运筹学第三版练习习题
运筹学教程(第三版)习题答案(第一章)
( 3)
max Z = x1 + x 2 6 x1 + 10 x 2 ≤ 120 st . 5 ≤ x1 ≤ 10 5≤ x ≤8 2
( 4)
page 2 3 May 2011
运筹学教程
第一章习题解答
(1) min Z = 2 x1 + 3 x 2 4 x1 + 6 x 2 ≥ 6 st . 2 x1 + 2 x 2 ≥ 4 x ,x ≥ 0 1 2 1 , Z = 3是一个最优解 3
min st x 1 Z = 2 x1 − 2 x 2 + 3 x 3 − x1 + x 2 + x 3 = 4 − 2 x1 + x 2 − x 3 ≤ 6 ≤ 0 , x 2 ≥ 0 , x 3 无约束
(1)
()
page 5 3 May 2011
School of Management
(1)
(2)
page 8 3 May 2011
运筹学教程
第一章习题解答
(1) max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ≥ 0( j = 1, L , 6) ,
运筹学教程(第二版) 运筹学教程(第二版) 习题解答
安徽大学管理学院
洪 文
电话: 电话:5108157(H),5107443(O) , E-mail: Hongwen9509_cn@
规划数学(运筹学)第三版课后习题答案 习 题 2
习题21图解法解下列目标规划问题:1122334min (2)f Pd P d P d d -+--=+++..s t 121140x x d d -+++-=122250x x d d -+++-=13324x d d -++-=1244430x x d d -+++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=P 1:AD 直线上侧,P 2:四边形ABCD,P 3:四边形ABEF ,P 4:四边形ABEF 。
故该问题的满意解为四边形ABEF 内的点,所有目标都达到了。
2用单纯形法求解以下目标规划问题的满意解:(1)1122334min (53)f Pd P d P d d -+--=+++..s t 121180x x d d -+++-=122290x x d d -+++-=13370x d d -++-=24445x d d -++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=(2)1122234min ()f P d d P d P d -+--=+++..s t 12114580x x d d -+++-=12224248x x d d -+++-=123381080x x d d -+++-=1445x d d -++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=5案例练习(1)某厂生产甲、乙两种产品,每件利润分别为20、30元。
这两种产品都要在A 、B 、C 、D 四种设备上加工,每件甲产品需,而这4种设备正常生产能力依次为每天12、8、16、12机时。
此外,A 、B 两种设备每天还可加班运行。
试拟订一个满足下列目标的生产计划: 1P :两种产品每天总利润不低于120元;2P :两种产品的产量尽可能均衡;3P :A 、B 设备都应不超负荷,其中A 设备能力还应充分利用(A 比B 重要3倍)。
规划数学(运筹学)第三版课后习题答案 习 题 1(1)
习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。
⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。
⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。
运筹学教程(第三版)习题答案(第一章)
b 3/2 1
c x1 0 1 0
d x2 1 0 0
0 x3 5/14
0 x4 -3/4
-2/14 10/35 -5/14d+2/14c 3/14d-10/14c
School of Management
运筹学教程
第一章习题解答
之间时最优解为图中的A点 当c/d在3/10到5/2之间时最优解为图中的 点 ; 当 在 到 之间时最优解为图中的 c/d大于 且c大于等于 时最优解为图中的 点;当c/d 大于5/2且 大于等于 时最优解为图中的B点 大于等于0时最优解为图中的 大于 小于3/10且 d大于 时最优解为图中的 点 ; 当 c/d大于 大于0时最优解为图中的 小于 且 大于 时最优解为图中的C点 大于 5/2且c小于等于 时或当 小于 小于等于0时或当 小于3/10且d小于 时最优解 小于0时最优解 且 小于等于 时或当c/d小于 且 小于 为图中的原点。 为图中的原点。
page 7 14 March 2012
School of Management
运筹学教程
第一章习题解答
对下述线性规划问题找出所有基解, 1.3 对下述线性规划问题找出所有基解,指出哪 些是基可行解,并确定最优解。 些是基可行解,并确定最优解。
max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ≥ 0( j = 1, L , 6) ,
School of Management
规划数学(运筹学)第三版课后习题答案-习-题-1(1)
习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。
⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。
⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。
运筹学习题(清华大学 第三版)
培训问题
某工厂举办“技工”培训班,由受过培训合格的技
师负责培训,每名技师负责培训10名学员,培训一个月
为一期,根据以往经验,每10名学员有7名能成为合格 技工。合格技工全部留用,不合格不予留用。在今后三
个月内,厂方需要技工人数为:1月份100人,2月份150
人,3月份200人,已知年初有合格技工130人。工资支 付标准如下:正受训的学员,每人每月400,合格技工 中上班的每人每月1200,部份留用但暂时还不需要上班 的每人每月800。制订一个工资总额最小的培训方案。
假定4月份至少需要250名技工。
库存问题
某公司在今后四个月内需租用仓库堆放物资。已知各月所需仓库面积如下:
仓库租借费用,与租借合同期限有关,越长则折扣越大,具体如下:
该厂根据需要,在各月初办理租借合同,可同时签订不同面积、不 同期限的合同。请制定一个费用最小的租借方案。
生产存贮问题
一个合资食品企业面临某种食品一至四月的生产计划问题。四 个月的需求分别为4500吨、3000吨、5500吨、4000吨。目前(一月 初)该企业有100个熟练工人,正常工作时每人每月可以完成40吨, 每吨成本200元。由于市场需求浮动较大,该企业可通过以下方法 调节生产:
2 某糖果厂用原料A,B,C加工成三种不同牌号的糖果甲、乙、丙。已知 各种牌号糖果中A,B,C含量、原料成本,各种原料的每月限制用量, 三种牌号糖果的单位加工费及售价如下表所示。问该厂每月生产这三 种牌号糖果各多少kg,使其获利最大。试建立这个问题的线性规划的 数学模型。
3
一艘货轮分前、中、后三个舱位,它们的容积与最大允许载重 量如表1所示。现有三种货物待运,已知有关数据列于表2。 又为了航运安全,前、中、后舱的实际载重量大体保持各舱最大允 许载重量的比例关系。具体要求:前、后舱分别与中舱之间载重量 比例的偏差不超过15%,前、后舱之间不超过10%。问该货轮应装 载A、B、C各多少件运费收入才最大?试建立这个问题的线性规划 模型
规划数学(运筹学)第三版课后习题答案 习 题 1(1)
习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。
⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。
⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。
运筹学第三版课后习题答案
运筹学第三版课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涉及到数学、统计学、经济学等多个学科的知识,可以应用于各个领域,如物流管理、生产调度、供应链优化等。
而《运筹学》第三版是一本经典的教材,它系统地介绍了运筹学的基本概念、方法和应用。
本文将针对该教材的课后习题进行解答,帮助读者更好地理解和掌握运筹学的知识。
第一章:线性规划1. 习题1.1:求解线性规划问题的常用方法有哪些?答:求解线性规划问题的常用方法包括单纯形法、对偶理论、整数规划等。
其中,单纯形法是最常用的方法,它通过迭代寻找目标函数值最小(或最大)的解。
2. 习题1.2:什么是线性规划的对偶问题?如何求解线性规划的对偶问题?答:线性规划的对偶问题是指通过原始问题的约束条件构造一个新的问题,该问题的目标是最大化(或最小化)原始问题的目标函数值。
求解线性规划的对偶问题可以使用对偶理论,通过将原始问题转化为对偶问题的等价形式,再利用对偶问题的特性进行求解。
第二章:整数规划1. 习题2.1:什么是整数规划问题?与线性规划问题有何不同?答:整数规划问题是指决策变量的取值必须为整数的线性规划问题。
与线性规划问题相比,整数规划问题的解空间更为有限,求解难度更大。
整数规划问题在实际应用中常常涉及到资源的离散分配、路径选择等问题。
2. 习题2.2:列举几个整数规划问题的应用场景。
答:整数规划问题的应用场景包括生产调度、物流路径优化、设备配置等。
例如,在生产调度中,需要确定每个生产批次的数量和时间,以最大化产能利用率和最小化生产成本。
第三章:动态规划1. 习题3.1:什么是动态规划?它的基本思想是什么?答:动态规划是一种通过将问题划分为多个子问题,并保存子问题的解来求解原问题的方法。
其基本思想是利用子问题的解构建全局最优解,从而避免重复计算和提高求解效率。
2. 习题3.2:动态规划在哪些问题中有应用?答:动态规划在最短路径问题、背包问题、序列比对等问题中有广泛的应用。
运筹学教程(第三版)习题答案(第一章)
x1 0 0 0 0.75
maxZ 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
st
8x1 3x1
x2 x6
4x3 0
2x5
10
xj 0( , j 1, ,6)
基可行解
x2
x3
x4
x5
x6
3 0 0 3.5 0
0 1.5 0 8 0
00350
0 0 0 2 2.25
运筹学教程
第一章习题解答
讨论cl.,5d的上值题如(1何)中变,化若,目使标该函问数题变可为行m域ax的Z每=个cx顶1 +点d依x2, 次使目标函数达到最优。
解:得到最终单纯形表如下:
Cj→
c
CB 基 b x1
d x2 3/2 0
c x1 1 1
j
0
d
0
0
x2
x3
x4
1
5/14
-3/4
0
-2/14
X 0是 max Z CX 的最优解,故
CX 0 CX * 0;
X *是 max Z C * X 的最优解,故
C * X * C * X 0 0;
(C * C )( X * X 0 )
C(X 0 X *) C*(X * X 0) 0
page 24 5/25/2020
School of Management
C T X ( 2 ) , 所以 X 也是最优解。
page 23 5/25/2020
School of Management
运筹学教程
第一章习题解答
1.10 线性规划问题max Z=CX,AX=b,X≥0,设 X0为问题的最优解。若目标函数中用C*代替C后,问题 的最优解变为X*,求证
运筹学第三版课后习题答案第7章网络计划——第十三章博弈论
第7章网络计划7.1(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序 A B C D E F G紧前工序--- A A、C -B、D、E、F紧后工序D,E G E G G G -表7-17工序 A B C D E F G H I J K L M 紧前工序- - - B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-【解】(1)节点图:箭线图:(2)节点图:箭线图:7.2根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18工序 A B C D E F G 紧前工序- A A B,C C D,E D,E 工序时间(周)9 6 12 19 6 7 8【解】(1)网络图(2)网络参数工序 A B C D E F G最早开始0 9 9 21 21 40 40最迟开始0 15 9 21 34 41 40总时差0 6 0 0 13 1 0(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.3表7-19给出了项目的工序明细表。
表7-19工序 A B C D E F G H I J K L M N 紧前工序- - - A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8 5 7 12 8 17 16 8 14 5 10 23 15 12 (1)绘制项目网络图。
(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差 工序 tT EST EFT LST LF 总时差S 自由时差F A 8 0 8 9 17 9 0 B 5 0 5 0 5 00 C 7 0 7 7 7 0 0 D 12 8 20 17 29 9 9 E 8 5 13 5 13 0 0 F 17 7 24 7 24 0 0 G 16 13 29 13 29 0 0 H 8 29 37 29 37 0 0 I 14 13 27 33 47 20 20 J 5 13 18 19 24 6 6 K 10 37 47 37 47 0 0 L 23 24 47 24 47 0 0 M154762 47 62 0 0 N 12 47 59506233(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G ,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。
运筹学1至6章习题参考答案
0
2
11/8
0
-3/4
0
9
X4
0
0
0
9/8
1
7/16
-1/4
27/4
6
X1
3
1
0
-1/2
0
1/4
0
3
M
X2
2
0
1
[11/16]
0
-3/32
1/8
1/8
0.181818
C(j)-Z(j)
0
0
0
0
-9/16
-1/4
37/4
X3进基、X2出基,得到另一个基本最优解。
C(j)
3
2
-0.125
6重油
7残油
辛烷值
80
115
105
蒸汽压:公斤/平方厘米
1.0
1.5
0.6
0.05
每天供应数量(桶)
2000
1000
1500
1200
1000
1000
800
问炼油厂每天生产多少桶成品油利润最大,建立数学模型。
解设xij为第i(i=1,2,3,4)种成品油配第j(j=1,2,…,7)种半成品油的数量(桶)。
10
-5
1
0
0
0
* Big M
5
3
1
0
0
0
X1
10
1
3/5
1/5
0
1/5
2
X4
0
0
4
-9
1
1
25
C(j)-Z(j)
0
-11
-1
运筹学第3版熊伟编著习题答案
求没有限制,由于仓库容量有限,仓库最多库存产品 A1000 件,1 月初仓库库存 200 件。1~
6 月份产品 A 的单件成本与售价如表 1-25 所示。
表 1-25
月份
1
2
3
4
5
6
产品成本(元/件)
300 330 320 360
360
300
销售价格(元/件)
350 340 350 420
410
340
(1)1~6 月份产品 A 各生产与销售多少总利润最大,建立数学模型;
(2)当 1 月初库存量为零并且要求 6 月底需要库存 200 件时,模型如何变化。
【解】设 xj、yj(j=1,2,…,6)分别为 1~6 月份的生产量和销售量,则数学模型为
最新精品文档,知识共享!
max Z 300x1 350 y1 330x2 340 y2 320x3 350 y3 360x4
第1章 线性规划
1.1 工厂每月生产 A、B、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源
限量及单件产品利润如表 1-23 所示.
表1-23
产品 资源
A
B
C
资源限量
材料(kg)
1.5
1.2
4
2500
设备(台时)
3
1.6
1.2
利润(元/件)
10
14
12
1400
根据市场需求,预测三种产品最低月需求量分别是 150、260 和 120,最高月需求是 250、310 和 130.试建立该问题的数学模型,使每月利润最大. 【解】设 x1、x2、x3 分别为产品 A、B、C 的产量,则数学模型为
xj 0, j 1, 2, ,10
管理运筹学第三版习题答案(全)
(1) , , , ,最优目标函 数18.5。
(2)约束条件2和3,对偶价格为2和3.5,约束条件2和3的常数 项增加一个 单位目标函 数分别提高2和3.5。
(3)第3个,此时最优目 标函数值为22。
(4)在负无穷到5.5的范围内 变化,其最优解不 变,但此时最优 目标函数值 变化。
(5)在0到正无 穷的范围内 变化,其最优解不 变,但此时最优 目标函数值 变化。
3.解:
(1).标准形式:
(2).标准形式:
(3).标准形式:
4.解:
标准形式:
松弛变量(0,0)
最优解为 =1,x =3/2.
5.解:
标准形式:
剩余变量(0.0.13)
最优解为x1=1,x2=5.
6.解:
(1)最优解为x1=3,x2=7.
(2)
(3)
(4)
(5)最优解为x1=8,x2=0.
(6)不变化。因为当斜率 ,最优解不变,变化后斜率 为1,所以最优解 不变.
(4)当 不变时, 在3.75到正无 穷的范围内 变化,最优解不变 ;
当 不变时, 在负无穷到6.4的范围内 变化,最优解不变 。
(5)约束条件1的右边值在 变化,对偶价格仍 为0.057(其它同理)。
(6)不能,因为允许减 少的百分比 与允许增加 的百分比之 和 ,理由见百分 之一百法则 。
3.解:
x3+x6+2x8+x9+3x11+2x12+x13 420
x4+x7+x9+2x10+x12+2x13+3x14 10
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14 0
用管理运筹 学软件我们 可以求得此 问题的解为 :
最新运筹学(第三版课后习题答案第一章ppt课件
9 高
关心 员工 5
× 缓和(1,9)
正视(9,9)×
妥协(5,5) ×
1
× 回避(1,1)
低
压制(9,1)×
12 低
3 45 关心工作
67
89 高 组织 行 为学
四、冲突管理
3.冲突管理策略(三):
布坎南组织冲突的“组织—协调”四阶段模型
布坎南关于组织冲突的组织——协调四阶段模型提到了实现激发冲突的几 种方法。
运筹学(第三版)课后习题答案 第一章
1.4 (1)
1.5
1.6
1.7 (1)
1.12
华
章
组文 渊
织
行
第十章 冲突与冲突管理
为
学
Organizational Behavior
本章内容
冲突的基本概念
• 概念、特征 • 类型
冲突产生的根源
• 杜布林 • 纳尔逊和奎克 • 罗宾斯
二、冲突产生的根源
2.纳尔逊和奎克对冲突根源的分析
专业化
相互依赖性
结
共用资源
构
因
目标差异
素
职权关系
地位矛盾 管辖权的模糊
在一个组织中,责任界限不清楚,当发 生了一件无法界定责任的事件时,员工 们就会倾向于“推卸责任”,或避免接 触这件事,这样,关于问题的责任就产 生了冲突。
组织 行 为学
二、冲突产生的根源
在这个过程中.一方努力去抵消 另一方的封锁行为,因为另一方的
封锁行为将妨碍他达到目标 或损害他的利益。
罗宾斯
组织 行 为学
一、冲突的基本概念
1.冲突的概念
冲突是否存在不仅是一个客观性问题,也是一个主观的知觉问题。 冲突产生的必要条件是,存在某种形式的对立或不相容以及相互作用。 冲突的主体可以是组织、群体或个人,冲突的客体可以是利益、权力、资 源、目标、方法、意见、价值观、感情、程序、信息、关系等。 冲突是一个过程,它是从人与人、人与群体、人与组织、群体与群体、组 织与组织之间的相互关系和相互作用过程中发展而来的。
运筹学第3版熊伟编著习题答案(PDF版)
运筹学(第3版)习题答案第1章线性规划P36第2章线性规划的对偶理论P74第3章整数规划P88第4章目标规划P105第5章运输与指派问题P142第6章网络模型P173第7章网络计划P195第8章动态规划P218第9章排队论P248第10章存储论P277第11章决策论P304第12章多属性决策品P343第13章博弈论P371全书420页第1章线性规划1.1工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品资源材料(kg)设备(台时)利润(元/件)A1.5310B1.21.614C41.212资源限量25001400根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为max Z=10x1+14x2+12x3⎧1.5x1+1.2x2+4x3≤2500⎪3x+1.6x+1.2x≤140023⎪1⎪⎪150≤x1≤250⎨⎪260≤x2≤310⎪120≤x3≤130⎪⎪⎩x1,x2,x3≥01.2建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:每套窗架需要材料表1-24窗架所需材料规格及数量型号A型号B 长度(m)A1:2A2:1.5需要量(套)数量(根)23300长度(m)B1:2.5B2:2400数量(根)23问怎样下料使得(1)用料最少;(2)余料最少.【解】第一步:求下料方案,见下表。
方案B1B2A1A22.5221.5一2000二三四五六七八九十需要量110010101001020001100102002010012000030.58001200600900余料(m)00.50.51110第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则(1)用料最少数学模型为min Z =∑xjj =110⎧2x 1+x 2+x 3+x 4≥800⎪⎪x 2+2x 5+x 6+x 7≥1200⎪⎨x 3+x 6+2x 8+x 9≥600⎪x +2x +2x +3x ≥9007910⎪4⎪⎩x j ≥0,j =1,2,L ,10(2)余料最少数学模型为min Z =0.5x 2+0.5x 3+x 4+x 5+x 6+x 8+0.5x10⎧2x 1+x 2+x 3+x 4≥800⎪⎪x 2+2x 5+x 6+x 7≥1200⎪⎨x 3+x 6+2x 8+x 9≥600⎪x +2x +2x +3x ≥9007910⎪4⎪⎩x j≥0,j =1,2,L ,101.3某企业需要制定1~6月份产品A 的生产与销售计划。
运筹学(清华大学第三版)习题集
求解下述LP 问题解:依据单纯形理论,有以下计算:(1)令345,,x x x 为基变量、12,x x 为非基变量,可得1234512100840010160400112x x x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦, 解得312415282164124x x x x x x x =--⎧⎪=-⎨⎪=-⎩,代入目标函数,得12023z x x =++。
此时得到的解为(0,0,8,16,12)T X =,0z =。
由120z x ∂=>∂、230zx ∂=>∂可知,12,x x 取正值可使z 增大。
若令2x 取正值且1x 仍为0,由324528201601240x x x x x =-≥⎧⎪=≥⎨⎪=-≥⎩,可得2243x x ≤⎧⎨≤⎩,这说明2x 最大可以达到3,此时5x 将变为0,成为非变量。
(2)令234,,x x x 为基变量、15,x x 为非基变量,可得1234510101/22400101601001/43x x x x x ⎡⎤⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦,解得25315413/42/2164x x x x x x x =-⎧⎪=-+⎨⎪=-⎩,目标函数变为153924z x x =+-。
此时得到的解为(0,3,2,16,0)T X =,9z =。
由120zx ∂=>∂可知,1x 取正值可使z 增大。
若令1x 取正值且5x 仍为0,由2314130201640x x x x x =≥⎧⎪=-≥⎨⎪=-≥⎩,可得1124x x ≤⎧⎨≤⎩,这说明1x 最大可以达到2,此时3x 将变为0,成为非基本变量。
(3)令124,,x x x 为基变量、35,x x 为非基变量,可得解(2,3,0,8,0)T X =,13z =。
此时3511324z x x =-+,可知此时应让5x 取正值,即进入基变量。
规划数学(运筹学)第三版课后习题答案 习题6
S3
1
f2 (S2 )
max {g
0 x2 S2
2
(
x2
)
f3(S2
x2 )}
(单位:百万元)
f2 (S2 )
max {g
0 x2 S2
2
(
x
2
)
f3(S2
x2 )}
2
3
4
f3 (S3 )
x
2
2 120+150 3 120+165 150+150 4 120+175 150+165 170+150 5 120+190 150+175 170+165 180+150
习题 6 1、 某公司打算向它的三个营业区增设 6 个销售店,每个营业区至少增设 1 个。各营业区每
年增加的利润与增设的销售店个数有关,具体关系如表 6-19 所示。试规划各营业区应增 设销售店的个数,以使公司总利润增加额最大。
表 6-24 增设销售店个数
1
营业区 A 100(万元)
营业区 B 120(万元)
营业区 C 150(万元)
2
160
ቤተ መጻሕፍቲ ባይዱ
150
165
3
190
170
175
4
200
180
190
k
3
f3
(S3
)
max{g
x3 S3
3
(
x3
)}
表1
x3
g3(x3)
1
2
3
4
S3
1 150
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、求下列线性规划的对偶问题
121212
12121max =6050240
26..25,20z x x x x x x s t x x x x ++≤⎧⎪-+≤-⎪⎨
+≤⎪⎪≥⎩() 12
121
2122max =24284648
9..7,0
z x x x x x s t x x x ++=⎧⎪≤⎪
⎨≤⎪⎪≥⎩() 1234
14123413234
12343min =2632520..465223230
,,0,z x x x x x x x x x x s t x x x x x x x x x +--+≤⎧⎪
+++=⎪⎪+≥⎨⎪≤++≤⎪⎪≥⎩()无非负要求
8、用对偶单纯形法求解
12121212
min =201056..228,0z x x x x s t x x x x ++≥⎧⎪+≥⎨⎪≥⎩
9、现有线性规划问题(共6小题)
123
123123123123max =2322153..4,,0
z x x x x x x x x x s t x x x x x x -+-+≤⎧⎪--≥-⎪⎨-+≤⎪⎪≥⎩ (1)用单纯形法求最优解和资源1、2、3的影子价格。
(2)如果
12315203442b b b ⎧⎫⎧⎫⎧⎫
⎪⎪⎪⎪⎪⎪
⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪
⎩⎭
⎩⎭⎩⎭由变成,求最优解; (3)如果3x 的价值系数由1变为2,最优解该如何变化? (4)如果1x 的价值系数由2变为3,最优解该如何变化? (5)如果3x 的系数
3132333c 14231211a a a ⎧⎫⎧⎫⎧⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎩⎭⎩⎭⎩⎭由变成,最优解该如何变化?
(6)如果增加一个新的约束条件1232+260x x x +≤,问最优解该如何变化?
10、某木器厂生产椅子和桌子两种产品,已知售出每把椅子可获利15元,售出一张桌子可获利30元。
在生产过程中有两个关键工序:精刨和装配,已知每只椅子需要4小时的精刨
和2小时的装配,每张桌子需要5小时的精刨和4小时的装配。
已知该厂精刨的生产能力是200小时,装配的能力是240小时。
根据市场预测椅子的最大需求量是40把,桌子的最大需求量是28张,经理希望最大产量不超过需求量。
(1)试用线性规划模型求解该厂最佳生产计划安排。
(2)假设最新市场预测表明椅子可以销售30把,桌子35张。
这样是否会改变最优生产计划安排(变化后若为小数,需运用分支定界法进一步求解)。
11、一个木材储运公司有很大的仓库用以储运出售木材。
由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后出售。
已知该公司
仓库的最大储存量为3
20万米,储存费用为+u (70100)元/3
万米,式中u 为储存时间(季度
数)。
已知每季度的买进卖出价及预计的销售量如表9-5所示。
由于木材不宜久储,所有库
存木材应于每年秋末售完,试建立这个问题的线性规划模型。
12、用最小费用法建立下列运输规划的初始方案,并求最优解和最小运费。
i s
20 30 50
j d 25 50 25
13、求解下列运输规划问题。
下列表中的数据是某公司的甲、乙、丙三个分厂向公司所属四个门市部运送单位产品的运费,以及甲、乙、丙三个分厂的生产量和四个门市部(1、2、3、4)的需求量。
请给出总运费最低的运输方案及最低的运费值。
14、用表上作业法求以下运输问题的最优解。
15.整数规划问题:用分支定界法求解整数规划
12
121212max 503061370
..5233
,0,z x x x x s t x x x x =++≤⎧⎪
+≤⎨⎪≥⎩且是整数。
第三章
1.计算如图9—1所示的从A 到E 的最短路线及其长度。
2.有一部货车每天沿着公路的四个零售店卸下6箱货物,如果各零售店因出售该货物所得的利润如表9—10,试求在各零售店各卸下几箱,能使获得总利润最大?其值是多少?
区设置不同数量的销售店,每月可得到的利润如表9—11所示。
试问在各个地区应如何设置销售店,才能使每月获得的总利润最大?其值是多少?
3.用破圈法或避圈法求下面图9—2的最小生成树。
图9—2
4.求解下图的最小生成树,画出该最小生成树,并给出该最小生成树的权值。
边旁的数字为该边的权值。
6.试求下面网络从S 到T 的最短路(图上数字表示距离)。
见图9-3、9-4。
图
9-3
图9-4
7.求下列网络的最大流。
图
9-5
中边上的数字为(ij f ,ij c )。
图9-5
第一章
16. 有四个工人,要指派他们分别完成四项工作,每人做各项工作所消耗的时间如下表。
问如何分配工作可使总的消耗时间为最少?
17. 现有4台机器要安装四个不同的位置,每台机器装在不同位置的费用如下表,请制定一个总费用最少的安装计划。
第三章
1.计算下图所示的从A到E的最短路线及其长度。
2.有一部货车每天沿着公路的四个零售店卸下6箱货物,如果各零售店因出售该货物所得的利润如下表,试求在各零售店各卸下几箱,能使获得总利润最大?其值是多少?
第四章
1. 用破圈法或避圈法求图1的最小生成树。
图1
2. 求解图2的最小生成树,画出该最小生成树,并给出该最小生成树的权值。
边旁的数字为该边的权值。
图2
3. 试求下面网络从S 到T 的最短路(图上数字表示距离)。
见图3、4。
图3
图4
4.求下列网络的最大流。
图5中边上的数字为(ij f ,ij c )。
(1)
(2)
图5。