探索勾股定理优秀教案

合集下载

勾股定理优秀教案

勾股定理优秀教案

勾股定理优秀教案【篇一:探索勾股定理优秀教案】—1——2——3—1.1探索勾股定理1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()根a.20 b. 14 c. 24 d. 30 2.在rt△abc中,斜边ab=1,则ab2+bc2+ac2=()a.2 b. 4 c. 6d. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为()a.8 b. 64 c. 16 d. 324.直角三角形的两条直角边的比为3:4,斜边长25cm,则斜边上的高为()a.10cm b. 12cm c. 15cmd. 20cm15 第3题—4—【篇二:勾股定理教学设计与反思】教学设计【篇三:《勾股定理》教学设计】《勾股定理》教学设计创新整合点本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

教材分析这节课是苏科版《义务教育课程标准实验教科书》八年级(下)教材《勾股定理》第一节的内容。

勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。

2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。

3、解直角三角形内容在航空、航海、工程建筑、机械制造、工农业生产等各个方面都有着广泛的应用,并与生活息息相关。

学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。

《探索勾股定理》优秀教案

《探索勾股定理》优秀教案

1.1探索勾股定理(1)教学目标:知识与技能了解勾股定理的文化背景,体验勾股定理的探索过程。

过程与方法:让学生经历用面积法、拼图法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜测、验证的数学方法,体验从特殊到一般的逻辑推理过程。

情感态度与价值观:(1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国的悠久文化,激励学生发奋学习。

(2)让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。

情感、态度与价值观1.在勾股定理的探索过程中,体会数形结合思想,发展合情推理能力。

2.通过对勾股定理历史的了解,感受数学文化,激发学习热情。

3.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

教学重点:重点:探索和证明勾股定理。

经历探索及验证勾股定理的过程。

难点:用拼图的方法证明勾股定理。

【设计思路】本课教学时强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调小组之间的合作与交流,强化应用意识,培养学生多方面的能力。

让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。

教学过程:一、情景引入,示标导学师出示一幅图片,图片为2021年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。

提出本节课学习的1内容,点明课题。

并出示本节课应达成的目标。

设计说明:从现实生活中提出本节课学习的内容,激发学生探索勾股定理的兴趣。

同时为探索勾股定理提供背景资料。

二、自主学习合作释疑相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.师:现在请同学们也观察一下,你有什么发现?(根据学案纸上的提示,小组合作完成。

)探究1:等腰直角三角形三边之间的关系?问题1:地砖是由全等的等腰直角三角形拼接而成的,每个直角三角形都相邻三个正方形,这三个正方形面积间有怎样的关系?你是怎样看出来的?问题2:如果用等腰直角三角形三边长来分别表示这三个正方形的面积,又将反映三边怎样的数量关系?师:这是关于等腰直角三角形的面积与边长的关系,那么对于一般的直角三2角形这两个规律还成立吗?探究2:一般直角三角形三边之间的关系?问题3:等腰直角三角形满足上述关系,那么一般直角三角形呢?2、三个正方形A,B,C面积之间有什么关系?3、设:直角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c 之间的关系?教师指导学生合作讨论完成,并抽取学生回答小组的探究结果。

《探索勾股定理》教案设计有趣的勾股定理数学游戏

《探索勾股定理》教案设计有趣的勾股定理数学游戏

【前言】勾股定理是我们学习数学时最基础的知识之一。

作为一名优秀的数学老师,如何让学生在轻松愉快的氛围中掌握勾股定理呢?经过反复研究,我给大家带来了一个有趣的勾股定理数学游戏——《探索勾股定理》教案设计。

【教案设计】一、活动目的1.掌握勾股定理的基本概念和运用方法。

2.培养学生的逻辑思维和数学分析能力。

3.通过实践提高学生的空间想象能力。

二、活动准备1.游戏道具:带刻度的正方形模型和带刻度的平行四边形模型;固定长度的木棒。

2.活动环境:宽敞明亮的活动场地,大屏幕电视。

三、活动过程1.引导学生分工合作,每个小组从模型材料中制作出三角形。

2.学生在制作三角形之后,按照勾股定理的要求,测量并填写三角形每个角度及边长,同时对三角形面积进行计算。

3.根据已知数据(两个边长和一角度),学生利用勾股定理计算三角形第三边的长度。

4.通过比较计算结果和测量结果,验证勾股定理的正确性。

5.游戏深入:每个小组在制作好的三角形上,用木棒连成等腰直角三角形,并在最长的一边上刻度,计算出每个直角边的长度。

6.游戏拓展:将学生为每个直角边涂上颜色,并在屏幕上显示每个小组制作的三角形成品,让学生自己观察,看看是不是每组画出的直角三角形边长总和相等。

四、活动收获1.游戏过程中,学生通过制作三角形、计算量角器的角度、测量三角形的边长和面积,以及应用勾股定理和弦正切公式,增进了对勾股定理的理解。

2.在游戏深入环节中,学生动手制作、参与计算,强化了对勾股定理的记忆和运用能力。

3.在游戏拓展环节中,学生通过观察屏幕上的成品图形,巩固了对勾股定理的理解,并加强了对图形的空间想象力。

【总结】通过这个游戏,学生不仅能够更深刻地理解勾股定理,而且在游戏的实践中提高了自己的数学能力。

教师也可以通过观察学生的实践表现,及时发现和纠正学生的错误思考方式,减少学生的盲点和误区。

让我们一起来探索勾股定理,让数学就在有趣的游戏中学起来!。

1.1探索勾股定理(第2课时)(教案)

1.1探索勾股定理(第2课时)(教案)
此外,实践活动的设计还可以更加丰富多样。例如,可以让学生走出教室,到校园中寻找直角三角形,并运用勾股定理解决实际问题。这样的教学方式有助于学生将理论知识与实际生活紧密结合,提高学习的趣味性和实用性。
在学生小组讨论环节,我注意到有些小组在分享成果时,表达能力有待提高。为了提高ห้องสมุดไป่ตู้生的表达能力,我计划在今后的课堂中增加一些口语表达训练,如小组内轮流发言、总结观点等,帮助他们更加自信地展示自己的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升直观想象与数学建模能力:借助图形和实际案例,培养学生将实际问题转化为数学模型的能力,激发直观想象力。
3.强化数学运算与数据分析能力:在勾股数的寻找与应用过程中,锻炼学生的数学运算能力,学会从数据中提炼规律,解决问题。
4.增强数学应用意识:通过拓展勾股定理的应用场景,培养学生运用数学知识解决实际问题的意识,提高数学素养。
最后,总结回顾环节,我觉得可以让学生更多地参与进来,让他们谈谈自己在本节课中的收获和感悟。这样既能检验学生对知识点的掌握程度,又能提高他们的自我反思能力。
三、教学难点与重点
1.教学重点
-核心内容:勾股定理的证明、勾股数的识别与应用。
-重点讲解:
-通过多种方法(如几何拼贴、代数计算等)证明勾股定理,强调定理的普适性和重要性。
-识别勾股数,理解其概念,并能举例说明。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

探索勾股定理教学设计一

探索勾股定理教学设计一

探索勾股定理教学设计一第一篇:探索勾股定理教学设计一第一课时探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了结勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2 图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么a2+b2=c2我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

探索勾股定理优秀教案

探索勾股定理优秀教案

蚀课题膀1.1探索勾股定理蚆课型薂新授课螀授课薀时间肄教蚅学螀目螇标袆知识与技能莄用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.袀过程与方法膈让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.薈情感态度与价值观膃通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习罿重点蕿了解勾股定理的由来并能用它解决一些简单问题羆难点羂勾股定理的发现聿方法羀教具蚈教学过程羅教师活动腿学生活动肇设计意图膆第一环节:创设情境,引入新课螄2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.艿第二环节:探索发现勾股定理蒈1.探究活动一膂独立思考并回答问题填写表格观察、计算、探讨、归纳进一步发现一般直角三角形的性质独立完成用自己的语言进行表达紧扣课题,自然引入探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节议一议意在让学生在结1.1探索勾股定理1A 2.在A 3A 4A。

数学勾股定理教案优秀7篇

数学勾股定理教案优秀7篇

数学勾股定理教案优秀7篇篇一:《勾股定理》优秀教案篇一一、学生学问状况分析本节将利用勾股定理及其逆定理解决一些详细的实际问题,其中须要学生了解空间图形、对一些空间图形进行绽开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了肯定的相识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的学问基础和活动阅历基础。

二、教学任务分析本节是义务教化课程标准北师大版试验教科书八年级(上)第一章《勾股定理》第3节。

详细内容是运用勾股定理及其逆定理解决简洁的实际问题。

当然,在这些详细问题的解决过程中,须要经验几何图形的抽象过程,须要借助视察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题实力和应用意识;一些探究活动详细肯定的难度,须要学生相互间的合作沟通,有助于发展学生合作沟通的实力。

三、本节课的教学目标是:1、通过视察图形,探究图形间的关系,发展学生的空间观念。

2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的实力及渗透数学建模的思想。

3、在利用勾股定理解决实际问题的过程中,体验数学学习的好用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。

四、教法学法1、教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参加意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过学问再现,孕育教学过程;(2)从学生活动动身,顺势教学过程;(3)利用探究探讨手段,通过思维深化,领悟教学过程。

2、课前打算教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。

五、教学过程分析本节课设计了七个环节、第一环节:情境引入;其次环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:沟通小结;第七环节:布置作业。

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

探索勾股定理优秀教案

探索勾股定理优秀教案

探索勾股定理【课时安排】2课时【第一课时】【教学目标】用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

【教学重难点】用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

【教学过程】一、第一环节:创设情境,引入新课。

内容:2002年世界数学家大会在我国北京召开,投影显示世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

意图:紧扣课题,自然引入,同时渗透爱国主义教育。

二、第二环节:探索发现勾股定理。

(一)探究活动一:1.内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。

通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

(二)探究活动二:1.内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积)左图右图(3)你是怎样得到正方形C 的面积的?与同伴交流。

(学生可能会做出多种方法,教师应给予充分肯定。

)ABCC BA学生的方法可能有:方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214CS 。

方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452CS 。

勾股定理活动课教案(专业16篇)

勾股定理活动课教案(专业16篇)

勾股定理活动课教案(专业16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、合同协议、演讲致辞、规章制度、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, job reports, contract agreements, speeches, rules and regulations, planning plans, insights, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理活动课教案(专业16篇)教学工作计划的制定需要教师具备对课程和学生的深入了解,以确保教学目标的实现。

第1讲-探索勾股定理(教案)

第1讲-探索勾股定理(教案)
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表达式:a² + b² = c²,其中a、b为直角边,c为斜边。
-学会通过具体实例和图形验证勾股定理的正确性。
-能够运用勾股定理解决实际计算问题,如计算直角三角形的未知边长。
-了解勾股定理在生活中的应用,体会数学与实际生活的紧密联系。
举例:讲解勾股定理时,教师需强调直角三角形三边关系,特别是斜边与两个直角边的关系。通过列举不同直角三角形的例子,让学生观察、计算并总结出勾股定理。
3.增强学生的数据分析能力:通过解决实际问题,让学生掌握运用勾股定理进行数据处理和计算的方法,提高数据分析能力。
4.培养学生的数学应用意识:使学生认识到勾股定理在现实生活中的广泛应用,激发他们将数学知识应用于实际问题的兴趣和意识。
5.培养学生的团队合作精神:在小组讨论和验证勾股定理的过程中,培养学生相互协作、共同探究的合作精神。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《探索勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们在测量墙角或者搭建模型时,经常会遇到直角三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

1.1《探索勾股定理》教案

1.1《探索勾股定理》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.了解勾股定理的历史背景,体会数学在人类文明发展中的地位和作用。
本节课将引导学生通过观察、实践、探讨等环节,深入理解勾股定理,培养他们的逻辑思维能力和解决问题的能力。
二、核心素养目标
1.让学生通过探索勾股定理的过程,培养几何直观和逻辑思维能力,提高数学抽象和问题解决的核心素养。
2.引导学生运用勾股定理解决实际问题,培养数学建模和数学运算的核心素养。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《探索勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”(如测量墙壁斜面的长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和计算方法这两个重点。对于难点部分,如平方和的理解,我会通过实际例子和图示来帮助大家理解。

1.1探索勾股定理(第1课时)(教案)

1.1探索勾股定理(第1课时)(教案)
难点解析:学生在解决实际问题时,可能难以将问题转化为直角三角形的边长关系,需要教师引导学生分析问题,建立正确的数学模型。
(3)灵活运用勾股定理进行计算,特别是在涉及到无理数和近似值的情况下。
难点解析:学生在计算过程中可能对无理数的处理和近似值的取舍感到困惑,教师应教授相应的计算技巧,并强调计算准确性。
4.通过实际操作,探索勾股定理的证明方法,增强学生的空间想象力和逻辑思维能力。
5.了解勾股定理在实际生活中的应用,提高学生的应用意识。
本节课将结合教材内容,以实际问题引入勾股定理,引导学生通过观察、思考和讨论,探索并掌握勾股定理。
二、核心素养目标
《探索勾股定理》核心素养目标:
1.培养学生的逻辑推理能力,通过观察、分析和推理,理解并掌握勾股定理及其证明过程。
举例:通过实际案例,如房屋建筑中直角三角形的边长计算,强调勾股定理在实际生活中的应用。
2.教学难点
(1)理解勾股定理的证明过程,尤其是通过几何图形推导出定理的表达式。
难点解析:学生可能难以理解如何从直角三角形的性质推导出勾股定理,需要教师通过直观的图形演示和详细的步骤讲解,帮助学生理解。
(2)在实际问题中,如何正确运用勾股定理建立数学模型,解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明过程这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。

勾股定理优秀教学设计模板(通用5篇)

勾股定理优秀教学设计模板(通用5篇)

勾股定理优秀教学设计模板(通⽤5篇)勾股定理优秀教学设计模板(通⽤5篇) 在教学⼯作者实际的教学活动中,时常需要⽤到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学⽅案的设想和计划。

那么⼤家知道规范的教学设计是怎么写的吗?以下是⼩编为⼤家收集的勾股定理优秀教学设计模板(通⽤5篇),希望能够帮助到⼤家。

勾股定理优秀教学设计1 ⼀、教案背景概述: 教材分析:勾股定理是直⾓三⾓形的重要性质,它把三⾓形有⼀个直⾓的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。

它可以解决许多直⾓三⾓形中的计算问题,它是直⾓三⾓形特有的性质,是初中数学教学内容重点之⼀。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学⽣分析: 1、考虑到三⾓尺学⽣天天在⽤,较为熟悉,但真正能仔细研究过三⾓尺的同学并不多,通过这样的情景设计,能⾮常简单地将学⽣的注意⼒引向本节课的本质。

2、以与勾股定理有关的⼈⽂历史知识为背景展开对直⾓三⾓形三边关系的讨论,能激发学⽣的学习兴趣。

设计理念:本教案以学⽣⼿中舞动的三⾓尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学⽣对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富⽂化内涵,体验勾股定理的探索和运⽤过程,激发学⽣学习数学的兴趣,特别是通过向学⽣介绍我国古代在勾股定理研究和运⽤⽅⾯的成就,激发学⽣热爱祖国,热爱祖国悠久⽂化的思想感情,培养他们的民族⾃豪感和探究创新的精神。

教学⽬标: 1、经历⽤⾯积割、补法探索勾股定理的过程,培养学⽣主动探究意识,发展合理推理能⼒,体现数形结合思想。

2、经历⽤多种割、补图形的⽅法验证勾股定理的过程,发展⽤数学的眼光观察现实世界和有条理地思考能⼒以及语⾔表达能⼒等,感受勾股定理的⽂化价值。

3、培养学⽣学习数学的兴趣和爱国热情。

《探索勾股定理》教案设计从勾股定理到勾股数的进阶

《探索勾股定理》教案设计从勾股定理到勾股数的进阶

《探索勾股定理》教案设计从勾股定理到勾股数的进阶教案章节:一、引言【教学目标】1. 了解勾股定理的背景和意义。

2. 掌握勾股定理的表述和证明。

【教学内容】1. 介绍勾股定理的历史背景。

2. 讲解勾股定理的表述和证明方法。

【教学方法】1. 采用讲授法讲解勾股定理的背景和证明方法。

2. 引导学生通过小组讨论,探索勾股定理的应用。

教案章节:二、勾股定理的证明【教学目标】1. 掌握勾股定理的证明方法。

2. 能够运用勾股定理解决实际问题。

【教学内容】1. 讲解勾股定理的几种证明方法。

2. 运用勾股定理解决实际问题。

【教学方法】1. 采用演示法和实验法讲解勾股定理的证明方法。

2. 运用案例教学法,引导学生运用勾股定理解决实际问题。

教案章节:三、勾股数的定义和性质【教学目标】1. 了解勾股数的定义和性质。

2. 能够判断一个数是否为勾股数。

【教学内容】1. 介绍勾股数的定义和性质。

2. 讲解如何判断一个数是否为勾股数。

【教学方法】1. 采用讲授法讲解勾股数的定义和性质。

2. 运用小组讨论法,引导学生探究勾股数的判断方法。

教案章节:四、探索勾股数【教学目标】1. 能够发现勾股数的规律。

2. 能够运用勾股数解决实际问题。

【教学内容】1. 引导学生探索勾股数的规律。

2. 运用勾股数解决实际问题。

【教学方法】1. 采用探究法和案例教学法引导学生探索勾股数的规律。

2. 运用案例教学法,引导学生运用勾股数解决实际问题。

【教学目标】2. 能够运用勾股定理和勾股数解决更复杂的问题。

【教学内容】2. 讲解如何运用勾股定理和勾股数解决更复杂的问题。

【教学方法】2. 采用案例教学法,引导学生运用勾股定理和勾股数解决更复杂的问题。

教案章节:六、应用勾股定理解决实际问题【教学目标】1. 能够将勾股定理应用于解决实际问题。

2. 提高运用数学知识解决实际问题的能力。

【教学内容】1. 介绍勾股定理在实际问题中的应用。

2. 分析并解决具体的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 1.1探索勾股定理课型新授课授课时间
教学目标知识与技能
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股
定理进行简单的计算和实际运用.
过程与方法
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
情感态度与
价值观
通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习
重点
了解勾股定理的由来并能用它解决
一些简单问题
难点勾股定理的发现
方法教具
教学过程
教师活动学生活动设计意图第一环节:创设情境,引入新课
2002年世界数学家大会在我国北京召开,投影显示
本届世界数学家大会的会标:会标中央的图案是一个与
“勾股定理”有关的图形,数学家曾建议用“勾股定理”
的图来作为与“外星人”联系的信号.今天我们就来一
同探索勾股定理.
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图
形:
★问题:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:独立思考
并回答问

紧扣课题,自
然引入
探究活
1.1探索勾股定理
1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角
三角形共用火柴棒( )根
A .20 B. 14 C. 24 D. 30 2.在Rt △ABC 中,斜边1A
B =,则222AB B
C AC ++=( )
A .2 B. 4 C. 6 D. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为( )
A .8 B. 64 C. 16 D. 32
4.直角三角形的两条直角边的比为3:4,斜边长25cm ,则斜边上的高为( )
A .10cm B. 12cm C. 15cm D. 20cm
15 第3题。

相关文档
最新文档