8分解得214x a -=. 即214DG a -=. ··················································································································· 9分 (4)2316a , ···························································································································10分 2271828a -. 12分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.14.解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A (-1,0),B (3,0);则设抛物线的解析式为)3)(1(-+=x x a y (a ≠0)又点D (0,-3)在抛物线上,∴a (0+1)(0-3)=-3,解之得:a =1∴y =x 2-2x -3 ··············································································································· 3分 自变量范围:-1≤x ≤3 ······························································································ 4分解法2:设抛物线的解析式为c bx ax y ++=2(a ≠0)根据题意可知,A (-1,0),B (3,0),D (0,-3)三点都在抛物线上∴⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a ,解之得:⎪⎩⎪⎨⎧-=-==321c b a∴y =x 2-2x -3 ······················································································ 3分 自变量范围:-1≤x ≤3 ··································································· 4分(2)设经过点C “蛋圆”的切线CE 交x 轴于点E ,连结CM ,在Rt △MOC 中,∵OM =1,CM =2,∴∠CMO =60°,OC =3 在Rt △MCE 中,∵OC =2,∠CMO =60°,∴ME =4∴点C 、E 的坐标分别为(0,3),(-3,0) ····················································· 6分∴切线CE 的解析式为3x 33y +=································································· 8分 (3)设过点D (0,-3),“蛋圆”切线的解析式为:y =kx -3(k ≠0) ··················· 9分由题意可知方程组⎪⎩⎪⎨⎧--=-=3232x x y kx y 只有一组解 即3232--=-x x kx 有两个相等实根,∴k =-2 ··············································· 11分∴过点D “蛋圆”切线的解析式y =-2x -3 ···················································· 12分(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=. ②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,。
2012中考数学压轴题及答案40例(6)
2012中考数学压轴题及答案40例(6)21.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PEAB交AC于点E.①过点E作EFAD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ,在点P、Q运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8).1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx,得解得a=-,b=4.抛物线的解析式为y=-x2+4x.3分(2)①在Rt△APE和Rt△ABC中,tanPAE==,即==.PE=AP=t,PB=8-t.点E的坐标为(4+t,8-t).2点G的纵坐标为-(4+t)2+4(4+t)=-t2+8.5分EG=-t2+8-(8-t)=-t2+t∵-0,当=4时,线段EG最长为2.7分②共有三个时刻.8分t1=,t2=,t3=40-.11分22.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.解:(1)A(-1,0),B(3,0),C(0,3).2分抛物线的对称轴是:x=1.3分(2)①设直线BC的解析式为:y=kx+b.将B(3,0),C(0,3)分别代入得:解得直线BC的解析式为y=-x+3.当x=1时,y=-1+3=2,E(1,2).当x=m时,y=-m+3,P(m,-m+3).4分将x=1代入y=-x2+2x+3,得y=4,D(1,4).将x=m代入y=-x2+2x+3,得y=-m2+2m+3.F(m,-m2+2m+3).5分线段DE=4-2=2,线段PF=-m2+2m+3-(-m+3)=-m2+3m6分∵PF∥DE,当PF=DE时,四边形PEDF为平行四边形.由-m2+3m=2,解得:m1=2,m2=1(不合题意,舍去).当m=2时,四边形PEDF为平行四边形.7分②设直线PF与x轴交于点M.由B(3,0),O(0,0),可得:OB=OM+MB=3.则S=S△BPF+S△CPF8分=PFBM+PFOM=PFOB=(-m2+3m)3=-m2+m(03)即S与m的函数关系式为:S=-m2+m(03).9分23.如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点P是AOC平分线上的一个动点(不与点O重合).(1)试证明:无论点P运动到何处,PC总与PD相等;(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;(4)设点N是矩形OABC的对称中心,是否存在点P,使CPN=90?若存在,请直接写出点P的坐标.解:(1)∵点D是OA的中点,OD=2,OD=OC.又∵OP是COD的角平分线,POC=POD=45.△POC≌POD,PC=PD;3分(2)如图,过点B作AOC的平分线的垂线,垂足为P,点P即为所求.易知点F的坐标为(2,2),故BF=2,作PMBF.∵△PBF是等腰直角三角形,PM=BF=1.点P的坐标为(3,3).∵抛物线经过原点可设抛物线的解析式为y=ax2+bx.又∵抛物线经过点P(3,3)和点D(2,0)解得过O、P、D三点的抛物线的解析式为y=x2-2x;7分(3)由等腰直角三角形的对称性知D点关于AOC的平分线的对称点即为C点.连接EC,它与AOC的平分线的交点即为所求的P点(因为PE+PD=EC,而两点之间线段最短),此时△PED的周长最小.∵抛物线y=x2-2x的顶点E的坐标(1,-1),C点的坐标(0,2) 设CE所在直线的解析式为y=kx+b则解得CE所在直线的解析式为y=-3x+2.联立,解得,故点P的坐标为(,).△PED的周长即是CE+DE=;11分(4)存在点P,使CPN=90,其坐标为(,)或(2,2).14分24.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A 出发向B匀速移动,设它们运动的时间为t秒(03),直线AB与该抛物线的交点为N(如图2所示).①当t=时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.解:(1)∵因所求抛物线的顶点M的坐标为(2,4)可设其对应的函数关系式为y=a(x-2)2+4.1分又抛物线经过坐标原点O(0,0),a(0-2)2+4=0.2分解得a=-1.3分所求函数关系式为y=-(x-2)2+4,即y=-x2+4x.4分(2)①点P不在直线ME上,理由如下:5分根据抛物线的对称性可知E点的坐标为(4,0).设直线ME的解析式为y=kx+b,将M(2,4),E(4,0)代入,得解得.直线ME的解析式为y=-2x+8.6分当t=时,OA=AP=,P(,).7分∵点P的坐标不满足直线ME的解析式y=-2x+8当t=时,点P不在直线ME上.8分②S存在最大值,理由如下:9分∵点A在x轴的非负半轴上,且N在抛物线上,OA=AP=t.P(t,t),N(t,-t2+4t),AN=-t2+4t(03)PN=AN-AP=-t2+4t-t=-t2+3t=t(3-t)010分(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD.S=DCAD=32=3.11分(ⅱ)当PN0时,以点P,N,C,D为顶点的多边形是四边形.∵PN∥CD,ADCD.S=(CD+PN)AD=(3-t2+3t)2=-t2+3t+3=-(t-)2+(0当t=时,S最大=.12分综上所述,当t=时,以点P,N,C,D为顶点的多边形面积S 有最大值,最大值为.13分说明:(ⅱ)中的关系式,当t=0和t=3时也适合.25.如图1,已知抛物线y=ax2-2ax-3与x轴交于A、B两点,其顶点为C,过点A的直线交抛物线于另一点D(2,-3),且tanBAD=1.(1)求抛物线的解析式;(2)连结CD,求证:AD(3)如图2,P是线段AD上的动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值;(4)点Q是抛物线上的动点,在x轴上是否存在点F,使以A,D,F,Q为顶点的四边形是平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.解:(1)如图1,过点D作DHx轴于H,则OH=2,DH=3.∵tanBAD=1,AH=DH=3,AO=3-2=1.1分A(-1,0).2分把A(-1,0)代入y=ax2-2ax-3,得a+2a-3=0.a=1.3分抛物线的解析式为y=x2-2x-3.4分(2)∵y=x2-2x-3=(x-1)2-4C(1,-4).5分连结AC,则AD2=32+32=18,CD2=(2-1)2+(-3+4)2=2,AC2=(1+1)2+42=20.AD2+CD2=AC2,△ACD是直角三角形,且ADC=90.7分ADCD.8分(3)设直线AD的解析式为y=kx+b,把A(-1,0),D(2,-3)代入求得直线BC的解析式为y=-x-1.9分设点P的横坐标为x,则P(x,-x-1),E(x,x2-2x-3).∵点P在点E的上方EP=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-)2+10分当x=时,线段PE长度的最大值=.12分(4)存在,点F的坐标分别为F1(-3,0),F2(1,0),F3(,0),F4(,0).16分关于点F坐标的求解过程(原题不作要求,本人添加,仅供参考) 如图3①若四边形ADQ1F1为平行四边形,则AF1=DQ1,DQ1∥AF1.点Q1的纵坐标为-3,代入y=x2-2x-3,得x2-2x-3=-3,x1=0,x2=2.∵D(2,-3),Q1(0,-3),DQ1=2,AF1=2.F1(-3,0).②若四边形AF2DQ2为平行四边形,同理可得F2(1,0).③若四边形AQ3F3D为平行四边形,则AQ3=DF3.点Q3的纵坐标为3,代入y=x2-2x-3,得x2-2x-3=3,x3=,x4=.-1-()=,OF3=2-()=.F3(,0).④若四边形AQ4F4D为平行四边形,则OF4=()-()+()=F4(,0).26.已知二次函数y=ax2+bx+c(a0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m2)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x=m(m2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.解:(1)∵二次函数y=ax2+bx+c的图象经过点A(1,0),B(2,0),C(0,-2)解得二次函数的解析式y=-x2+3x-2.2分(2)当△EDB∽△AOC时,有=或=∵AO=1,CO=2,BD=m-2.当=时,得=,ED=.∵点E在第四象限,E1(m,).4分当=时,得=,ED=2m-4.∵点E在第四象限,E2(m,4-2m).6分(3)假设抛物线上存在一点F,使得四边形ABEF为平行四边形,则EF=AB=1,点F的横坐标为m-1.当点E1的坐标为(m,)时,点F1的坐标为(m-1,).∵点F1在抛物线的图象上,=-(m-1)2+3(m-1)-2.2m2-11m+14=0,解得m1=,m2=2(不合题意,舍去).F1(,-).S□ABEF=1=.9分当点E2的坐标为(m,4-2m)时,点F2的坐标为(m-1,4-2m).∵点F2在抛物线的图象上,4-2m=-(m-1)2+3(m-1)-2.m2-7m+10=0,解得m1=5,m2=2(不合题意,舍去).F2(4,-6).S□ABEF=16=6.12分注:其它解法可参照评分标准给分.27.已知:t1,t2是方程t2+2t-24=0,的两个实数根,且t1(1)求这个抛物线的解析式;(2)设点P(x,y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为对角线的平行四边形,求□OPAQ的面积S与之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当□OPAQ的面积为24时,是否存在这样的点P,使□OPAQ为正方形?若存在,求出P点的坐标;若不存在,说明理由.解:(1)由t2+2t-24=0,解得t1=-6,t2=4.1分∵t1∵抛物线y=x2+bx+c的图象经过点A,B两点解得这个抛物线的解析式为y=x2+x+4.4分(2)∵点P(x,y)在抛物线上,且位于第三象限,y0,即-y0.又∵S=2S△APO=2|O A||y|=|OA||y|=6|y|S=-6y.6分=-6(x2+x+4)=-4(x2+7x+6)=-4(x+)2+25.7分令y=0,则x2+x+4=0,解得x1=-6,x2=-1.抛物线与x轴的交点坐标为(-6,0)、(-1,0)x的取值范围为-6(3)当S=24时,得-4(x+)2+25=24,解得:x1=-4,x2=-3.9分代入抛物线的解析式得:y1=y2=-4.点P的坐标为(-3,-4)、(-4,-4).当点P为(-3,-4)时,满足PO=PA,此时,□OPAQ是菱形.当点P为(-4,-4)时,不满足PO=PA,此时,□OPAQ不是菱形.10分要使□OPAQ为正方形,那么,一定有OAPQ,OA=PQ,此时,点的坐标为(-3,-3),而(-3,-3)不在抛物线y=x2+x+4上,故不存在这样的点P,使□OPAQ为正方形.12分精心整理,仅供学习参考。
2012中考数学压轴题真题(含答案)
1.如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P 的坐标;若不存在,请说明理由.得,解得﹣,所以,抛物线解析式为﹣﹣﹣﹣或(﹣﹣x=(()或(2、.已知抛物线 与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且OA OC 3=. (1)求抛物线的函数表达式; (2)直接写出直线BC 的函数表达式;(3)如图1,D 为y 轴的负半轴上的一点,且OD =2,以OD 为边作正方形ODEF .将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF 与△OBC 重叠部分的面积为s ,运动的时间为t 秒(0<t ≤2). 求:①s 与t 之间的函数关系式;②在运动过程中,s 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4)如图2,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由.c ax ax y +-=222.解答:(1)∵ A (-1,0), OA OC 3= ∴C (0,-3) ………1′∵抛物线经过A (-1,0), C (0,-3) ∴)()⎩⎨⎧=+-⨯-⨯--=012132c a a c∴⎨⎧-==31c a ∴y=x 2-2x -3 (3)(2)直线BC 的函数表达式为y=x -3(3)当正方形ODEF 的顶点D 运动到直线BC 上时,设D 点的坐标为(m ,-2), 根据题意得: -2=m-3,∴m=1 …………………6′①当0<t ≤1时S 1=2t …………………7′ 当1<t ≤2时S 2=OO DDS 11矩形-HGDS 1∆ =2t -()2121-⨯t=-213212-+t t …………………9′②当t =2秒时,S 有最大值,最大值为 ……………10′(4)M 1(-12-,0) M 2(12-,0) M 3(63-,0) M 4(63+,0 )………………14′3如图,抛物线32-+=bx ax y 交y 轴于点C ,直线 l 为抛物线的对称轴,点P 在第图1 图227三象限且为抛物线的顶点.P 到x 轴的距离为310,到y 轴的距离为1.点C 关于直线l 的对称点为A ,连接AC 交直线 l 于B. (1)求抛物线的表达式;(2)直线m x y +=43与抛物线在第一象限内交于点D ,与y 轴交于点F,连接BD 交y 轴于点E ,且DE:BE=4:1.求直线m x y +=43的表达式;(3)若N 为平面直角坐标系内的点,在直线m x y +=43上是否存在点M ,使得以点O 、F 、M 、N 为顶点的四边形是菱形?若存在,直接写出点M 的坐标;若不存在,请说明理由.3.解答:(1)∵抛物线32-+=bx axy 交y 轴于点C∴ C (0,-3)则 OC=3 ……………1分 ∵P 到x 轴的距离为310,P 到y 轴的距离是1且在第三象限 ∴P (-1,-310) ……………2分∵C 关于直线l 的对称点为A∴A (-2,-3) ……………3分 将点A (-2,-3),P (-1,-310)代入32-+=bx axy有⎪⎩⎪⎨⎧-=---=--31033324b a b a 解得⎪⎪⎩⎪⎪⎨⎧==3231b a ………………………5分 第26题图∴抛物线的表达式为 332312-+=x x y ………………………6分(2)过点D 做DG ⊥y 轴于G ,则∠DGE=∠BCE=90°∵∠DEG=∠BEC ∴△DEG ∽△BEC∵DE:BE=4:1 ∴14==BEDE BCDG 则DG=4 ………………………7分将x=4代入332312-+=x x y ,得y=5则 D (4,5) ………………………8分 ∵m x y +=43过点D (4,5)∴m +⨯=4435 则 m =2 ………………………9分∴所求直线的表达式为 243+=x y (10)分(3)存在 M 1516,58( M 254,58(-M 3)1,34(- M 42514,2548(-………………………14分4.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B(0,3)、C (1,0)三点.(1) 求抛物线的解析式和顶点D 的坐标;(2) 如图1,将抛物线的对称轴绕抛物线的顶点D 顺时针旋转 60,与直线x y -=交于点N .在直线DN 上是否存在点M ,使得∠MON= 75.若存在,求出点M 的坐标;若不存在,请说明理由;(3) 点P 、Q 分别是抛物线c bx ax y ++=2和直线x y -=上的点,当四边形OBPQ 是直角梯形时,求出点Q 的坐标.4解答.(1)解:由题意把A(-3,0)、B(0,3)、C(1,0)代入c bx ax y ++=2列方程组得⎪⎩⎪⎨⎧=++==+-03039c b a c c b a ,解得 ⎪⎩⎪⎨⎧=-=-=321c b a .……1分 ∴抛物线的解析式是322+--=x x y . ……2分 ∵4)1(3222++-=+--=x x x y ,∴抛物线的顶点D 的坐标为(-1,4).…… 3分(2)存在.理由:方法(一):由旋转得∠EDF=60°, 在Rt △DEF ∴EF=DE×tan60°=43.∴OF=OE+EF=1+4 ∴F 点的坐标为(341--,0).……1 设过点D 、F 的直线解析式是b x y +=κ 把D (-1,4),F (341--,0)代入求得 33433++=x y .……2分分两种情况:①当点M 在射线ND 上时, ∵∠MON=75°,∠BON=45°,∴∠MOB=∠MON ﹣∠BON=30°.∴∠MOC=60°.∴直线OM 的解析式为y =3x .……3分 ∴点M 的坐标为方程组.⎪⎩⎪⎨⎧=++=x y x y 333433的解,解方程组得,⎪⎪⎩⎪⎪⎨⎧+=+=2362132y x . ∴点M 的坐标为(2132+,236+).……4分②当点M 在射线NF 上时,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°, ∴∠FOM=∠MON -∠FON=30°. ∵∠DFE=30°,∴∠FOM=∠DFE .∴OM ∥FN .∴不存在……5分 综上所述,存在点M ,且点M 的坐标为(2132+,236+).方法(二)①M 在射线ND 上,过点M 作MP ⊥x 轴于点P , 由旋转得∠EDF=60°, 在Rt △DEF 中,∵∠EDF=60°,DE=4 ∴EF=DE×tan60°=43.∴OF=OE ﹢EF=1+43.……2分 ∵∠MON=75°,∠BON=45°,∴∠∴∠MOC=60°.在Rt △MOP 中,∴ 在Rt △MPF 中,∵tan ∠MFP=PFMP ,∴=++3413OP OP 33.……3分∴OP=23﹢21.∴MP=6﹢23.∴M 点坐标为(23﹢21、6﹢23).……4分②M 在射线NF 上,,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON ﹣∠FON=30°. ∵∠DFE=30°.∴∠FOM=∠DFE .∴OM ∥DN . ∴不存在.……5分 综上所述,存在点M ,且点M 的坐标为(2132+,36(3)有两种情况①直角梯形OBPQ 中,PQ ∥OB ,∠如图3,∵∠OBP=∠AOB=90°,∴PB ∥OA . 所以点P 、B 的纵坐标相同都是3.……1分 因为点P 在抛物线322+--=x x y 上,把=y 3代入抛物线的解析式中得x 1=0(舍去) , x 2=﹣2.由PQ ∥OB 得到点P 、Q 的横坐标相同, 都等于-2.把x =﹣2代入=y ﹣x 得y =2.所以Q 点的坐标为(-2,2).……3分②在直角梯形OBPQ 中,PB ∥OQ ,∠BPQ=90°. 如图4,∵D(-1,4),B(0,3) ,∴DB ∥OQ .∵PB ∥OQ , 点P 在抛物线上,∴点P 、D 重合.……1分 ∴∠EDF=∠EFD=45°.∴EF=ED=4. ∴OF=OE+EF=5.……2分作QH ⊥x 轴于H ,∵∠QOF=∠QFO=45°, ∴OQ=FQ .∴OH=21OF=25.∴Q 点的横坐标﹣25.∵Q 点在=y ﹣x 上,∴把x =﹣25代入=y ﹣x 得=y 25.∴Q 点的坐标为(﹣25,25).…… 3分综上,符合条件的点Q 有两个,坐标分别为:(-2,2),(-25,25).※ 试题其他方法参照给分5.如图,已知抛物线经过原点O 和 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与 轴交于点D.直线 经过抛物线上一点B (-2,m )且与轴交于点C , 与抛物线的对称轴交于点F.(1)求m 的值及该抛物线对应的解析式;(2)P 是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P 的坐标; (3)点Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M 的运动时间为t 秒,是否能使以Q 、A 、E 、M 四点为顶点的四边形是菱形.若能,请直接写出点M 的运动时间t 的值;若不能,请说明理由.第26题图 备用图5.解答:(1)∵点B(-2,m)在直线12--=x y 上∴m=3 即B (-2,3)┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 1分 又∵抛物线经过原点O∴设抛物线的解析式为bx ax y +=2∵点B (-2,3),A (4,0)在抛物线上∴⎩⎨⎧=+=-0416324b a b a 解得:⎪⎩⎪⎨⎧-==141b a∴设抛物线的解析式为x x y -=241 ┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分x 12--=x y y ),(yx(2)∵),(y x P 是抛物线上的一点 ∴)41,(2x x x P -若ADC ADP S S ∆∆= ∵OC AD S ADC ⋅=∆21 y AD S ADP ⋅=∆21 ┅┅┅┅┅┅┅┅ 6分又∵点C 是直线12--=x y 与y 轴交点 ∴C(0,1) ∴OC=1 ∴1412=-x x , 即1412=-x x 或1412-=-x x解得:2,222,2224321==-=+=x x x x∴点P 的坐标为 )1,2(),1,222(),1,222(321--+P P P ┅┅┅ 10分 (3)存在: ,541-=t ,62=t,543+=t ,2134=t ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅。
2009年部分省市中考压轴题精选(含详细解答过程)
全国各省市中考专题压轴题及分析1.(2009江苏盐城)如图甲,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC = 90º,① 当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .② 当点D 在线段BC 的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC =24,BC = 3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值.解:(1)① CF 与BD 位置关系是 垂 直 、数量关系是 相 等 ; ② 当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,∠DAF=90º. ∵ ∠BAC=90º, ∴ ∠DAF=∠BAC , ∴ ∠DAB=∠FAC , 又AB=AC ,∴ △DAB ≌△FAC , ∴ CF=BD ∠ACF=∠ABD . ∵ ∠BAC=90º, AB=AC , ∴ ∠ABC=45º,图甲图乙 C 第1题图 图丙D E∴ ∠ACF=45º,∴ ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(2)画图正确当∠BCA = 45º时,CF ⊥BD (如图丁). 理由是:过点A 作AG ⊥AC 交BC 于点G , ∴ AC=AG可证:△GAD ≌△CAF ∴ ∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(3)当具备∠BCA = 45º时,过点A 作AQ ⊥BC 交BC 的延长线于点Q ,(如图戊) ∵ DE 与CF 交于点P 时, ∴ 此时点D 位于线段CQ 上, ∵∠BCA=45º,可求出AQ= CQ=4. 设CD = x ,∴ DQ = 4-x ,容易说明△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-,221(2)144x CP x x ∴=-+=--+.∵0<x ≤3 ∴当x =2时,CP 有最大值1.GABCDE FPQ AB CD EF2.(2009浙江湖州) 已知:在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数xky =(k >0)的图象与AC 边交于点E 。
2012中考数学压轴题及答案40例
2012中考数学压轴题及答案40例(1)1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
(注:抛物线2y ax bx c =++的对称轴为2b x a=-)解:设抛物线的解析式为2(0)y ax bx c a =++≠,依题意得:c=4且934016440a b a b -+=⎧⎨++=⎩ 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩所以 所求的抛物线的解析式为211433y x x =-++(2)连接DQ ,在Rt △AOB 中,2222345AB AO BO=+=+=所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2 因为BD 垂直平分PQ ,所以PD=QD ,PQ ⊥BD ,所以∠PDB=∠QDB 因为AD=AB ,所以∠ABD=∠ADB ,∠ABD=∠QDB ,所以DQ ∥AB 所以∠CQD=∠CBA 。
∠CDQ=∠CAB ,所以△CDQ ∽ △CABD Q C D A BC A= 即210,577D Q D Q ==所以AP=AD – DP = AD – DQ=5 –107=257,2525177t =÷=所以t 的值是257(3)答对称轴上存在一点M ,使MQ+MC 的值最小 理由:因为抛物线的对称轴为122b x a =-=所以A (- 3,0),C (4,0)两点关于直线12x =对称连接AQ 交直线12x =于点M ,则MQ+MC 的值最小过点Q 作QE ⊥x轴,于E ,所以∠QED=∠BOA=90 DQ ∥AB ,∠ BAO=∠QDE , △DQE ∽△ABOQ E D QD E B OA BA O== 即107453Q E D E ==所以QE=87,DE=67,所以OE =OD + DE=2+67=207,所以Q (207,87)设直线AQ 的解析式为(0)y kx m k =+≠则2087730k m k m ⎧+=⎪⎨⎪-+=⎩由此得8412441k m ⎧=⎪⎪⎨⎪=⎪⎩ 所以直线AQ 的解析式为8244141y x =+ 联立128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩ 由此得128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩ 所以M 128(,)241则:在对称轴上存在点M 128(,)241,使MQ+MC的值最小。
2012年全国各地中考数学压轴题精选(解析版21--30)
2012年全国各地中考数学压轴题精选(解析版21--30)21.(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2﹣4x﹣2经过A,B两点.(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A 出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.时,∴=,即t=∵>,时,∴,即,∴t=,∵<<t=≤t=时,有∴=∴=,=3==2PM=∴N=PN=,)y=>22.(2012•济宁)如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.)由题意,得,∴,===的坐标是(运动到(,∴∴××﹣∵23.(2012•资阳)抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.x(aaaaa(a∴=PB=,PG=,,(﹣(﹣k=b=x+,x+x+2=x+,,24.(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB=90°;②若⊙O的半径是1,AB=,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B 均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.在优弧在劣弧上两在优弧上时,∠∠在劣弧上时,∠(25.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由..∴∴.配方得,26.(2012•湘潭)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.BC﹣a=x x(y=y=x+b=x﹣,即:×(﹣x27.(2012•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.代入,OP=0PA==∴().,,)不合题意,舍去.,,,∴∴n=,)()代入,得:∵28.(2012•连云港)已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.,可得===,∴=,==∴,∴(的长最小,最小值为29.(2012•江西)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的经过圆心O时,求的长;(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.为等边三角形,从而得到的圆心角,再根据弧长公式计算即可;角形,根据三角函数的知识可求折叠后,与所在圆外切于点于点∴==∵与所在圆外切于点于点,交根据垂径定理及折叠,可知和∵∵∴30.(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x 轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.DG ∵x x+2,∴,∴,),)∴x+6DGx x+2=)∴,∴x+2=x=﹣.(,)或,)。
2012年各地中考数学压轴题精选1-50(学生版)(含详细解答)-3
2012年全国各地中考数学压轴题汇编二【2012成都】11、 (本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P P M M M M ⋅ 是否为定值,并写出探究过程.12、某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?13、如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
2012年各地中考数学压轴题精选1~10(解析版)
考点: 二次函数综合题;分类讨论。 解答: 解:( 1)如图,过 B 点作 BC⊥x轴,垂足为 C,则∠ BCO=9°0 , ∵∠ AOB=12°0 , ∴∠ BOC=6°0 , 又∵ OA=OB=,4
∴OC= OB= ×4=2,BC=OB?sin60°=4× =2 ,
∴点 B 的坐标为(﹣ 2,﹣ 2 ); (2)∵抛物线过原点 O和点 A. B, ∴可设抛物线解析式为 y=ax 2+bx, 将 A( 4, 0), B(﹣ 2.﹣ 2 )代入,得
使以 C, Q, E, H 为顶点的四边形为菱形?请直接写出 t 的值.
用心 爱心 专心
8
考点 :二次函数综合题。 分析: (1)根据矩形的性质可以写出点 A 得到坐标;由顶点 A 的坐标可设该抛物线的顶点
式方程为 y=a( x ﹣ 1)2+4,然后将点 C 的坐标代入,即可求得系数 a 的值(利用待定 系数法求抛物线的解析式) ; (2)利用待定系数法求得直线 AC的方程 y= ﹣2x+6;由图形与坐标变换可以求得点 P 的坐标( 1, 4﹣ t ),据此可以求得点 E 的纵坐标,将其代入直线 AC方程可以求得点
2 ,即 P(1,2) .
∴存在点 P( 1, 2),使四边形 PB′ A′B 的面积是△ A′ B′ O面积的 4 倍.
(3)四边形 PB′ A′ B 为等腰梯形,答案不唯一,下面性质中的任意
2 个均可.
①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;
③等腰梯形上底与下底平行;④等腰梯形两腰相等.
即可得
=
,继而求得答案.
解答: 解:( 1)当 k=﹣ 2 时, A( 1,﹣ 2), ∵A在反比例函数图象上,
2012年全国各地中考数学压轴题专集答案平行四边形、矩形、菱形、正方形、梯形
2012年全国各地中考数学压轴题专集答案七、平行四边形、矩形、菱形、正方形、梯形 1.(天津)已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B ′ 和折痕OP .设BP =t .(Ⅰ)如图①,当∠BOP =30°时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB ′ 上,得点C ′ 和折痕PQ ,若AQ =m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C ′ 恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).解:(Ⅰ)根据题意,∠OBP =90°,OB =6 在Rt △OB P 中,由∠BOP =30°,BP =t ,得OP =2t 根据勾股定理,OP 2=OB 2+BP 2即(2t)2=6 2+t 2,解得t =23(t =-23舍去). ∴点P 的坐标为(23,6)(Ⅱ)∵△OB ′P 、△QC ′P 分别是由△OBP 、△QCP 折叠得到的 ∴△OB ′P ≌△OBP ,△QC ′P ≌△QCP ∴∠OPB ′=∠OPB ,∠QPC ′=∠QPC∵∠OPB ′+∠OPB +∠QPC ′+∠QPC =180°,∴∠OPB +∠QPC =90° ∵∠BOP +∠OPB =90°,∴∠BOP =∠CPQ又∠OBP =∠C =90°,∴△OBP ∽△PCQ ,∴OBPC=BPCQ由题设BP =t ,AQ =m ,BC =11,AC =6,则PC =11-t ,CQ =6-m ∴611-t=t6-m,∴m =1 6 t 2- 116t +6(0<t<11) (Ⅲ)点P 的坐标为(11-13 3 ,6)或(11+13 3,6)提示:过点P 作PH ⊥OA 于H易证△PC ′H ∽△C ′QA ,∴PHAC ′=PC ′C ′Q∵PC ′=PC =11-t ,PH =OB =6,AQ =m ,C ′Q =CQ =6-m∴AC ′=C ′Q 2-AQ 2=36-12m∴636-12m=11-t6-m图② 图①∵611-t=t6-m,即6t =11-t6-m∴636-12m=6t,∴36-12m =t2,即12m =36-t2又m =16 t2-11 6t +6,即12m =2t2-22t +72 ∴2t2-22t +72=36-t2,即3t2-22t +36=0解得:t =11±133∴点P 的坐标为(11-133,6)或(11+133,6)2.(天津模拟)如图,在梯形ABCO 中,A (0,2),B (4,2),点C 为x 轴正半轴上一动点,M 为线段BC 中点.(1)设C (x ,0),S △AOM=y ,求y 与x 的函数关系式;(2)如果以线段AO 为直径的⊙D 和以BC 为直径的⊙M 外切,求点C 的坐标;(2)连接OB 交线段AM 于N ,如果以A 、N 、B 为顶点的三角形与△OMC 相似,求直线CN 的解析式.解:(1)取OA 中点D ,连接DM则DM =1 2 (AB +OC)=1 2 (4+x )= 12x +2∴y =1 2 OA ·DM = 1 2 ×2×( 1 2 x +2 )= 12x +2 即y = 12x +2(2)设⊙M 的半径为r ,⊙M 与AB 交于点E ,连接CE 则∠BEC =90°,OC =AE =x ,BE =4-x ,CE =2 在Rt △BCE 中,(4-x)2+22=(2r)2①又DM =1+r =x +42② 由①、②解得x =43∴点C 的坐标为(43,0)(3)延长AM 交x 轴于点F则△CMF ≌△BMA ,∴CF =AB =4,OF =x +4∵AB ∥OF ,△ANB ∽△FNO ,∴ANNF=ABOF=4x +4∴AN =4x +8AF =4x +822+(x +4)2=4x +8x2+8x +20∵DM ⊥OA ,AD =OD ,∴AM =OM ∴∠DAM =∠DOM ,∴∠BAN =∠MOC ①若ABAN=OMOC,则△ABN ∽△OMC 于是44x +8x2+8x +20=(x +4 2)2+12x整理得:x2+8x -20=0,解得:x 1=-10(舍去),x 2=2 ∴C (2,0),F (6,0)可得直线AF 的解析式为y =-1 3x +2,直线OB 的解析式为y =1 2x由⎩⎨⎧y =- 1 3x +2y = 1 2x 解得⎩⎨⎧x =125y =65∴N (12 5,65)设直线CN 的解析式为y =kx +b ,则: ⎩⎪⎨⎪⎧12 5k +b =6 52k +b =0解得⎩⎪⎨⎪⎧k =3b =-6∴直线CN 的解析式为y =3x -6②若 AB AN = OCOM,则△ABN ∽△OCM于是44x +8x2+8x +20=x(x +42)2+12整理得:x +8=2x ,解得:x =8 ∴C (8,0),F (12,0)可得直线AF 的解析式为y =-1 6x +2,直线OB 的解析式为y =1 2x由⎩⎨⎧y =- 16x +2y = 1 2x解得⎩⎪⎨⎪⎧x =3y =3 2∴N (3,32)设直线CN 的解析式为y =k ′x +b ′,则: ⎩⎪⎨⎪⎧3k ′+b ′=3 28k ′+b ′=0 解得⎩⎨⎧k ′=-310b ′=12 5∴直线CN 的解析式为y =-310x +1253.(上海模拟)在矩形ABCD 中,AB =4,BC =3,E 是AB 边上一点(与A 、B 不重合),EF ⊥CE 交AD 于点F ,过点E 作∠AEH =∠BEC ,交射线FD 于点H ,交射线CD 于点N . (1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE =x ,DN =y ,求y 与x之间的函数关系式,并写出自变量x 的取值范围;(3)连接AC ,当△FHE 与△AEC 相似时,求线段DN 的长.解:(1)∵EF ⊥EC ,∴∠AEF +∠BEC =90° ∵∠AEH =∠BEC ,∴∠BEC =45° ∵∠B =90°,∴BE =BC ∵BC =3,∴BE =3(2)过点E 作EG ⊥CN ,垂足为点G ∴BE =CG∵AB ∥CN ,∴∠AEH =∠N ,∠BEC =∠ECN ∵∠AEH =∠BEC ,∴∠N =∠ECN ,∴EN =EC ∴CN =2CG =2BE∵BE =x ,DN =y ,CD =AB =4 ∴y =2x -4(2≤x≤3) (3)∵∠A =90°,∴∠AFE +∠AEF =90° ∵EF ⊥EC ,∴∠AEF +∠BEC =90° ∴∠AFE =∠BEC ,∴∠HFE =∠AEC 当△FHE 与△AEC 相似时 ①若∠FHE =∠EAC∵∠BAD =∠B ,∠AEH =∠BEC∴∠FHE =∠ECB ,∴∠EAC =∠ECB∴tan ∠EAC =tan ∠ECB ,∴BCAB=BEBC∴34=BE3,∴BE =94,∴DN =12②若∠FHE =∠ECA ,作EG ⊥CN 于G ,交AC 于O ∵EN =EC ,EG ⊥CN ,∴∠1=∠2∵AH ∥EG ,∴∠FHE =∠1,∴∠FHE =∠2 ∴∠2=∠ECA ,∴OE =OC设OE =OC =3k ,则AE =4k ,AO =5k ∴AO +OC =8k =5,∴k =58∴AE =52,BE =32,∴CN =3,∴DN =1综上所述:线段DN 的长为12或1 4.(上海模拟)已知在梯形ABCD 中,AB ∥DC ,AD =2DE ,CE =2BE ,∠ADE =∠ECD ,DE =CE =4. (1)如图1,求证:DE ∥CB ;A EBN DC 图1F (H )A B EN DCF H图2A EBF备用图A BH N CDF E1 2A BHCDFENGOA BEN DCF H G(2)如图2,点F 是线段EB 上一动点(不与E 重合),连接CF 并延长交DE 的延长线于点G ,设EF =x ,DG =y ,求y 与x 的函数关系式;(3)点P 是线段AE 上一动点(不与E 重合),连接CP 交DE 于点Q ,当△PQE 是等腰三角形时,求AP 的长.(1)证明:∵AB ∥DC ,∴∠CEB =∠ECD ∵∠ADE =∠ECD ,∴∠ADE =∠CEB ∵AD =2DE ,CE =2BE ,∴ADDE=CEBE∴△ADE ∽△CEB ,∴∠AED =∠B∴DE ∥CB(2)解:∵AB ∥DC ,DE ∥CB∴四边形DEBC 是平行四边形,∴DE =BC ∵DE =CE =4,∴BC =4 ∵CE =2BE ,∴BE =2 ∵DG ∥CB ,∴ EGBC=EFBF即y -44=x2-x∴y =82-x(0<x <2)(3)解:①当PE =QE 时 ∵PE ∥DC ,∴DCEP=DQEQ∴DC =DQ∵四边形DEBC 是平行四边形,∴DC =BE =2 ∴DQ =2∵△ADE ∽△CEB ,DE =CE =CB =4,BE =2 ∴AE =AD =8∴PE =QE =DE -DQ =4-2=2 ∴AP =8-2=6CA D EB 图2F G C A D E B 图1 CA D E B备用图 CA D E BQP②当PE=PQ时则∠PQE=∠PEQ∵AE=AD,∴∠ADE=∠PEQ∴∠PQE=∠ADE,∴AD∥PC∴四边形APCD是平行四边形∴AP=DC=2③当PQ=EQ时则∠QPE=∠QEP=∠CBE=∠CEB此时点P与点E重合,△PQE不存在综上所述,当△PQE是等腰三角形时,AP的长为6或25.(上海模拟)如图,在梯形ABCD中,AB∥DC,∠D=90°,AB=3,DC=6,BC=5.点E是边DC上任意一点,点F在边AB的延长线上,且AE=AF,连接EF,与边BC相交于点G.(1)设BF=x,DE=y,求y关于x的函数关系式,并确定自变量x的取值范围;(2)当四边形BECF是平行四边形时,求BF的长;(3)当点E在边DC上移动时,△BFG能否成为等腰三角形?如果能,求BF的长;如果不能,请说明理由.解:(1)∵AB∥DC,∠D=90°,AB=3,DC=6,BC=5∴AD=4在Rt△ADE中,AD2+DE2=AE2∵BF=x,∴AF=AB+BF=3+x∵AE=AF=3+x,DE=y,∴42+y2=(3+x)2∴y=x2+6x-7当E与D重合时,y=0,则x=AD-AB=1当E与C重合时,AC=AD2+DC2=213,x=213-3∴1≤x≤213-3(2)∵BF∥EC,∴若四边形BECF是平行四边形,只需BF=EC∴x=6-x2+6x-7,解得x=43 18即BF的长为43 18(3)①若BF=BG,则∠BGF=∠BFG=∠AEF∴BG∥AE,∴BFAB=FGEG∵AB∥CD,∴BFEC=FGEGA BD C备用图A BD CEFGCADE BQP∴BFAB=BFEC,∴EC =AB =3,DE =DC -EC =3 ∵AD =4,∴AE =AF =5,∴BF =AF -AB =2②若BG =FG ,过G 作AD 的平行线,分别交BF 、EC 于点M 、N 则MN ⊥AB ,四边形ADNM 是矩形 ∴AM =DN ,BM =12BF =1 2x ∵BG =FG ,AB ∥DC ,∴EG =CG∴EN =1 2 EC = 1 2 ( DC -DE )= 1 2 ( 6-y )=3- 12y∴3+12x =y +3-12y ,∴x =y ∴x =x2+6x -7,解得x =76,即BF =76③若BF =FG ,过F 作FH ⊥BG 于H ,过E 作EK ⊥GC 于K 则BG =2BH =2BF ·cos ∠FBG =2BF ·cos ∠C =2x ·3 5=65x∴GC =5-65x ∵BF =FG ,∴∠FBG =∠FGB =∠EGC ∵AB ∥DC ,∴∠FBG =∠C ∴∠EGC =∠C ,∴EC =EG ∴KC =12GC =5 2 - 3 5x ∵cos ∠C =KC EC = 3 5 ,∴KC = 35EC∴5 2-3 5x =3 5 (6-x2+6x -7 ),解得x =373 84当x =373 84时,5 2-3 5x =5 2 - 3 5 ×373 84 =- 23140<0 ∴x =37384不合题意,应舍去 综上所述,△BFG 能成为等腰三角形,BF 的长为2或766.(上海模拟)有一张矩形纸片ABCD ,已知AB =2,AD =5,把这张纸片折叠,使点A 落在边BC 上的点E 处,折痕为MN (MN 交AB 于M ,交AD 于N ). (1)如图1,当BE =2时,求AM 的长;(2)当点E 在BC 上运动时,设BE =x ,AN =y ,求y 关于x 的函数关系式,并确定函数的定义域; (4)连接DE ,是否存在这样的点E ,使△AME 与△DNE 相似?若存在,求出此时BE 的长,若不存在,请说明理由.A B DCE FG HK A B DCE FGM NA B D C 备用图 A B D C N E M 图1 A B DC 备用图解:(1)设BM =a ,∵AB =2,∴ME =AM =2-a 在Rt △BME 中,BM 2+BE 2=ME 2∴a2+2=(2-a)2,∴a =1 2∴AM =32(2)设BM =a ,∵BE =x ,∴a2+x2=(2-a)2∴a =4-x2 4,∴AM =2- 4-x2 4 =4+x24延长NM 交CB 延长线于点F∵∠F =∠ANM =∠ENM ,∴EF =EN =AN =y ∴BF =y -x∵△BFM ∽△ANM ,∴BFAN=BMAM∴y -xy=4-x244+x2 4,∴y =4+x22x由⎩⎪⎨⎪⎧0<x≤20< 4+x2 2x≤5 解得5- 21≤x≤2 ∴函数的定义域为5-21≤x≤2 (3)存在∵y =4+x22x≥242x ·x2=2≥x ,即AN≥BE ∴∠DNE ≥90° 又∵∠AME ≥90°,AM =ME∴若△AME ∽△DNE ,则DN =EN ∴∠NDE =∠NED∵AM =ME ,∴∠MAE =∠MEA ∵AD ∥BC ,∴∠NDE =∠DEC∴∠BAE =∠DEC ,∴△ABE ∽△ECD ∴ABEC=BECD,∴25-x=x2解得x 1=4(舍去),x 2=1 ∴BE =1∴存在点E ,使△AME 与△DNE 相似,此时BE 的长为1 7.(上海模拟)如图,在边长为6的正方形ABCD 的两侧作正方形BEFG 和正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连接MF 交线段AD 于点P ,连接NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y .(1)求y 关于x 的函数关系式及自变量x 的取值范围; (2)当△NPF 的面积为32时,求x 的值; (3)以P 为圆心,AP 为半径的圆能否与以G 为圆心,GF 为半径的圆相切?如果能,请求出x 的值,如果不能,请说明理由. N KG CE DF A B PMA BDCN EM FA BDCN EM解:(1)∵正方形BEFG、正方形DMNK、正方形ABCD ∴∠E=∠F=90O,AE∥MC,MC∥NK∴AE∥NK,∴∠KNA=∠EAF∴△KNA∽△EAF,∴NKEA=KAEF,即yx+6=y-6x∴y=x+6(0<x≤6)(2)由(1)知NK=AE,∴AN=AF∵正方形DMNK,∴AP∥NM,∴FPPM=AFAN=1∴FP=PM,∴S△MNP=S△NPF=32∴S正方形DMNK=2S△MNP=64∴y=8,∴x=2(3)连接PG,延长FG交AD于点H,则GH⊥AD易知:AP=y2,AH=x,PH=y2-x,HG=6;PG=AP+GF=y2+x①当两圆外切时在Rt△GHP中,PH2+HG2=PG2,即(y2-x)2+62=(y2+x)2解得:x=-3-33(舍去)或x=-3+3 3 ②当两圆内切时在Rt△GHP中,PH2+HG2=PG2,即(y2-x)2+62=(y2-x)2方程无解所以,当x=33-3时,两圆相切8.(上海模拟)已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°,连接EF.(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想;(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),求y关于x的函数解析式,并指出x的取值范围;(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心,以BE为半径的⊙E和以F为圆心,以FD为半径的⊙F之间的位置关系;(4)如图2,当点E在BC的延长线上时,设AE与CD交于点G.问:△EGF与△EF A能否相似?若能相似,求出BE的长,若不可能相似,请说明理由.A BDCEF图1ABDC EFG图2(1)猜想:EF=BE+DF证明:将△ADF绕点A顺时针旋转90°,得△ABF′,易知点F′、B、E在同一直线上(如.图1)∵AF′=AF∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF又AE=AE,∴△AF′E≌△AFE∴EF=F′E=BE+BF=BE+DF(2)在Rt△EFC中,EC2+FC2=EF2∵EC=1-x,FC=1-y,EF=x+y∴(1-x)2+(1-y)2=(x+y)2∴y=1-x1+x(0<x<1)(3)①当点E在点B、C之间时,由(1)知EF=BE+DF,故此时⊙E与⊙F外切;②当点E在点C时,DF=0,⊙F不存在.③当点E在BC延长线上时,将△ADF绕点A顺时针旋转90°,得△ABF′(如图2)则AF′=AF,∠1=∠2,BF′=DF,∠F′AF=90°∴∠F′AE=∠EAF=45°又AE=AE,∴△AF′E≌△AFE∴EF=EF′=BE-BF′=BE-DF∴此时⊙E与⊙F内切综上所述,当点E在线段BC上时,⊙E与⊙F外切;当点E在BC延长线上时,⊙E与⊙F内切(4)△EGF与△EF A能够相似,只要当∠EFG=∠EAF=45°即可此时CE=CF设BE=x,DF=y,由(3)知EF=x-y在Rt△CFE中,CE2+CF2=EF2∴(x-1)2+(1+y)2=(x-y)2∴y=x-1x+1(x>1)由CE=CF,得x-1=1+y,即x-1=1+x-1 x+1化简得x2-2x-1=0,解得x1=1-2(舍去),x2=1+ 2∴△EGF与△EF A能够相似,此时BE的长为1+ 29.(上海模拟)如图,在等腰梯形ABCD中,AD∥BC,AB=CD=2,AD=1,连接BD,作∠EBC=∠ABD,交边CD于E.(1)设BC=x,CE=y,求y关于x的函数关系式,并写出函数的定义域;(2)当BE⊥CD时,求BC的长;(3)当△BDE是等腰三角形时,求BC的长.解:(1)延长AD、BE交于点F∵DF∥BC,∴∠F=∠EBC,∠EDF=∠ECB∴△DEF∽△CEB,∴DFBC=DECEABDC EFG图2F′12DBACEABDCEF图1F′12即DFx =2-yy ,∴DF =x (2-y)y∵∠F =∠EBC ,∠EBC =∠ABD ,∴∠F =∠ABD 又∠A =∠A ,∴△ABF ∽△ADB ∴AFAB=ABAD,即AF2 =21,∴AF =4 ∵AD +DF =AF ,∴1+x (2-y)y=4 ∴y =2xx +3(0<x <5且x ≠1) (2)当BE ⊥CD 时,过D 作DG ⊥BC 于G 则△DGC ∽△BEC ,∴ DCGC=BCCE即212(x -1)=x2xx +3,解得x =23-1(舍去负值) ∴此时BC 的长为23-1(3)∵∠DBE <∠ABC =∠C <∠DEB ,∴DB >DE ①当BD =BE 时 ∵△ABF ∽△ADB ,∴BFBD=ABAD=21∴BF =2BD =2BE ,∴BE =EF ∴△DEF ∽△CEB ,∴CE =DE =12CD =1 即2xx +3=1,解得x =3 ②当BE =DE 时,则∠BDE =∠DBE ∴∠BEC =2∠DBE 过D 作DH ⊥BC 于H则∠C =∠ABC =∠ABD +∠DBE +∠EBC =2∠EBC +∠DBE 在△BEC 中,∠BEC +∠EBC +∠C =180° ∴2∠DBE +∠EBC +2∠EBC +∠DBE =180° ∴DBE +∠EBC =60°,即∠DBC =60° ∵HC =12 (x -1),∴BH =x -12 (x -1)=12(x +1)∴DH =3BH =32(x +1) 在Rt △DHC 中,DH 2+HC 2=DC 2∴34 (x +1)2+14 (x -1)2=4,解得x =13-1 2∴当△BDE 是等腰三角形时,BC 的长为3或13-1210.(重庆)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;D B A CEFDB A CEG D BA CEFDBA CEH(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B ′EFG 的边EF 与AC 交于点M ,连接B ′D ,B ′M ,DM .是否存在这样的t ,使△B ′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B ′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.解:(1)如图①,设正方形BEFG 的边长为x 则BE =FG =BG =x∵AB =3,BC =6,∴AG =AB -BG =3-x ∵GF ∥BE ,∴△AGF ∽△ABC ∴AGAB=GFBC,即3-x3 =x6解得x =2,即BE =2(2)存在满足条件的t ,理由如下: 如图②,过D 作DH ⊥BC 于点H 则BH =AD =2,DH =AB =3由题意得:BB ′=HE =t ,HB ′=|t -2|,EC =4-t在Rt △B ′ME 中,B ′M 2=B ′E 2+ME 2=22+(2-1 2 t )2= 1 4t2-2t +8∵EF ∥AB ,∴△MEC ∽△ABC ∴MEAB=ECBC,即ME3 =4-t6 ,∴ME =2-12t 在Rt △DHB ′ 中,B ′D 2=DH 2+B ′H 2=32+(t -2)2=t2-4t +13 过M 作MN ⊥DH 于点N则MN =HE =t ,NH =ME =2-12t∴DN =DH -NH =3-(2-1 2 t )= 12t +1在Rt △DMN 中,DM 2=DN 2+MN 2=5 4t2+t +1(ⅰ)若∠DB ′M =90°,则DM 2=B ′M 2+B ′D 2即 5 4t2+t +1=(1 4 t 2-2t +8 )+( t 2-4t +13 ),解得t =20 7(ⅱ)若∠B ′MD =90°,则B ′D 2=B ′M 2+DM 2即t2-4t +13=( 1 4 t 2-2t +8 )+( 5 4t 2+t +1 ),解得t 1=-3+ 17,t 2=-3-17∵0≤t≤4,∴t =-3+17(ⅲ)若∠B ′DM =90°,则B ′M 2=B ′D 2+DM 2B ACD BA CD备用图B A CD 图①EFGBACD 图②EFGHB ′ M N即14t2-2t+8=(t2-4t+13)+(54t2+t+1),此方程无解综上所述,当t=207或-3+17时,△B′DM是直角三角形(3)当0≤t≤43时,S=14t2当43≤t≤2时,S=-18t2+t-23当2≤t≤103时,S=-38t2+2t-53当103≤t≤4时,S=-12t+52提示:当点F落在CD上时,如图③FE=2,EC=4-t,DH=3,HC=4由△FEC∽△DHC,得FEEC=DHHC即24-t=34,∴t=43当点G落在AC上时,点G也在DH上(即DH与AC的交点)t=2当点G落在CD上时,如图④GB′=2,B′C=6-t由△GB′C∽△DHC,得G′BB′C=DHHC即26-t=34,∴t=103当点E与点C重合时,t=4①当0≤t≤43时,如图⑤∵MF=t,FN=1 2t∴S=S△FMN=12·t·12t=14t2②当43≤t≤2时,如图⑥∵PF=t-43,FQ=34PF=34t-1∴S△FPQ=12(t-43)(34t-1)=38t2-t+23∴S=S△FMN-S△FPQ=14t2-(38t2-t+23)=-18t2+t-23③当2≤t≤103时,如图⑦∵B′M=12B′C=12(6-t)=3-12t图⑤B图⑥图⑦BACD图③EFGB′HBACD图④EFGB′H∴GM=2-(3-12t)=12t-1∴S梯形GMNF=12(12t-1+12t)×2=t-1∴S=S梯形GMNF-S△FPQ=(t-1)-(38t2-t+23)=-38t2+2t-53④当103≤t≤4时,如图⑧∵PB′=34B′C=34(6-t)=92-34t∴GP=2-(92-34t)=34t-52∴S梯形GPQF=12(34t-52+34t-1)×2=32t-72∴S=S梯形GMNF-S梯形GPQF=(t-1)-(32t-72)=-12t+5211.(浙江金华、丽水)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.(1)当点E是AB的中点时,求线段DF的长;(2)若射线EF经过点C,求AE的长;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围.解:(1)过E作EG⊥DF于H,则EG=A D= 3∵E是AB的中点,AB=6,∴DG=3,∴∠DEG=60°∵∠DEF=120°,∴∠FEG=∠DEG=60°∴GF=3,∴DF=6(2)过B作BG⊥DC于G,则四边形ABGD是矩形∴BG=AD= 3∵AB∥DC,∠ABC=120°,∴∠BCD=60°∴BC=BGcos60°=2在AB上截取AH=1,连接DH则DH=2,∠AHD=60°,∴∠DHE=120°∴∠1+∠2=60°∵∠DEC=120°,∴∠2+∠3=60°∴∠1=∠3又∠DHE=∠EBC=120°,∴△DHE∽△EBC,∴HEBC=DHEB设AE=x,则HE=x-1,EB=6-x∴x-12=26-x,解得x1=2,x2=5∴若射线EF经过点C,则AE的长是2或5(3)①当点F在线段DC上时过F作FG∥BC交AB于G,在AB上截取AH=1,连接DH DACBEFDACBE(F)HDACBE(F)GH12 3DACBEFGDACBEFGH图⑧则DH=2,∠AHD=60°,∠DHE=120°,BG=CF=y,EG=6-x-y,GF=BC=2由(2)知△DHE∽△EGF,∴HEGF=DHEG,即x-12=26-x-y∴y=(x-2)(x-5)1-x(2≤x≤5)②当点F在DC的延长线上时过F作FG∥BC交AB的延长线于G,在AB上截取AH=1,连接DH由△DHE∽△EGF,得x-12=26-x+y∴y=(x-2)(x-5)x-1(1<x<2或5<x<6)12.(浙江嘉兴、舟山)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,∠BAB′=θ,AB′AB=B′C′BC=AC′AC=n,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC=_________;直线BC与直线B′C′所夹的锐角为_________度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.解:(1)3;60(2)∵四边形ABB′C′是矩形,∴∠BAC′=90°∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°在Rt△ABB′是中,∠ABB′=90°,∠BAB′=60°∴n=AB′AB=2(3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°∴∠C′AB′=∠AB′B=∠BAC=36°,而∠B=∠B ∴△ABC∽△B′BA,∴AB2=1·(1+AB)∴AB=1±5 2∵AB>0,n=B′C′BC=1+52B AC′(图①)C′ BACB′(图②)C′BAC B′(图③)C′DACBEFGHDACBEFGH13.(浙江某校自主招生)如图,矩形ABOD 中,AB =6,AD =8,M 是边AD 上的点,且AM :MD =1 :3.点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线OD 于点F ,过M 作EF 的垂线交射线BO 于点G ,连接EG 、FG .(1)设AE =t 时,△EFG 的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (2)若P 是MG 的中点,在E 点运动的整个过程中,点P 到x 轴的距离是否为定值?请说明理由; (3)请直接写出E 点运动的整个过程中点P解:(1)当点E 与点A 重合时,t =0 S =S △ABD=12×8×6=24当点E 与点A 重合时,0<t≤6在矩形ABOD 中,∠A =∠ADO =90° ∴∠MDF =90°,∴∠A =∠MDF∵∠AME =∠DMF ,∴△AME ∽△DMF∴AMMD=MEMF=13∵AD =8,∴AM =2在Rt △AME 中,AE =t ,AM =2,∴ME =4+t2∴EF =4ME =44+t2过M 作MN ⊥BO 于N ,则∠MNG =90°,∠AMN =90° MN =AB =6=3AM ,∴∠AME +∠EMN =90° ∵∠EMG =90°,∴∠NMG +∠EMN =90° ∴∠AME =NMG ,∴△AME ∽△NMG∴MEMG=AMMN=13,∴MG =3ME =34+t2∴S =12EF ·MG =12×44+t2×34+t2=24+6t2(2)过P 作PH ⊥BO 于H ,则PH ∥MN ∵P 是MG 的中点,∴PH =12MN =3 ∴点P 到x 轴的距离是定值3 (3)点P 的运动路线的长为9提示:由(2)知,在E 点运动的整个过程中,点P 到x 轴的距离是定值3 所以点P 的运动路线是一条平行于BG 的线段分别作出E 与A 重合、E 与B 重合时P 点的位置P 1、P 2,则P 1P 2即为P 点运动路线的长 在Rt △BMG 2中,∵MG 1⊥BG 2,∴∠G 1MG 2=∠MBG 1 ∴tan ∠G 1MG 2=tan ∠MBG 1=3,∴G 1G 2=3MG 1=18∵P1P2是△MG1G2的中位线,∴P1P2=12G1G2=9即点P的运动路线的长为914.(浙江模拟)如图1,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为A(5,0),C(0,3).射线y=kx交折线A-B-C于点P,点A关于OP的对称点为A′.(1)当点A′恰好在CB边上时,求CA′的长及k的值;(2)若经过O、A、A′三点的抛物线恰好以A′为顶点,求k的值及该抛物线的解析式;(3)如图2,当点P在AB边上,点A′在CB上方时,连接A′O、A′P分别交CB边于点E、F.是否存在实数k使△A′EF≌△BPF?若存在,求出k值;若不存在,说明理由;(4)以OP为直径作⊙M,则⊙M与矩形OABC最多有_________个公共点,直接写出公共点个数最多时k的取值范围.12.解:(1)当点A′恰好在CB边上时,连接A′O、A′P,如图1∵OA′=OA=5,OC=3∴CA′=OA′2-OC2=52-32=4∴A′B=CB-CA′=5-4=1设P A=x,则A′P=P A=x,BP=3-x在Rt△A′PB中,A′B2+BP2=A′P2∴12+(3-x)2=x2,解得x=53,∴P(5,53)∴k=y Px P=13(2)连接A′O、A′P、A′A,设A′A交射线OP于点D,如图2 则OP垂直平分A′A∵经过O、A、A′三点的抛物线恰好以A′为顶点∴由抛物线的对称性可知A′O=A′A=2A′D∴∠A′OD=30°,∴∠AOD=∠A′OD=30°∴P A=33OA=533,∴P(5,533)∴k=y Px P=33可得∠A′OA=60°,∴△A′OA是等边三角形∴点A′的坐标为(52,532)设抛物线的解析式为为y=a(x-52)2+532把O(0,0)代入上式,得0=a(0-52)2+532解得a=23 5∴抛物线的解析式为为y=-235(x-52)2+532(3)假设存在实数k,使△A′EF≌△BPF,如图3 ∵∠A′=∠B=90°,∠A′FE=∠BFP∴A′E=BP,A′F=BF设A′E=BP=a,A′F=BF=b则A′P=P A=3-a,EF=PF=3-a-b,OE=5-a CE=5-(3-a-b)-b=2+a在Rt△OCE中,OC2+CE2=OE2∴32+(2+a)2=(5-a)2,解得a=6 7∴P A=3-67=157,∴P(5,157)∴k=y Px P=37(4)以OP为直径的⊙M与矩形OABC最多有6个公共点提示:∵∠OAP=90°∴当点P在AB边上时,⊙M经过O、A、P三点,如图4∵∠COP<90°,∴⊙M必与OC边交于另一点又∵⊙M与BC边最多有2个公共点∴⊙M与矩形OABC最多有6个公共点当点P在BC边上时,情况亦然①当⊙M与BC边相切于点D时,连接DM并延长交OA于E,如图5 则MD⊥BC,∴DE∥AB∥OC,∴DE=OC=3∵M是OP的中点,∴E是OA的中点∴ME=12P A设P A=x,则ME=12x,DM=12OP=12x2+52∵DM+ME=DE,∴12x2+52+12x=3解得x=1112,∴P(5,1112)∴k=y Px P=1160②当⊙M与AB边相切于点E时,连接EM并延长交OC于D,如图6设CP=x,则DM=12x,ME=12OP=12x2+32∵DM+ME=DE,∴12x+12x2+32=5解得x=9120,∴P(9120,3)图4图5∴k=y Px P=6091又∵当点P与点B重合时,⊙M经过O、A、B、C四点,此时k=3 5∴当⊙M与矩形OABC有6个公共点时,k的取值范围是:1160<k<6091且k≠3515.(浙江模拟)如图,点A的坐标为(0,-4),点B为x轴上一动点,以线段AB为边作正方形ABCD (按逆时针方向标记),正方形ABCD随着点B的运动而相应变动.点E为y轴的正半轴与正方形ABCD 某一边的交点,设点B的坐标为(t,0),线段OE的长度为m.(1)当t=3时,求点C的坐标;(2)当t>0时,求m与t之间的函数关系式;(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解:(1)过点C作CF⊥x轴于F则△CFB≌△BOA,得CF=BO=3,FB=OA=4∴点C的坐标为(-1,3)(2)当0<t≤4时,点E为y轴的正半轴与BC边的交点,如图1易证△BOE∽△AOB,得OEOB=OBOA即mt=t4,∴m=14t2当t>4时,点E为y轴的正半轴与CD边的交点,如图2易证△EDA∽△AOB,得DAOB=EAAB而DA=AB,∴AB2=OB·EA即42+t2=t(m+4),∴m=t+16t-4(3)存在当t≤0时∵正方形ABCD位于x轴的下方(含x轴),∴此时不存在当0<t≤4时①若点M在BC边上,有t2=4t+2解得t=2或t=-4(舍去)②若点M在CD边上,有t-24=2-(4-t)t解得t=2或t=4 当t>4时图1图2①若点M在CD边上,有t+16t-4-24=2t解得t=2(舍去)或t=4(舍去)②若点M在AD边上,有2-16t4=2t解得t=12综上所述:存在,符合条件的t的值为2、4、1216.(浙江模拟)如图,直角梯形OABC的直角顶点C在x轴上,C(82,0),∠AOC=45°,AB=52,点D是AB边上的一点,且AD:BD=2:3.有一45°角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线OA交于点F,连接DF.(1)求点D的坐标;(2)若点E在x轴正半轴上运动,设CE=x,OF=y,求y与x的函数关系式;(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.解:(1)作AG⊥OC于G,DH⊥OC于H,如图1∵∠AOC=45°,∴AG=OG=OC-AB=82-52=3 2∵AB=52,AD:BD=2:3,∴AD=2 2∴OH=32+22=5 2∴D(52,32)(2)①当点E在线段OC上时,如图1连接DC,则HC=OC-OH=82-52=3 2∴HC=DH=32,∴CD=6,∠DCH=45°∴∠EDC+∠DEC=135°∵∠DEF=45°,∴∠FEO+∠DEC=135°∴∠FEO=∠EDC,又∠EOF=∠DCE=45°∴△OEF∽△CDE,∴OFOE=CECD,即y82-x=x6∴y=-16x2+423x②当点E在OC延长线上时,如图2∵∠AOC=∠DCO=45°,∴∠EOF=∠DCE ∠CDE+∠CED=45°∵∠DEF=45°,∴∠CED+∠OEF=45°备用图∴∠OEF =∠CDE ,∴△OEF ∽△CDE∴OFOE=CECD,即y82+x=x6∴y =1 6 x 2+ 42 3x(3)①当点E 在线段OC 上时i )若EF =ED ,如图3,则△OEF ≌△CDE ∴OE =CD =6,CE =82-6,∴OF =CE =82-6 ∴F (8-32,8-32)ii )若DF =DE ,如图4,则∠EDF =90° 作FM ⊥AB 于M ,EN ⊥AB 于N则△DFM ≌△EDN ,∴DM =EN =32,∴M (22,32) ∴F (22,22)iii )若DF =EF ,如图5,则∠DFE =90°作FN ⊥OC 于N ,交直线AB 于M ,则△FNE ≌△DMF ∴FN =DM设ON =x ,则FN =x ,MF =32-x ,DM =52-x ∴x =52-x ,∴x =522∴F (522,522)②当点E 在OC 延长线上时,如图2 ∵∠DEF =45°,∠DFE <45°,∠EDF >90° ∴△DEF 不可能是等腰三角形③当点E 在CO 延长线上时,如图6 ∵∠DEF =135°,∴只能EF =ED ,此时△OEF ≌△CDE∴OE =CD =6,CE =82+6,∴OF =CE =82+6 ∴F (-8-32,-8-32)综上所述,存在4个时刻使得△DEF 成为等腰三角形,点F 的坐标为:F 1(8-32,8-32),F 2(22,22),F 3(522,522),F 4(-8-32,-8-32)17.(浙江模拟)如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0),(3,2),点D 在线段OA 上,BD =BA ,点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y =kx +b .(1)求k 的取值范围;图6(2)当k 是取值范围内的最大整数时,若抛物线y =ax2-5ax 的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围. 解:(1)∵直线y =kx +b 经过P (0,3),∴b =3 ∴直线PQ 的解析式为y =kx +3 ∵A (5,0),B (3,2),BD =BA ,∴D (1,0) 设线段BD 的解析式为y =mx +n (1≤x≤3)∴⎩⎪⎨⎪⎧3m +n =2m +n =0 解得⎩⎪⎨⎪⎧m =1n =-1 ∴线段BD 的解析式为y =x -1(1≤x≤3)依题意,得⎩⎪⎨⎪⎧m =1y =kx +3 解得x =4 1-k∵1≤x≤3,∴1≤41-k≤3解得-3≤k≤-13(2)∵-3≤k≤-13,且k 为最大整数,∴k =-1 则直线PQ 的解析式为y =-x +3∵抛物线y =ax2-5ax 的顶点坐标是(5 2,-25 4a ),对称轴为x =5 2解方程组⎩⎪⎨⎪⎧y =-x +3x =52得⎩⎨⎧x =52y =1 2即直线PQ 与抛物线对称轴的交点坐标为(5 2,12)∴12<-25 4a <2,解得- 8 25 < a <-2 2518.(浙江模拟)如图,矩形ABCD 中,AB =1,BC =3,将矩形ABCD 绕中心O 顺时针旋转90°得到矩形A ′B ′C ′D ′(1)求点A 在旋转过程中所走过的路径的长;(2)求矩形ABCD 在旋转过程中所扫过的面积;(3)若点P 为线段BC 上一点,且使得∠APA ′=60°,则满足条件的点P 有几个?请你选择一个点P 求△APA ′ 的面积. 解:(1)易知点A 的路径是以O 为圆心、以OA 长为半径、圆心角为90°的一段圆弧∵AB =1,BC =3,∴AC =2,OA =1∴点A 在旋转过程中所走过的路径的长为:π×1×90 180=π2(2)如图,将矩形ABCD 绕它的对称中心O 旋转90°,扫过的面积是图中阴影部分的面积 ∵AB =1,A ′D ′=BC =3,∴A ′G =DG =BE =C ′E =3-12∵AB =1,AD = 3∴∠ADB =∠DBC =30°,∠OFC =∠A ′C ′D ′=∠BDC =60° ∴∠A ′OD =∠BOC ′=30°∴S 阴影=S ⊙O-2(S 扇形BOD-2 S △BOE)=S ⊙O-2 S 扇形BOD +4 S △BOE)=π×12-2×π×12×30 360+4×12 ×3-1 2 ×1 2=56 π+3-1 2(cm 2) (3)满足条件的点P 有2个 提示:在BC 上取点P 1,使BP 1=33则∠AP 1B =60°,P 1H =3-3 3 -3-1 2=3 6 +12A ′H =3-3-1 2=3+12∴tan ∠A ′P 1H =A ′HP 1H=3,∴∠A ′P 1H =60° ∴∠AP 1A ′=60°在BC 上取点P 2,使P 2H =A ′G =3-12则△A ′P 2H ≌△AA ′G ,∴A ′P 2=A ′A =A ′H 2+P 2H 2= 2BP 2=3+1 2 -3-12=1=AB ,∴AP 2= 2 ∴AP 2=A ′P 2=A ′A ,∴△AP 2A ′ 是等边三角形 ∴∠AP 2A ′=60°又∵△AP 2A ′ 的外接圆与BC 最多有2个交点 ∴满足条件的点P 有2个 若求△AP 1A ′ 的面积∵S 梯形ABHA ′=1 2 ×(1+3+1 2)× 3+1 2 =3 2 + 34 ,S △ABP 1 = 1 2 ×1× 3 3 =36S △A ′P 1H=1 2 ×(3 6+1 2)× 3+1 2 =3 6 +14∴S △AP 1A ′=S 梯形ABHA ′-S △ABP 1-S △A ′P 1H=36+12若求△AP 2A ′ 的面积则S △AP 2A ′=1 2 ×2×3 2 ×2=32DB AC C ′D ′A ′B ′ E P 1P 2 H G19.(江苏连云港)已知梯形ABCD ,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,BC =3.问题1:如图1,P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD .请问对角线PQ ,DC 的长能否相等,为什么?问题2:如图2,若P 为AB 边上任意一点,以PD ,PC 为边作平行四边形PCQD .请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由. 问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE =PD ,再以PE ,PC 为边作平行四边形PCQE .请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值;如果不存在,请说明理由. 问题4:如图3,若P 为DC 边上任意一点,延长P A 到E ,使AE =nP A (n 为常数),以PE ,PB 为边作平行四边形PBQE .请探究对角线PQ 的长是否也存在最小值?如果存在,请直接写...出.最小值;如果不存在,请说明理由.解:问题1:如图1,∵四边形PCQD 是平行四边形若对角线PQ 、DC 相等,则四边形PCQD 是矩形,∴∠DPC =90° ∵AD =1,AB =2,BC =3,∴DC =2 2 设PB =x ,则AP =2-x在Rt △DPC 中,PD 2+PC 2=DC 2,即x 2+32+(2-x)2+1=8化简得x 2-2x +3=0,∵△=(-2)2-4×1×3=-8<0,∴方程无解∴对角线PQ 与DC 不可能相等问题2:如图2,在平行四边形PCQD 中,设对角线PQ 与DC 相交于点G 则G 是DC 的中点过点Q 作QH ⊥BC ,交BC 的延长线于H ∵AD ∥BC ,∴∠ADC =∠DCH即∠ADP +∠PDG =∠DCQ +∠QCH∵PD ∥CQ ,∴∠PDC =∠DCQ ,∴∠ADP =∠QCH 又∵PD =CQ ,∴Rt △ADP ≌Rt △HCQ ,∴AD =HC∵AD =1,BC =3,∴BH =4∴当PQ ⊥AB 时,PQ 的长最小,即为4 问题3:如图3,设PQ 与DC 相交于点G ∵PE ∥CQ ,PD =DE ,∴DGGC=PDCQ=12∴G 是DC 上一定点作QH ⊥BC ,交BC 的延长线于H同理可证∠ADP =∠QCH ,∴Rt △ADP ∽Rt △HCQ ∴ADCH=PDCQ=12,∴CH =2,∴BH =BC +CH =3+2=5 ∴当PQ ⊥AB 时,PQ 的长最小,即为5 问题4:存在最小值,最小值为22(n +4) 提示:如图4,设PQ 与AB 相交于点GB PA D C Q图(2) B PA D C Q 图(1) BPA DCQ 图(3)EB PA DCQ 图(1)B PA DCQ图(2)GHBP ADCQ图(3)GHE∵PE ∥BQ ,AE =nP A ,∴AGBG=P ABQ=1n +1∴G 是AB 上一定点作QH ∥DC ,交CB 的延长线于H ,作CK ⊥CD ,交QH 的延长线于K ∵AD ∥BC ,AB ⊥BC ,∴∠ADP =∠BHQ ∠P AD +∠P AG =∠QBH +∠QBG =90°,∠P AG =∠QBG ∴∠P AD =∠QBH ,∴△ADP ∽△BHQ ,∴ADBH=P ABQ=1n +1∴BH =n +1,∴CH =BC +BH =3+n +1=n +4过点D 作DM ⊥BC 于M ,则四边形ABMD 是矩形 ∴BM =AD =1,DM =AB =2 ∴MC =BC -BM =3-1=2=DM ∴∠DCM =45°,∴∠HCK =45° ∴CK =CH ·co s 45°=22(n +4) ∴当PQ ⊥CD 时,PQ 的长最小,最小值为22(n +4) 20.(江苏常州)已知,在矩形ABCD 中,AB =4,BC =2,点M 为边BC 的中点,点P 为边CD 上的动点(点P 异于C ,D 两点).连接PM ,过点P 作PM 的垂线与射线DA 相交于点E (如图).设CP =x ,DE =y .(1)写出y 与x 之间的关系式________________;(2)若点E 与点A 重合,则x 的值为________________;(3)是否存在点P ,使得点D 关于直线PE 的对称点D ′ 落在边AB 上?若存在,求x 的值;若不存在,请说明理由.解:(1)y =-x2+4x (0<x<4) (2)x =2± 2(3)经探究得:当0<x≤2-2 或2+2≤x<4时,点E 在边AD 上当2-2<x <2+2时,点E 在DA 的延长线上①当0<x ≤2-2 或2+2≤x<4时假设存在点P ,使得点D 关于直线PE 的对称点D ′ 落在边AB 上设直线DD ′ 交直线PE 于点H ,连接PD ′、D ′M ,延长PM 交AB 的延长线于点F∵D 与D ′ 关于直线PE 对称,∴PE ⊥DD ′,PD =PD ′∵PF ⊥PE ,∴DD ′∥PF 又∵AB ∥CD ,∴四边形DD ′FP 为平行四边形∴PD =PD ′=D ′F =4-x.∵M 为边BC 的中点,∴D ′M ⊥PF∴∠CBA =90°,∴△D ′MB ∽△MBF ,∴ BM D ′B=BFBM易得BF =PC ,∴(4-2x)x =1,解得x =2±22BPA D C E M (备用图)B P A DC E M BP A D CQ图(4)EGMHKB PADC EM D FH B P A D CEM D ′ FH。
2012年全国各地中考数学压轴题精选
2012年全国各地中考数学压轴题精选(解析版1--20)1.(2012•菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.解题思路:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)2.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.解题思路:(1)根据与x轴的两个交点A、B的坐标,利设出两点法解析式,然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可;(3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是﹣2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标;②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标.解答:解:(1)设该二次函数的解析式为:y=a(x+1)(x﹣2),将x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),解得a=1,∴抛物线的解析式为y=(x+1)(x﹣2),即y=x2﹣x﹣2;(2)设OP=x,则PC=PA=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=;(3)①∵△CHM∽△AOC,∴∠MCH=∠CAO,(i)如图1,当H在点C下方时,∵∠MCH=∠CAO,∴CM∥x轴,∴y M=﹣2,∴x2﹣x﹣2=﹣2,解得x1=0(舍去),x2=1,∴M(1,﹣2),(ii)如图1,当H在点C上方时,∵∠MCH=∠CAO,∴PA=PC,由(2)得,M为直线CP与抛物线的另一交点,设直线CM的解析式为y=kx﹣2,把P(,0)的坐标代入,得k﹣2=0,解得k=,∴y=x﹣2,由x﹣2=x2﹣x﹣2,解得x1=0(舍去),x2=,此时y=×﹣2=,∴M′(,),②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=,在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC,∴=,即=,解得AD=2,∴D(1,0)或D(﹣3,0).过点D作DM∥AC,交抛物线于M,如图(备用图)则直线DM的解析式为:y=﹣2x+2或y=﹣2x﹣6,当﹣2x﹣6=x2﹣x﹣2时,即x2+x+4=0,方程无实数根,当﹣2x+2=x2﹣x﹣2时,即x2+x﹣4=0,解得x1=,x2=,∴点M的坐标为(,3+)或(,3﹣).3.(2012•福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m 的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).解题思路:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x﹣m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标;(3)综合利用几何变换和相似关系求解.方法一:翻折变换,将△NOB沿x轴翻折;方法二:旋转变换,将△NOB绕原点顺时针旋转90°.特别注意求出P点坐标之后,该点关于直线y=﹣x的对称点也满足题意,即满足题意的P点有两个,避免漏解.解答:解:(1)∵抛物线y=y=ax2+bx(a≠0)经过A(3,0)、B(4,4)∴,解得:∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x),又点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0,∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4,此时x1=x2=2,y=x2﹣3x=﹣2,∴D点的坐标为(2,﹣2).(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3),设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∴点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=4(不合题意,舍去)∴N点的坐标为(﹣,).方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(,),B1(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(,),B2(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,∴△P1OD∽△N2OB2,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).4.(2012•临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解题思路:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),5.(2012•烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB 向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.解题思路:(1)根据矩形的性质可以写出点A得到坐标;由顶点A的坐标可设该抛物线的顶点式方程为y=a(x﹣1)2+4,然后将点C的坐标代入,即可求得系数a的值(利用待定系数法求抛物线的解析式);(2)利用待定系数法求得直线AC的方程y=﹣2x+6;由图形与坐标变换可以求得点P的坐标(1,4﹣t),据此可以求得点E的纵坐标,将其代入直线AC方程可以求得点E或点G的横坐标;然后结合抛物线方程、图形与坐标变换可以求得GE=4﹣、点A到GE的距离为,C到GE的距离为2﹣;最后根据三角形的面积公式可以求得S△ACG=S△AEG+S△C EG=﹣(t﹣2)2+1,由二次函数的最值可以解得t=2时,S△ACG的最大值为1;(3)因为菱形是邻边相等的平行四边形,所以点H在直线EF上.解答:解:(1)A(1,4).…(1分)由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.…(2分)(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).…(3分)∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.…(4分)∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.…(5分)又点A到GE的距离为,C到GE的距离为2﹣,即S△ACG=S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.…(7分)当t=2时,S△ACG的最大值为1.…(8分)(3)t=或t=20﹣8.…(12分)(说明:每值各占(2分),多出的值未舍去,每个扣1分)6.(2012•义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM 与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?解题思路:(1)利用待定系数法求出直线y=kx的解析式,根据A点坐标用勾股定理求出线段OA的长度;(2)如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H,构造相似三角形△QHM与△QGN,将线段QM与线段QN的长度之比转化为相似三角形的相似比,即为定值.需要注意讨论点的位置不同时,这个结论依然成立;(3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED.设OE=x,则由相似边的比例关系可以得到m关于x的表达式(),这是一个二次函数.借助此二次函数图象(如答图3),可见m在不同取值范围时,x的取值(即OE的长度,或E点的位置)有1个或2个.这样就将所求解的问题转化为分析二次函数的图象与性质问题.另外,在相似三角形△ABE与△OED中,运用线段比例关系之前需要首先求出AB的长度.如答图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB的长度.解答:解:(1)把点A(3,6)代入y=kx 得;∵6=3k,∴k=2,∴y=2x.(2分)OA=.…(3分)(2)是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合时,显然QG与QN重合,此时;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,当点P、Q在抛物线和直线上不同位置时,同理可得.…(7分)①①(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴点F(,0),设点B(x,),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴点B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5 …(8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5…(8分)(其它方法求出AB的长酌情给分)在△ABE与△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.…(9分)设OE=x,则AE=﹣x (),由△ABE∽△OED得,∴∴()…(10分)∴顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个.∴当时,E点只有1个…(11分)当时,E点有2个…(12分).7.(2012•益阳)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.解题思路:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可证得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF;(2)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案;(3)首先由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′与AE在同一直线上,即BF与AB′的交点是G,然后设BF与AE′的交点为H,可证得△BAG≌△HAG,继而证得结论.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC,∴∠ABF+∠CBF=90°,∵AE⊥BF,∴∠ABF+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∴△ABE≌△BCF.…(4分)(2)解:∵正方形面积为3,∴AB=,…(5分)在△BGE与△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE,…(7分)∴,又∵BE=1,∴AE2=AB2+BE2=3+1=4,∴S△BGE=×S△ABE==.…(8分)(3)解:没有变化.…(9分)理由:∵AB=,BE=1,∴tan∠BAE==,∠BAE=30°,…(10分)∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′公共,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴∠DAE′=∠B′AE′=∠BAE=30°,∴AB′与AE在同一直线上,即BF与AB′的交点是G,设BF与AE′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,∴△BAG≌△HAG,…(11分)∴S四边形GHE′B′=S△AB′E′﹣S△AGH=S△AB E﹣S△ABG=S△BGE.∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.…(12分)8.(2012•丽水)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解题思路:(1)根据三角函数求E点坐标,运用待定系数法求解;(2)在Rt△OGE中,运用三角函数和勾股定理求EG,OG的长度,再计算面积;(3)分两种情况讨论求解:①点Q在AC上;②点Q在AB上.求直线OP与直线AC的交点坐标即可.解答:解:(1)在Rt△OCE中,OE=OCtan∠OCE==,∴点E(0,2).设直线AC的函数解析式为y=kx+,有,解得:k=.∴直线AC的函数解析式为y=.(2)在Rt△OGE中,tan∠EOG=tan∠OCE==,设EG=3t,OG=5t,OE==t,∴,得t=2,故EG=6,OG=10,∴S△OEG=.(3)存在.①当点Q在AC上时,点Q即为点G,如图1,作∠FOQ的角平分线交CE于点P1,由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,y=﹣=,∴点P1(10,).②当点Q在AB上时,如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2,过点Q作QH⊥OB于点H,设OH=a,则BH=QH=14﹣a,在Rt△OQH中,a2+(14﹣a)2=100,解得:a1=6,a2=8,∴Q(﹣6,8)或Q(﹣8,6).连接QF交OP2于点M.当Q(﹣6,8)时,则点M(2,4).当Q(﹣8,6)时,则点M(1,3).设直线OP2的解析式为y=kx,则2k=4,k=2.∴y=2x.解方程组,得.∴P2();当Q(﹣8,6)时,则点M(1,3),同理可求P2′(),P3();如图,有QP4∥OF,QP4=OF=10,点P4在E点,设P4的横坐标为x,则点Q的横坐标为x﹣10,∵y Q=y P,直线AB的函数解析式为y=x+14,∴(x﹣10)+14=﹣x+2,解得:x=,可得:y=,∴点P4(,),当Q在BC边上时,如图,OQ=OF=10,点P5在E点,∴P5(0,2),综上所述,满足条件的P点坐标为(10,)或()或()或(,)或(0,2).9.(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.解题思路:(1)A、B点为抛物线与x轴交点,令y=0,解一元二次方程即可.(2)根据题意求出△ACD中AC边上的高,设为h.在坐标平面内,作AC的平行线,平行线之间的距离等于h.根据等底等高面积相等,可知平行线与坐标轴的交点即为所求的D点.从一次函数的观点来看,这样的平行线可以看做是直线AC向上或向下平移而形成.因此先求出直线AC的解析式,再求出平移距离,即可求得所作平行线的解析式,从而求得D点坐标.注意:这样的平行线有两条,如答图1所示.(3)本问关键是理解“以A、B、M为顶点所作的直角三角形有且只有三个”的含义.因为过A、B点作x轴的垂线,其与直线l的两个交点均可以与A、B点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A、B点构成直角三角形.从而问题得解.注意:这样的切线有两条,如答图2所示.解答:解:(1)令y=0,即=0,解得x1=﹣4,x2=2,∴A、B点的坐标为A(﹣4,0)、B(2,0).(2)S△ACB=AB•OC=9,在Rt△AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),C(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣1,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣1,),D2(﹣1,).(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MF•sin∠MFE=3×=,FN=MF•cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.10.(2012•杭州)如图,AE切⊙O于点E,A T交⊙O于点M,N,线段OE交A T于点C,OB⊥A T于点B,已知∠EA T=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之比.解题思路:(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与A T垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个,如图所示,每小图2个,顶点在圆上的三角形,延长EO与圆交于点D,连接DF,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.解答:解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥A T,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.11.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.解题思路:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤时,当<t≤2时,当2<t≤时,当<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.12.(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.解题思路:(1)利用待定系数法求抛物线的解析式.因为已知A(3,0),所以需要求得B点坐标.如答图1,连接OB,利用勾股定理求解;(2)由∠PBO=∠POB,可知符合条件的点在线段OB的垂直平分线上.如答图2,OB的垂直平分线与抛物线有两个交点,因此所求的P点有两个,注意不要漏解;(3)如答图3,作MH⊥x轴于点H,构造梯形MBOH与三角形MHA,求得△MAB面积的表达式,这个表达式是关于M点横坐标的二次函数,利用二次函数的极值求得△MAB面积的最大值.解答:解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB==∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得,解得,∴y=﹣x2+x+.(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,),O(0,0),∴直线l的表达式为y=.代入抛物线的表达式,得﹣x2+x+=;解得x=1±,∴P(1±,).(3)如答图3,作MH⊥x轴于点H.设M(x m,y m),则S△MAB=S梯形MBOH+S△MHA﹣S△OAB=(MH+OB)•OH+HA•MH﹣OA•OB =(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣∵y m=﹣x m2+x m+,∴S△MAB=x m+(﹣x m2+x m+)﹣=x m2+x m=(x m﹣)2+∴当x m=时,S△MAB取得最大值,最大值为.13.(2012•铜仁地区)如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.解题思路:(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.解答:解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组…3分解得:∴抛物线的解析式为y=x2﹣4x+3 …5分(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)…7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)…10分(3)如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△AC P1+S△ACE==4+|y|…11分∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解…12分②当P2(1,2)时,S四边形AP2CE=S△AC P2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.…14分14.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.解题思路:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△AGH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.解答:解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△AGH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m=.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012中考数学压轴题及答案1.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (11浙江温州)如图,在Rt ABC △中,90A ∠= ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使P Q R △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.7.(2011浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2011淅江宁波)2011年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(2011淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF . 则:AD AB 的值是 ,AD AB ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M = ∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.(2011山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形. ②本题中所求边长或面积都用含a 的代数式表示.求出正方形MEFN 的面积;若不能,请说明理由.14.(2011山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平移4个单位,然后再向上平移2个单位,得到线段P 1Q 1,则点P 1的坐标为 ,点Q 1的坐标为 .15.(2011湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.16.(2011年浙江省绍兴市)将一矩形纸片OABC放在平面直角坐标系中,(00)O,,(60)A,,(03)C,.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动23秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2011年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2011年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60 后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2011年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2011年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.21.(2011年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由22.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--abac a b 44,22)23.(天津市2011年)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.(2011年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △; (3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.25. (2011年上海市)已知24AB AD ==,,90DAB ∠= ,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.26. (2011年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30 的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30 的3km处,点A在点M的正西方向,点D在点M的南偏西60 的23km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道建设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27.(2011年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?cm),求y与t之间的函数关系式;(2)设△AQP的面积为y(2(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2011年江苏省南通市)已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.29.(2011年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)压轴题答案1.解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4) 所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,BD=2222112BG DG +=+=BE=22223332BO OE +=+=DE=22222425DF EF +=+=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆ .2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠, ∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´, ∴△A ´TA 是等边三角形,且A T TP '⊥,∴)t 10(2360sin )t 10(TP -=︒-=,)t 10(21AT 21AP P A -===',○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A ,∴23)4t 10(21)t 10(83S 22⨯----=34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅=综上所述,S 的最大值是34,此时t 的值是2t 0≤<. 3. 解:(1) Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠= ,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯= . (2)QR AB ∥,90QRC A ∴∠=∠= .C C ∠=∠ ,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+.(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠= ,290C ∠+∠= ,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===. tan QR BA C CR CA== , 366528x -+∴=,152x ∴=. 综上所述,当x 为185或6或152时,PQR △为等腰三角形.4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC =,即43x AN =. ∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC =,即45x MN =. ∴ 54MN x =, ∴ 58OD x =. …………………5分 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA .∴ BM QM BC AC=. ∴ 55258324x BM x ⨯==,25424AB BM MA x x =+=+=.∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==. ∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x .又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形.∴ FN =BM =4-x .∴ ()424PF x x x =--=-.又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分 5. 解:(1)(-4,-2);(-m,-k m ) (2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,的以直线AB 的解析式为 343y x =-+(2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=32,DH=GH+GD=32+23=532, ∴GB=32BD=32,OH=OE+HE=OE+BG=37222+= ∴D(532,72) (3)设OP=x,则由(2)可得D(323,22x x ++)若ΔOPD 的面积为:133(2)224x x += 解得:23213x -±=所以P(23213-±,0)(1)①,BG DE BG DE =⊥ ………………………………………………………………2分②,BG DE BG DE =⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠=∴BCG DCE ∠=∠…………………………………………………………………1分 ∴BCG DCE ∆≅∆(SAS )………………………………………………………1分∴BG DE = C B G C D E∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >)∴ BC CG b DC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆ ………………………………………………………………………1分∴CBG CDE ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+ 又∵3a =,2b =,k =12∴ 222222365231()24BD GE +=+++= ………………………………………………1分 ∴22654BE DG += ………………………………………………………………………1分(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分 (2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴同理在③二图中分别可得P点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),E点在A点下方不可能.综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-83,4)、P(8,4)、P(4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2bP -.由已知可得2PE DE =即222232(8)(42)42b b b b ⨯-+-=+化简得2332640b b -+=解得 121883b b PP ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -;第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即2222(48)(42)4b b b b -+-=+化简得22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即2222844b b +=+解得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下11. 解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米, 由题意得1201023x x+=, ··························································································· 2分 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ··········································· 4分 (2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元. ····················· 6分 (3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=,························································· 8分整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ··························································· 9分 ∴这批货物有8车. ······························································································ 10分12. 解:(1)21244a a ,,. ················································································ 3分 (2)相等,比值为2. ·········· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠= ,90HGF ∠= ,90DHG CGF DGH ∴∠=∠=-∠ ,HDG GCF ∴△∽△,12DG HG CF GF ∴==, 22CF DG x ∴==. ······························································································· 6分 同理BEF CFG ∠=∠.EF FG = , FBE GCF ∴△≌△,14BF CG a x ∴==-. ··························································································· 7分 CF BF BC += ,12244x a x a ∴+-=, ······································································································· 8分解得214x a -=. 即214DG a -=. ································································································· 9分 (4)2316a , ········································································································ 10分2271828a -. 12分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形. 14.解:(1)由题意可知,()()()131-+=+m m m m . 解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分 (3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A (-1,0),B (3,0);则设抛物线的解析式为)3)(1(-+=x x a y (a ≠0)又点D (0,-3)在抛物线上,∴a (0+1)(0-3)=-3,解之得:a =1∴y =x 2-2x -3 ····························································································· 3分 自变量范围:-1≤x ≤3 ············································································· 4分解法2:设抛物线的解析式为c bx ax y ++=2(a ≠0)根据题意可知,A (-1,0),B (3,0),D (0,-3)三点都在抛物线上∴⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a ,解之得:⎪⎩⎪⎨⎧-=-==321c b a∴y =x 2-2x -3 ········································································ 3分 自变量范围:-1≤x ≤3······················································· 4分(2)设经过点C “蛋圆”的切线CE 交x 轴于点E ,连结CM , 在Rt △MOC 中,∵OM =1,CM =2,∴∠CMO =60°,OC =3 在Rt △MCE 中,∵OC =2,∠CMO =60°,∴ME =4∴点C 、E 的坐标分别为(0,3),(-3,0) ············································ 6分∴切线CE 的解析式为3x 33y +=····················································· 8分(3)设过点D (0,-3),“蛋圆”切线的解析式为:y =kx -3(k ≠0) ················· 9分由题意可知方程组⎪⎩⎪⎨⎧--=-=3232x x y kx y 只有一组解 即3232--=-x x kx 有两个相等实根,∴k =-2 ······································· 11分 ∴过点D “蛋圆”切线的解析式y =-2x -3 ·············································· 12分(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤,149t ∴=. ②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQ QFAC OC +== .253QF t ⎛⎫∴=+ ⎪⎝⎭.EF QF QE QF OQ ∴=-=- 22533t t ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭2(51)(51)3t =-+-.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 6326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.17. 解:(1) 直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -,··························································································· 1分 点A C ,都在抛物线上,。