斑马鱼作为研究营养与生长的模式生物:向水产鱼类的营养基因组学的研究提供参考

合集下载

生命科学研究中常用模式生物

生命科学研究中常用模式生物

生命科学研究中常用模式生物生命科学研究中,模式生物是指研究中常用的一些物种,它们具备生物学研究所需的优点和特征,例如生长速度快、生命周期短、实验条件易于控制、遗传变异小等。

这些物种广泛分布于生物界不同的门、纲、目、种等级别之下,包括细胞、组织、器官和整个个体等层次,涵盖了生命科学的各个领域,成为生物学研究中的重要工具和突破口。

下面列举几种常见的模式生物。

1. 酵母菌(Saccharomyces cerevisiae)酵母菌是一种真菌,是生物制造酒、发酵面包等饮食品的重要材料之一,由于其在生命科学研究中的应用广泛,成为了模式生物的代表之一。

酵母菌具有生长速度快、细胞结构简单、基因与人类保守程度高等优点,是研究基因功能、基因表达和细胞周期等生命科学问题的理想模型。

目前,酵母菌已成为遗传学、细胞生物学、分子生物学研究中的重要工具,在人类遗传疾病研究中也有着广泛的应用。

2. 拟南芥(Arabidopsis thaliana)拟南芥是一种小型花草,是植物遗传学和发育生物学的经典模式生物。

它具有生命周期短、遗传变异小、基因组规模小等特点,同时具备发育过程完整、花草特征鲜明等优点,是研究植物系统生物学、基因表达、发育调控和代谢调节等方面的良好模型。

通过拟南芥的基因克隆、表达及遗传变异等研究,已经取得了一些重要进展,并在植物基因研究、转基因技术、抗逆性育种等方面有着广泛的应用。

3. 果蝇(Drosophila melanogaster)果蝇是小型昆虫之一,是生命科学研究中的著名模式生物之一。

它具有短寿命、繁殖能力高、体积小、适应各种实验条件等优点,是研究生物发育、遗传学、神经科学和行为学等方面的常用模型。

在果蝇体内,有大量基因表达分析和基因功能研究的数据可供使用,基因与功能关系的系统知识图谱呈现出极其丰富的信息,有助于我们更好地理解生命科学的基本问题。

4. 斑马鱼(Danio rerio)斑马鱼是一种水生动物,同时也是一种非常重要的模式生物。

斑马鱼(Danio rerio)的资源管理:综述

斑马鱼(Danio rerio)的资源管理:综述

斑马鱼(Danio rerio)的资源管理:综述Christian Lawrence摘要斑马鱼最近成为了一个卓越的生物医学研究的模型的脊椎动物。

它作为人类疾病和发展的模型,这个同样令人喜欢的特征为它受欢迎做出了贡献;即繁殖力高,体积小,迅速的繁衍周期,在早期胚胎发育早期的光学透明性,也有许多其他学科的研究者长期致力于它的研究,包括动物行为,鱼类生理,水产毒理学。

尽管如此,严谨的饲养斑马鱼的技术还是不够发达。

虽然斑马鱼有一个相当大的身体,都和畜牧业有直接或间接的关系,这个信息有许多不同的来源,而且它很少被应用到发展中国家的标准协议。

这项综述是尝试把可利用的与斑马鱼生物学和文化相关的科学资料整合到一个这项领域的概述,可以用于研究中的这个重要的动物模型的使用效率的改善。

这个综述还强调了在那些领域需要做进一步的研究。

目录1.简介2.斑马鱼的自然历史2.1 喜好的栖息地及分布2.2 繁殖和行为2.3 寿命2.4 食性3.斑马鱼文化3.1 水化学3.1.1 温度3.1.2 PH值3.1.3 硬度3.1.4 盐度3.1.5 溶氧3.1.6 含氮废物4.营养,食性和饲养方法4.1 营养需求4.2 食性4.3 饲养5.繁殖和养殖技术5.1 繁殖5.2 养殖技术5.3 产卵率6.幼体培育6.1 幼体生物学6.2 食性和营养6.3 水质6.4 生长率和存活率7.成体培育7.1 保持密度7.2 遗传育种计划8.总结致谢参考文献1.简介在过去的二十年里,斑马鱼已成为一个研究遗传学和发展的重要的脊椎动物模型,近来,也包括人类疾病和筛查治疗药物。

大量的有利的性质,包括它体积小,快速的发展和繁殖速度,早期发展过程中的光学透明性,比较容易的遗传选育和与人类相似的遗传特点,而且它将很有可能在其他领域的研究中刺激经济的增长,特别是它的基因组草案的进一步完善和令人振奋的用来做扩展研究的可利用的工具和方法。

鉴于斑马鱼作为一个相当重要的实验模型,伴随着的是它大量使用和相关培育设施的建立和维修的大额的经济耗费,在一定程度令人惊讶的是它的畜牧业不发达。

斑马鱼作为研究模型的应用与发展

斑马鱼作为研究模型的应用与发展

斑马鱼作为研究模型的应用与发展斑马鱼是一种常见的淡水热带鱼,因其外观被广泛应用于美学领域,而在科学研究中也成为了重要的工具。

斑马鱼胚胎发育快、生命周期短、巨大的繁殖能力以及相对简单的遗传系统,使它成为研究发育生物学、神经生物学、药理学和遗传学等领域的优秀模型生物。

从其性状方面来看,斑马鱼的产卵较为容易,雌性斑马鱼每月可以产下300-400个卵子。

斑马鱼胚胎的发育阶段短,仅需1-2天就可以完成脊椎动物发育的最初几个小时。

它们的受精卵体积很小,可以进行高通量的药物筛选或遗传突变筛选。

正是这些方面的优势使斑马鱼成为了研究发育和遗传调控领域的研究模型。

在遗传学与基因组学研究方面,斑马鱼的基因组已经被彻底测序了。

它们仅有26条染色体,相当于人类染色体的一半。

12,000~13,000个基因与斑马鱼的身体结构、发育过程、生长和控制代谢有关。

这一基因与基因组学的基础研究为深入探究疾病、药物筛选等许多方面奠定了基石。

在对疾病的研究中,斑马鱼作为模型动物也正在逐步得到广泛应用。

例如,斑马鱼模型可以用于研究人类疾病的遗传病变,并且可以用来进行疾病模拟,如神经发育障碍、先天性心脏病等。

斑马鱼的生命力特别强,因此,可以将其用于对各种物质的毒性实验和药物筛选实验,在保证安全性的前提下,提高药物试验的效率。

此外,斑马鱼的神经系统也是其中一个备受关注的领域。

大量生理学与药理学研究利用斑马鱼的神经网络为研究平台。

例如,小鼠等作为动物模型观察老年痴呆症状是复杂的,且很难通过细胞或者神经网络的方法对其进行研究。

但是,斑马鱼的神经网络结构相对简单,例如从背根神经节开始,斑马鱼大脑仅有几百个神经元组成的而且都是浅表的,为研究神经网络提供了非常好的实验条件。

利用斑马鱼作为研究模型也有一些挑战。

例如,由于其种群自我更新时间相对较长,斑马鱼不能胜任复杂的进化研究,因此其遗传模型的适用范围也受到一定的限制。

另外,另一个方面是在斑马鱼研究中可能出现的生态中断现象。

鱼类基因组学研究与应用

鱼类基因组学研究与应用

鱼类基因组学研究与应用鱼类是人类食物链中重要的一环,数量众多的鱼类不仅提供了人类丰富好吃的食物,而且对于保持生态平衡和推动经济发展也有着重要的意义。

而鱼类基因组学研究则为我们更深入地了解鱼类的生命和遗传基础提供了一个重要的平台。

今天,我们就一起来了解一下,鱼类基因组学研究及其在抗病、保种、生态保护和食品安全上的应用。

一、鱼类基因组学研究的意义1、揭示鱼类的生命和遗传基础鱼类是生命进化历史上非常重要的一支,有着非常丰富的生命与遗传基础。

通过对鱼类基因组的深入研究,可以揭示鱼类的生命和遗传基础,推动鱼类繁殖育种和生态保护研究的深入发展。

2、促进人类饮食健康和食品安全鱼类是人类主要的蛋白质来源之一,在世界范围内,有着非常广泛的消费者。

通过对鱼类基因组学研究的深入开展,我们可以更好地了解鱼类的基因信息、营养创建和抗病能力,从而推进增强鱼类质量、开展海洋渔业健康可持续发展和促进人类饮食健康和食品安全。

二、鱼类基因组学研究的现状随着生命科学研究的深入发展,全基因组测序、全转录组测序和全蛋白质测序等高通量技术已成为鱼类基因组学研究的重要手段。

当前,世界上已开展了大量鱼类基因组学研究,并且取得了很多重要的成果。

1、鲤鱼基因组测序2017年11月,中国科学院水生生物研究所发布了进行鲤鱼基因组测序的消息。

该研究是以细鳞鲤为代表的亲缘鲤鱼系统进行的,测序耗时三年,共取得了1.8亿个基因环和250万个新基因。

这一研究意味着鲤鱼基因组测序在全球范围内首次实现。

2、斑马鱼基因组测序斑马鱼被广泛应用于生物医学研究、药物发现和毒理学研究等领域。

2002年首次发布的斑马鱼细胞核基因组引起了广泛关注。

2007年,国际斑马鱼基因组计划启动。

该计划在基因组等多个层面上,对斑马鱼进行了深入研究,并取得了很多重要的成果。

三、鱼类基因组学研究在实现鱼类繁殖和保护方面的应用1、保种和繁殖鱼类积极参与的措施有:人工繁殖、基因保护、生态保护等。

基于鱼类基因组学研究的科技手段,我们可以更好地进行人工繁殖和基因保护,从而实现保种和繁殖。

斑马鱼胚胎发育基因与功能的研究进展

斑马鱼胚胎发育基因与功能的研究进展

斑马鱼胚胎发育基因与功能的研究进展斑马鱼是一种常见但又极其特殊的小型观赏鱼类,它们不仅长得漂亮,而且拥有极强的再生能力,因此成为了生物科学研究的重要模式生物。

通过对斑马鱼进行基因编辑和遗传学实验,科学家们逐渐发现其胚胎发育过程中涉及的各种基因以及它们的功能,这不仅可以加深我们对斑马鱼胚胎发育的认识,而且可以为其它生物的研究提供指导和借鉴。

一、斑马鱼基因组的研究斑马鱼的基因组非常小、简单,但也很特殊,与人类和小鼠基因组存在较高的相似性,这让斑马鱼成为了研究发育生物学、基因调控和疾病模型等领域的绝佳模式生物。

研究发现,斑马鱼基因组含有大约2.7亿个碱基对,并且有约7万个基因,其中的大部分基因与人类或小鼠的基因存在功能上的相似性。

这让斑马鱼成为了研究发育生物学、基因调控和疾病模型等领域的绝佳模式生物,因为它们的生长和发育具有很高的可塑性,而且在成年后生命周期较短,其胚胎的早期发育过程更是完全透明,让科学家可以清晰地观察到其中的过程。

二、斑马鱼胚胎发育过程中的基因调控斑马鱼胚胎发育过程一般分为不同的阶段,通过对各个发育阶段的斑马鱼胚胎进行基因调控和功能研究,科学家们逐渐揭示了许多重要的发现。

一些基因负责斑马鱼的胚胎发育,如胚胎发育第一阶段的基因nrdp1,其担负着细胞核中的degradation保持during cell division的任务,同时nrdp1和内质网脱落调节蛋白p58温度缺陷包装的方式也有关系。

另一些基因则负责胚胎的器官发育,如在体育的鳍环投射被关键结构点抑制基因和smoothened 等基因,这些基因在斑马鱼胚胎发育过程中扮演着重要的角色,它们的异常活动会造成发育异常或者致病。

而在斑马鱼胚胎发育到一定的时期以后,神经系统的快速发育就成为了重点,这时候一些特异性的基因将会被表达,如gap43和omp等,这些基因机制是重要的神经信息人员通道的生物标志,此时会刺激生长锻炼和神经系统之间的联系,指导树突和神经纤维的生长与导向,如此就可以构建功能区域内的神经网络。

模式生物斑马鱼3篇

模式生物斑马鱼3篇

模式生物斑马鱼第一篇:斑马鱼的生态环境和适应性能力斑马鱼,是一种小型的淡水鱼类,被广泛用于实验室中的生物学研究,尤其是显微成像、环境毒理学和基因表达调控等方面。

斑马鱼的不断成长和广泛应用引发了人们对其生态环境和适应性能力的关注。

斑马鱼生活在南亚、东南亚、东亚和印度等地的树荫下和水潭中,是一种典型的淡水底栖动物。

它们通常生活在水温在25°C到28°C之间的流速较慢、富含氧气的水体中,它们对水体PH值的适应范围在6.5到8.5之间。

同时它们对生境强度的适应性也非常强:斑马鱼可以适应范围宽广、低营养、缺乏有机物和总溶解固体的水体,这些水体充满了有害物质,如铜、铅等重金属以及硝酸盐、磷酸盐等不良物质。

斑马鱼在它们的生态环境中的适应能力非常强,这使得它们成为一种非常有价值的生物模式,尤其是在不断变化的环境中。

研究发现斑马鱼能在缺氧环境下生存,通过改变其代谢和呼吸等生理习惯,来适应水体不同化学成分及其环境变化。

同时在弱化重金属毒性上的研究中,斑马鱼还被广泛地用于研究重金属污染、毒性及其机制。

研究斑马鱼对于环境及人类健康的影响,可以为人类提供一些机遇,帮助人们更好地保护环境并提高生活质量。

斑马鱼在实验室环境中适应性强,如何保持完好状态,也是一个很重要的问题。

在实验室环境中,斑马鱼对于环境要求较高,需要肆虐自由的游泳空间,因此,需要经常进行水质检测和及时的换水。

同时,在饲养过程中需要控制水温、pH 值、氧气含量等,确保斑马鱼在良好的环境中生长和繁殖。

总之,斑马鱼在自然环境中的适应性能力强,在实验室环境中适应性延续,因此斑马鱼成为了极具价值的生物模式之一。

在斑马鱼的生态环境和适应性能力的基础上,不断进行研究,有望为探索重金属污染及其毒性机制,以及开发有效的环境和人类健康保护策略提供新的视野和思路。

第二篇:斑马鱼的解剖结构和生长发展特点斑马鱼,又名锯鲂鮄,是一种体长约3-4厘米的小型淡水底栖生物。

斑马鱼作为模式生物在发育生物学和遗传学研究中的应用

斑马鱼作为模式生物在发育生物学和遗传学研究中的应用

斑马鱼作为模式生物在发育生物学和遗传学研究中的应用自从19世纪开始,科学家们一直在通过选定某些模式生物,如斑马鱼、小鼠、果蝇等来深入研究生命的奥秘。

这些模式生物被广泛用于从发育生物学到遗传学的研究领域。

其中,斑马鱼由于拥有发育速度快,透明度高,繁殖周期短等优点,为科学家们提供了理想的实验材料。

本文将详细探讨斑马鱼在发育生物学和遗传学研究中的应用。

一、斑马鱼在发育生物学方面的应用1.1 受精和胚胎发育斑马鱼的成熟期很短,仅需3个月,且在水中繁殖,雄鱼和雌鱼在不经过人工干预的情况下会自行交配,产下千万个卵子。

这些特点使得斑马鱼成为了研究受精和胚胎发育的理想模式生物。

斑马鱼发育周期短,且在受精后仅需数小时即可胚胎发育,科学家们可以直观地观察到受精的过程和胚胎早期的变化过程。

这为我们对于生命的起源和胚胎形成等领域提供了独特的视角和参考。

1.2 器官发育斑马鱼器官发育过程也是发育生物学领域的一个重要研究方向。

研究人员可以通过基因改造,观察到不同基因表达出来对器官发育的影响。

例如,一项研究表明,在一个发育的胰腺中,Pdx1基因是发展为稳定胰岛细胞所必不可少的基因。

通过改变Pdx1的表达模式,科学家们成功地发现Pdx1对稳定胰岛细胞数量的影响,加深了我们对器官发育的了解。

1.3 神经发育斑马鱼神经系统发育与脊椎动物的其他模式生物非常相似,与小鼠等模式生物相比,斑马鱼生长速度快,且在早期神经系统发育阶段仍较为简单,因此可以更好地研究这些阶段中神经系统的构建和运作。

在神经发育领域中,斑马鱼的应用包括但不限于研究神经元的分布序列、神经细胞的形态和运动状态、神经元的自发活动等方面。

二、斑马鱼在遗传学方面的应用2.1 遗传显微镜在斑马鱼遗传学领域,另一个被广泛使用的是遗传显微镜。

这个显微镜是一个用于斑马鱼早期胚胎研究的特殊显微镜。

这个显微镜可以放大数倍,帮助科学家在斑马鱼胚胎中发现突变。

该显微镜的广泛使用在突变分析方面取得了重大成果,帮助我们在独特的水平上研究生命的启动机制。

斑马鱼在生命科学研究中的应用

斑马鱼在生命科学研究中的应用

斑马鱼在生命科学研究中的应用斑马鱼是一种小型的热带淡水鱼类,它在生命科学研究中有着广泛的应用。

作为模式生物,这种鱼类可用于研究各种生物过程的机制,包括发育、再生和感染等。

在本文中,我们将探讨斑马鱼在生命科学研究中的应用及其重要性。

一、斑马鱼的基本特征和优点斑马鱼在生物学界是一个备受瞩目的模式生物。

这种鱼类的大小约为3.5厘米,一般寿命为2-3年。

它的简单型态和发育机理使得斑马鱼成为生命科学领域的重要研究对象。

此外,斑马鱼的优点还包括:1. 短周期快速成熟:斑马鱼的生殖周期短,每年可以产卵多次,而且发育迅速,只需要2-3天就可以孵化。

这个特性可以为研究人员提供大量的实验数据。

2. 生殖方式丰富:斑马鱼的生殖方式又泳动复杂和单纯的交配两种方式,这两种方式的存在又许多研究的方向。

3. 透明且可观察性强:斑马鱼在早期发育阶段为透明,这样质子在显微镜下容易被观察。

此外,它的胚胎发育过程短,只需两天就可以完成。

4. 基因治疗研究利器:斑马鱼拥有大量与人类同源的基因,可用于研究与人类相关的疾病和药物疗法。

5. 容易饲养: 斑马鱼简单易饲养,成本低,数量多。

二、斑马鱼在研究发育和遗传方面的应用斑马鱼因其胚胎发育阶段的透明,被广泛用于发育研究。

斑马鱼的早期胚胎非常透明,这使得它们的神经发育可以被轻松观察。

科学家们可以将神经标记物标记到斑马鱼的内皮细胞和神经系统细胞中,以观察它们的运动情况。

这种研究方法在研究神经退化疾病以及癌症等疾病方面有着重要的应用价值。

斑马鱼还可用于研究遗传学。

由于斑马鱼基因与人类基因非常相似,因此它们被广泛用于研究基因组的相互作用和表达。

举个例子,研究人员可以将人类基因序列植入斑马鱼基因组中,以研究人类基因的功能及其与其他基因和环境之间的相互作用。

这种方法被称为转基因鱼。

三、斑马鱼在药物发现和治疗研究中的应用斑马鱼可用于新药发现和针对性药物治疗研究。

在此方面具体的例子包括斑马鱼在研究新型抗生素和癌症治疗药物方面的应用。

斑马鱼作为模式动物在鱼类病原学中的研究进展

斑马鱼作为模式动物在鱼类病原学中的研究进展
育 生 物学 、免疫 学 研究 的模 式 生 物 已 经得 到 了较 为
以下介 绍斑 马 鱼相关 信 息 ,及其 与病 原 的研 究 模 型
在 鱼类 病原 学 中 的应 用研 究进 展 。
广 泛 的 应 用 ,尤 其 是 在 人 类 病 害 的研 究 上 应 用 广 泛 。科 学 家 以斑 马鱼建 立 了研 究 模 型 ,进 行 各 种 病
g o n fz b aih w sc e rr a d i lc lrb oo y if r t n r s u c swee a u d n .T e i o main r s u c sr — r u d o e rf a l a e n t moe u a i lg o ma i e o r e r b n a t h n r t e o r e e s s n o f o lt d g n tcb c g o n fz b a ih a d t e r s a c r g e si e r f h a d a u t i a emo e e e i t d c d i h s ae e ei a k r u d o e rf n h e e r h p o r s n z b ai n q ai d s s d l r nr u e t i s s c e w o n
s yo rgn 建立 的 ht:/ zn o# ( FN)和 i f eo ) t O t p /f .r i ZI
较 少 。在我 国 ,鱼类 的养 殖 品种 众 多 ,养 殖 和 育 苗 技 术研 究 走 在 世 界 前 列 ,但 病 害 问 题 也 不 断 出现 。 近年来 ,寄生 虫 、细菌 、病 毒 这 三 大类 病 害 屡 屡 引 起 养殖 鱼类 爆发 性 死亡 。 目前 ,人们 对 养 殖 鱼类 和 病 原 相互 作用 的分 子机 制 了解 程 度 还 很 低 。斑 马 鱼

斑马鱼在发育生物学中的研究进展

斑马鱼在发育生物学中的研究进展

斑马鱼在发育生物学中的研究进展斑马鱼(Danio rerio)是一种常见的小型热带淡水鱼类,也是一种重要的生物模型,因为它们易于繁殖和维护,具有透明胚胎,容易观察和操纵发育过程的特点。

在过去的几十年里,许多生物学家使用斑马鱼进行发育生物学研究,探寻分子机制、细胞过程、组织发生、器官形成和行为等方面的问题。

本文将介绍斑马鱼在发育生物学中的研究进展及其应用。

1. 斑马鱼的发育过程斑马鱼的发育过程可分为四个主要阶段:受精、分裂、胚胎发育和幼鱼期。

受精后,卵细胞形成受精卵,随后通过有丝分裂发育成为多个细胞,其中包括前期胚胎、球胚和盘胚。

在这些早期阶段,斑马鱼的胚胎透明,发育过程可以通过显微镜直接观察。

在幼鱼期,斑马鱼游泳、摄食和生长,逐渐成为成年鱼。

2. 斑马鱼的发育成因对于斑马鱼的发育成因的研究可以通过突变体筛选、遗传分析、基因克隆等方法进行。

许多突变体显示了不同的发育缺陷,例如胃肠道畸形、神经系统缺陷、鳍/肢体畸形等。

通过对这些突变体的遗传分析和基因克隆,科学家发现了很多与斑马鱼发育相关的基因,如sonic hedgehog、hox等。

另外,近年来,利用CRISPR/Cas9基因编辑技术,科学家可以精确地改变斑马鱼基因组中的某些位点,以研究特定基因功能或疾病模型等方面的问题。

这种方法加速了斑马鱼发育生物学的研究和应用。

3. 斑马鱼的组织和器官形成斑马鱼的器官发生过程是发育生物学的热点研究之一。

在胚胎发育过程中,骨骼、肌肉、心脏、肝脏、胰腺等组织和器官的形成令人印象深刻。

例如,斑马鱼心脏的发育非常相似于人类的心脏发育过程。

斑马鱼心脏发育的详细解剖和功能特征使得我们可以更好地理解人类心脏疾病,包括先天性心脏缺陷和心肌病等。

在肌肉结构和功能方面,斑马鱼是一种适应游泳的生物模型。

它们的鱼体非常透明,我们可以观察和操纵它们的鱼肌和鱼晶体肌的发育和生理功能。

研究斑马鱼肌肉发育和运动调节机制有助于解决人类运动性疾病诊断和治疗的问题。

模式生物学物种及其在发育和遗传学研究中的应用

模式生物学物种及其在发育和遗传学研究中的应用

模式生物学物种及其在发育和遗传学研究中的应用自从科学技术得以高速发展以来,生物学研究已经发生了翻天覆地的变化。

随着生命科学的高速发展,生物学家们逐渐意识到,要想深入地研究生物学问题,必须先从一个模式生物开始。

模式生物学物种被定义为一种广泛用于生命科学研究的生物物种,也被称为实验模式生物。

在生物学中,一些常见的模式生物学物种包括酵母菌、线虫、果蝇、斑马鱼和小鼠等。

对于不同领域的研究者,选择不同的模式生物进行研究显得尤为重要。

本文主要将探究模式生物的种类、特点及其在发育和遗传学研究中的应用。

一、模式生物类型1. 酵母菌酵母是一种微生物,包括啤酒酵母和面包酵母等。

因为它们在分子遗传学和细胞生物学领域中特别有用,所以被作为模式生物学物种。

酵母菌可以在实验室里进行容易的温和培养,这意味着研究人员可以随时方便地进行实验。

2. 线虫线虫是一种微小的蠕虫,也是常见的实验模式生物。

线虫具备复杂的神经系统和基因组,所以可以用于神经学和基因研究。

3. 果蝇大家熟悉的果蝇也是模式生物之一,由于其生命周期短、数量多和生物遗传学特性等方面的特点,所以被广泛用于发育和遗传学研究中。

4. 斑马鱼斑马鱼是一种小型、快速繁殖的鱼类。

由于它们的透明性和生长速度等特点,斑马鱼成为了生物学研究的模式生物之一。

5. 小鼠小鼠在生命科学中也是通用的实验模式生物之一,因为它们的基因组与人类基因组相似度较高。

因此,在研究某些疾病或药物反应等方面,小鼠被广泛运用。

二、模式生物的特性从基础研究到开发治疗方法,模式生物学物种都具有明显的优势。

许多实验模式生物的特性是类似的:它们的生命特征相似、繁殖期短、数量多、经济、容易培养、基因丰富等等。

同时,这些特性也决定了模式生物可用于研究的范围和领域。

1. 快速繁殖许多模式生物可以在短时间内产生大量后代,这使得这些生物广受欢迎。

例如,果蝇在繁殖方面非常优秀,一年内一对果蝇可以繁殖成数十万只后代,这样可以使生物学研究更易于开展。

斑马鱼研究报告范文

斑马鱼研究报告范文

斑马鱼研究报告范文一、引言斑马鱼(Zebrafish)是一种小型热带鱼类,因其身上黑白相间、条纹状的体色而得名。

斑马鱼广泛应用于生命科学研究中,成为了重要的模式动物。

本报告将介绍斑马鱼的主要特征、生活习性以及其在科研中的应用。

二、斑马鱼的主要特征1.外形:斑马鱼体长约4厘米,身体呈纺锤形,两侧具有五到六条明显的纵向条纹;2.生活环境:斑马鱼主要分布于南亚和东南亚的淡水环境中,适应水温25-28摄氏度;3.繁殖能力:斑马鱼繁殖能力强,可以在短短几个月内达到生殖成熟。

三、斑马鱼的生活习性1.饮食:斑马鱼以浮游动物、植物为食,主要以摄食浮游动物为生;2.行为:斑马鱼属于群居鱼类,喜欢栖息在水草丛中,以保护自己不被天敌发现;3.活动节律:斑马鱼的活动节律受到光照的影响,白天活跃,夜晚则休息。

四、斑马鱼在科研中的应用1.胚胎发育研究:斑马鱼的胚胎发育透明,能够观察到细胞分裂、器官形成等过程,被用于研究生命起源以及先天性疾病的发生机制;2.病原体感染模型:斑马鱼易感染各类病原体,可以用来研究人类疾病的发病过程,如感染模型可用于研究流感病毒的入侵机制;3.药物筛选:斑马鱼可以通过观察药物对其行为、生理的影响,来评估药物的安全性和疗效,用于药物筛选;4.神经科学研究:斑马鱼的神经系统发育和功能与人类相似,被用于研究神经退行性疾病,如帕金森病、癫痫等;5.环境毒理学研究:斑马鱼可作为生物指示器,通过观察其对环境污染物的反应,评估环境毒理学风险。

五、结论斑马鱼作为一种重要的模式生物,在生命科学研究中发挥了重要的作用。

其主要特征、生活习性以及其在科研中的应用,可以为科学家们提供宝贵的研究工具,促进了生命科学的发展。

未来,斑马鱼研究将继续进行,为人类健康和环境保护领域的研究提供更多有益的信息。

模式生物:生命研究中的明星

模式生物:生命研究中的明星

模式生物:生命研究中的明星1. 引言模式生物在生命研究领域中扮演着重要的角色。

它们是被广泛研究和深入了解的生物实体,为科学家们提供了许多宝贵的数据和信息。

本文将介绍几个在生命研究中备受青睐的模式生物,并解释它们之所以被称为明星的原因。

2. 斑马鱼 (Danio rerio)斑马鱼是一种小型的热带鱼类,广泛应用于发育生物学和遗传学研究中。

它们具有短周期的生命周期、大量生物数量和易于养殖的特点,使得科学家们可以轻松进行大规模实验。

此外,斑马鱼的胚胎透明,可以直接观察和研究内脏器官的发育过程,为发育生物学提供了独特的视角。

斑马鱼对于诸如心脏发育、神经发育等方面的研究有着重要的贡献。

3. 果蝇 (Drosophila melanogaster)果蝇是另一个常用的模式生物,被广泛应用于发育生物学、遗传学和行为学研究。

果蝇具有短寿命、高繁殖能力和简单的基因组结构,研究人员可以利用果蝇进行高通量的遗传筛选和基因功能研究。

此外,果蝇的神经系统相对简单,易于研究其行为和学习机制。

果蝇的遗传工具箱丰富多样,使得科学家们可以进行精细的遗传操控和基因表达调控研究。

4. 酵母菌 (Saccharomyces cerevisiae)酵母菌是最早被用于研究的单细胞真核生物之一。

酵母菌具有简单的基因组结构和短的世代时间,使得基因功能研究变得相对容易。

酵母菌广泛应用于生物化学、细胞生物学和基因调控的研究中。

此外,酵母菌还被用于表达异源蛋白和产生重组蛋白的研究,为蛋白质工程和生物制药领域做出了重要贡献。

5. 大肠杆菌 (Escherichia coli)大肠杆菌是一种常见的细菌,广泛应用于分子生物学和基因工程研究。

大肠杆菌具有简单的生长条件和易于操作的特点,使得科学家们可以轻松进行大规模的基因克隆和表达研究。

此外,大肠杆菌是最早被用于基因组测序的生物之一,为基因组学领域的发展起到了关键作用。

大肠杆菌的研究也对于理解抗生素抗性机制和微生物的致病性提供了重要线索。

斑马鱼模型的基因组及其在发育研究中的应用

斑马鱼模型的基因组及其在发育研究中的应用

斑马鱼模型的基因组及其在发育研究中的应用斑马鱼(Danio rerio)在科学界已经成为了广泛使用的模式生物之一,其具有繁殖快、易于维护、生长快等特点,可以在研究发育生物学、遗传学、神经学等领域发挥重要的作用。

斑马鱼的基因组研究与分析,更是为生物学研究提供了丰富的资源。

本文将介绍斑马鱼基因组的构成及其在发育研究中的应用。

一、斑马鱼基因组的构成斑马鱼的基因组约为1.5亿个碱基对,分为25对染色体。

这种基因组主要由DNA组成,DNA又由核苷酸组成,核苷酸包括葡萄糖、磷酸和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳕嘧啶)。

与其它生物一样,斑马鱼的基因组也可以被分为编码区和非编码区,编码区指的是直接编码功能蛋白的DNA序列,而非编码区则指由DNA转录产生但不被翻译成蛋白质的RNA序列。

通过对斑马鱼基因组的研究,科学家们已经发现了许多与人类病理有关的基因(如自闭症等)以及与发育有关的基因。

二、斑马鱼在发育研究中的应用斑马鱼在发育研究中的应用非常广泛。

典型的应用案例包括模拟人类疾病、研究肢体再生及衰老机制等。

其中,模拟人类疾病是利用斑马鱼具有与人类基因组高度相似的特性,来研究某些疾病。

例如,斑马鱼可以被制成自闭症模型,通过这一模型可以研究自闭症的神经学特性以及潜在的药物治疗。

将这些与人类疾病相关的斑马鱼研究结果应用到临床上,有望为人们提供新的预防和治疗方法。

肢体再生也是斑马鱼发育研究的一方面。

斑马鱼的可再生能力非常高,能够在受损的组织区域新生组织甚至再生失去的组织。

科学家们通过对斑马鱼肢体再生过程中参与的基因进行研究,有望为人类组织工程学领域提供新的思路和策略。

此外,斑马鱼还能被用于衰老研究。

斑马鱼短时间的寿命与其生长发育周期短、繁殖快、适应能力强等特点有关,这使得斑马鱼成为了衰老研究领域的理想候选。

科学家们通过对斑马鱼衰老过程中参与的基因进行研究,可以为人类寿命延长和老年病的治疗提供新的思路和策略。

三、结语综上所述,斑马鱼基因组的研究及其在发育研究中的应用,为人类研究提供了极大的帮助。

斑马鱼在生物医学中作为模式动物之应用

斑马鱼在生物医学中作为模式动物之应用

斑马鱼在生物医学中作为模式动物之应用斑马鱼(Danio rerio)作为一种模式动物,在生物医学研究中发挥着重要的作用。

它们具有许多优点,如短期繁殖周期、透明的胚胎和可观察的器官,使得科学家能够进行详细而精确的实验观察。

在生物医学研究中,斑马鱼被广泛应用于遗传学、发育生物学、药物筛选和疾病模型等领域,为人类健康和疾病治疗提供了重要的启示。

斑马鱼作为一个模式动物,其繁殖周期短,雌性一般每周可产卵一次,每次产卵数量可达几十甚至上百粒,从受精到发育成鱼只需约48小时。

这一特性使得科学家能够快速观察和研究斑马鱼胚胎的发育过程。

胚胎发育期间,其透明度高,科学家能够通过显微镜观察到各个器官的形成,甚至可以实时观察到血液的流动。

这种透明度为科学家们提供了一个非常有利的观察和研究动物发育过程的平台。

斑马鱼在生物医学研究中的另一个重要应用领域是遗传学。

由于斑马鱼的基因组与人类的基因组高度保守,约有70%的人类基因在斑马鱼中也能找到对应的基因。

这使得科学家能够通过基因转导技术,将人类基因转入斑马鱼中,研究这些基因的功能和影响。

通过观察转基因斑马鱼的表型变化,科学家能够深入理解这些基因在发育、生理和疾病中的作用。

此外,斑马鱼的基因组较小,使得基因敲除、基因转导等研究技术更加方便和高效。

斑马鱼作为药物筛选的模式动物也发挥着重要作用。

科学家们利用斑马鱼的胚胎透明度和快速生长的特点,将其用于对药物的毒性和药效进行初步筛选。

通过观察药物对斑马鱼胚胎的影响,科学家能够初步评估药物的安全性和效果。

此外,斑马鱼的胚胎在短时间内能够吸收药物,使得科学家能够迅速获得结果。

这种药物筛选的方法节省时间和成本,并在一定程度上替代了对小鼠等动物的使用,为药物研发提供了效率和可靠性。

斑马鱼作为疾病模型动物的应用也非常重要。

科学家们利用斑马鱼基因组的保守性,成功开发了多种疾病模型。

例如,斑马鱼可用于研究心血管疾病、神经系统疾病、肌肉疾病和肿瘤等多种疾病。

斑马鱼成为水产动物营养学研究的关键

斑马鱼成为水产动物营养学研究的关键

东海 岸都 会 因此 呈 现 出翠 绿 色 。该 研 究 的 主要
完 成人 , 哥伦 比亚大 学拉 蒙 特 一多尔 蒂 地 球 观测 站 的生 化学 家 H e l g a d o R o s a i r o G o me s 表示 , 被藻
认为 , 斑 马鱼 ( D a n i o r e r i o ) 是 作 为 水 产 饲 料研 究
时, 其 富营养 物质 也 促进 了夜 光 藻类 的生 长 。每 年 冬季 阿拉 伯海 从 阿曼 西 海 岸到 印 度 、 巴基斯 坦
斑 马 鱼成 为水 产 动 物 营 养 学 研 究 的关 键
来 自智 利 安 德 烈 斯 ・ 贝 约 大 学 生物 科 学 系 和美 国加 利 福 尼 亚 大 学 动 物 科 学 系 的科 学 家 们
高。这就要求新的技术手段使试验变得简单 、 快
捷 。而斑 马鱼 的应用 能 够解 决 上 述 问题 , 有 效评
估 新 型饲料 的效 果 。 据专 家 介 绍 , 斑马鱼有很多优点 , 如牛 命 删
期短 而迅 速 、 生 物 学 知 识 了解 全 面 、 便 于 大 量 分
析等 。全 球 水 产 养 殖 的 产量 正 以每 年 8 . 8% 的
2 0 1 3年大 型鱼类 的产 量 同 比下 降 了 1 8% 。 研 究显示 , 夜 光藻 的大 量 繁殖 使 大 片 海 区成
为低 氧的死 区 。研 究人 员从 2 0 0 9年开 始 , 连 续三 个 冬 季利 用 印度 S a g a r S a m p a d a号调 查 船 对夜 光 藻进行 取样 、 实 验 。将 夜 光 藻 和硅 藻 置 于 缺 氧 的 水体中, 结 果 发 现 夜 光 藻 的 固碳 率 上 升 了 3 0 0

斑马鱼模式生物简介3篇

斑马鱼模式生物简介3篇

斑马鱼模式生物简介第一篇:斑马鱼模式生物简介斑马鱼(zebrafish)是一种小型淡水鱼,是现在最为常见的实验生物之一。

它们身体呈现黑白相间的条纹,所以得名斑马鱼。

斑马鱼是一种热带鱼,主要生活在东南亚地区。

它们的寿命大约是三年,体长一般在4-6厘米之间。

斑马鱼是模式生物学中最为重要的模式生物之一,目前已经成为遗传学、生物学、神经科学等研究各个领域的重要实验材料。

这是因为斑马鱼的生命周期短、繁殖周期快、胚胎透明度高,这些特点都使得斑马鱼在科学研究中变得非常重要。

第二篇:斑马鱼模式生物在遗传学研究中的应用斑马鱼是遗传学研究中非常重要的模式生物,它们之所以能够成为遗传研究的材料,是因为它们的基因组与人类的基因组非常相似,同时斑马鱼基因组的大小也很小,使得对它们进行基因研究更加便利。

通过对斑马鱼基因进行研究,可以更好地了解人类基因进化的历史,以及人类基因与疾病之间的关系。

通过基因编辑技术,可以使斑马鱼的基因发生变异,从而模拟人类遗传疾病,为深入研究这些疾病提供了很好的研究平台。

此外,斑马鱼在遗传研究中还有一个比较独特的应用:可以通过对斑马鱼胚胎发育的研究,进一步了解胚胎发育中基因的作用,弄清对胚胎发育起到影响作用的基因。

因为斑马鱼的胚胎是透明的,因此可以清晰地观察到胚胎的发育、器官形成等过程,从而更好地了解基因对胚胎发育的调控。

第三篇:斑马鱼模式生物在药物研究中的应用在药物研究领域,斑马鱼也被广泛应用。

这是因为它们的生命周期短且繁殖周期快,可以快速地评估新药的毒性和功效。

同时,斑马鱼对一些人类常见疾病也可以做出反应,因此它们在筛选药物的时候也非常有用。

例如,传统的药物筛选方法需要进行大规模的动物实验,费时费力且对动物造成伤害。

而使用斑马鱼作为模式生物,它们的体型小、繁殖周期快,可以在短短几个月内完成对药物的筛选。

通过人工合成化合物,可以广泛地测试它们对斑马鱼的毒性影响。

若是药物经过筛选是安全的,那么就可以进行人体试验,最终大规模地应用于人。

斑马鱼在生命科学研究领域中的应用

斑马鱼在生命科学研究领域中的应用

斑马鱼在生命科学研究领域中的应用斑马鱼(Danio rerio)是一种小型热带淡水鱼类,因其身上具有黑白相间的斑纹而得名。

斑马鱼在生命科学研究领域中广泛应用,尤其在遗传学、发育生物学、神经科学以及药物筛选等研究领域具有重要的地位。

本文将重点介绍斑马鱼在这些研究领域中的应用,并探讨其优势和前景。

其次,斑马鱼在发育生物学研究中具有独特优势。

斑马鱼的胚胎发育十分迅速,从受精到成鱼只需2-3个月时间。

在这个过程中,斑马鱼的胚胎透明,可以高分辨率观察到内脏器官以及运动和心血管系统的发育过程。

此外,斑马鱼胚胎的体型小,可容纳在96孔板中高通量筛选药物。

通过荧光标记技术,可以标记到特定基因的表达,并观察其对发育的影响。

这些特点使斑马鱼成为研究发育生物学和胚胎发育的极具价值的模式生物。

斑马鱼在神经科学研究中也扮演了重要角色。

斑马鱼的中枢神经系统相对简单,但结构与人类相似,有助于研究神经系统的发育和功能。

斑马鱼胚胎的神经元可通过荧光标记示踪,观察神经元的迁移和分化过程。

此外,斑马鱼突变体和转基因模型可用于研究神经发育缺陷和神经退行性疾病,如癫痫和帕金森病。

斑马鱼的神经系统透明和早期的动物和行为行为,也使其成为研究光遗传学和光控制神经元活动的理想模型。

此外,斑马鱼在药物筛选和毒理学研究中也具有潜力。

由于斑马鱼胚胎的透明性和发展速度快,可以用于高通量筛选药物和毒素。

药物或化合物可以直接添加到网格中的孔中,观察其对斑马鱼胚胎发育和行为的影响。

通过这种方法,可以发现新的药物或治疗方法,也可以评估化学物质的安全性和毒性。

总之,斑马鱼在生命科学研究领域中具有独特的优势和广泛的应用。

其快速的繁殖周期、透明度和相对简单的神经系统使其成为遗传学、发育生物学、神经科学和药物筛选等研究领域的理想模式生物。

斑马鱼的研究为人类疾病的治疗和新药开发提供了重要的线索,同时也为我们更好地理解生命的奥秘和自身的发展过程提供了极为便利的途径。

斑马鱼的研究前景广阔,相信在未来的科学研究中将继续发挥重要作用。

斑马鱼模型在基础医学和疾病研究中的应用

斑马鱼模型在基础医学和疾病研究中的应用

斑马鱼模型在基础医学和疾病研究中的应用斑马鱼(zebrafish)作为一种小型淡水鱼,在科学研究中扮演着重要的角色。

它们具有快速生长、透明胚胎和相对低廉的养殖成本等优点,使得它们成为生物学家们探究基础医学和疾病研究的理想模型。

在近年来的研究中,斑马鱼被广泛应用于药物筛选和研究中。

因为斑马鱼与哺乳动物有着相似的生态环境和哺乳动物的遗传特征,它们的药理学性质和疾病模型具有高度可靠性。

此外,斑马鱼拥有极高的生殖能力,且每胎产卵数量多,已成为药物筛选和疾病治疗研究的神器。

其中,斑马鱼模型在基础医学研究中的应用也备受重视。

研究人员们可以通过操纵斑马鱼的基因组,来研究基因与发育、生长、行为和环境因素之间的关系。

此外,利用斑马鱼胚胎的透明度,科学家们还可以直接观察到疾病的发展过程,这为疾病的早期预测和治疗提供了很大便利。

举个例子,斑马鱼模型在肥胖研究中的应用,为这一领域的研究者们开启了新的突破口。

通过斑马鱼模型,研究人员可以研究肥胖与心血管疾病、糖尿病等相关疾病之间的关系,这些都是全球范围内日益严重的常见疾病。

通过对斑马鱼模型进行肥胖相关基因的研究,科学家们可以揭示肥胖相关发生机制,并为肥胖相关疾病的研究提供更多的线索。

斑马鱼模型还广泛用于癌症研究中。

很多癌症都是由基因突变引起的,斑马鱼模型可以帮助研究人员理解这些突变的发生机制,进而开发出更加精确的治疗方案。

例如,通过操纵斑马鱼胚胎的基因组,研究人员可以快速筛选出抗肿瘤的新药,为开发更有效的抗肿瘤药物提供了技术支持。

斑马鱼模型在心血管疾病研究中的应用也备受瞩目。

心血管疾病是全球范围内的最大杀手之一,不仅疾病前期难以察觉,而且治疗方式相对单一。

而斑马鱼模型则可以通过模拟人类心血管疾病相关基因的突变和表达,以便研究心脏疾病及心血管相关的药物筛选。

总而言之,斑马鱼模型的应用从基础医学研究到疾病治疗,均有广泛的应用前景,为人们提供了更加全面深入的研究模型。

未来,我们有理由相信,基于斑马鱼模型的研究将会进一步深入,为人类健康事业提供更多的技术支持和科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斑马鱼作为研究营养与发育的模式生物:为水产鱼类的营养基因组学的研究提供参考摘要斑马鱼是最普遍的用来研究毒理学、发育生物学、神经生物学和分子遗传学的模式生物。

人们提出把它当做一个可能的研究鱼类营养与发育的模型。

斑马鱼用于这一领域研究的好处是它们尺寸小、生殖周期短(12-14周)可以产出大量的卵。

后来有了大量的分子工具,同时可以通过基因分析获得相关信息,但是斑马鱼仍然在鱼类的营养基因组学的研究中当做模式生物使用。

作为模式生物,对其每一个特点的研究都是细微的,这是因为这些特点是用来推理几个生物过程是如何在相关生物身上发生的,同时为扩增我们在鱼类营养和发育机制方面的知识做出重大的贡献。

这篇综述的目的是展示斑马鱼在营养和发育方面的相关研究,从而说明斑马鱼作为研究鱼类营养基因组学的模式生物的价值。

我们特别强调斑马鱼中由营养因素导致的基因表达和遗传变异可以用来阐明水产养殖鱼类中的类似过程。

关键字:斑马鱼,发育,营养,营养基因组学,比较基因组学前言斑马鱼已经成为研究在个体发育、神经生物学分子遗传学研究的十分普遍的模式生物(Driever et al. 1994; Roush 1996; Bergeronet al. 2008)。

近来,人们提出在鱼类营养和发育的研究方面斑马鱼可以作为一种模式生物(Alestro m etal.2006; Dahm andGeisler 2006; De-Santis and Jerry 2007; Wright et al.2006; Johnston et al. 2008)。

人们一个主要的研究兴趣就是生长发育的特点。

因为这与水产养殖行业中,鱼类的生产量和可获取的利益密切相关(De-Santis and Jerry 2007)。

这些特点中,表型性状是基因控制的,但也取决于环境因素,这些因素中,又直接由营养条件影响(Moriyama et al.2000)。

基因研究工具的发展,使我们有机会去弄清楚数量性状相关的基因的变化,随着那些影响养殖生物生长特征的QTL基因座图谱的建立,在生长发育中鉴别候选基因变得非常有效的(Davis and Hetzel2000; Fjalestad et al. 2003; Reid et al. 2005; Aranedaet al. 2008; Lo Pestri et al. 2009; Dumas et al. 2010)。

在这一方面,斑马鱼有比其它养殖动物更加多样的分子工具和可获得的基因分析的数据。

人们建议把斑马鱼作为研究鱼类营养基因组学研究的模式生物,同时期望从这一途径获得的结果可以为水产养殖鱼类提供合适的比较基因组学信息(Metscher and Ahlberg 1999; Drew et al. 2008;Robison et al. 2008; Crollius and Weissenbach 2008)。

营养基因组学是一门合营养学和遗传学的学科。

是一门通过“营养基因组学”(研究日常食物是如何影响某些基因表达的)和“营养遗传学”(研究基因突变对个体“营养应答”的影响)两种手段研究营养-基因相互作用的一门科学(Kaput et al. 2003;Mu ller and Kersten 2003; Mutch et al. 2005; Martiet al. 2005; Panserat et al. 2007)。

在水产渔业中,一些研究形成与研究禁食-喂食过渡中的营养基因组学的研究和用植物来源的营养代替鱼油、鱼粉之后的研究(Panserat and Kaushik 2010)。

由于全球对鱼粉的需求,水产饲料方面的越来越多的采取植物或植物来源的衍生物做为饲料来源,这改变了饲料的组成,同时导致植物源饲料的相关研究变得越来越重要(Hardy 2010; Turchiniet al. 2009)。

这些基因营养学的相关研究使我们明白一个饲料成分的改变是如何对鱼的转录组产生多重效应的影响的。

营养遗传学指的是对同一种食物有不同反应的个体间特定基因差异的研究分析。

这些个体突变一般表现为编码基因的单核苷酸多态性(SNPs),也许会有特殊的表型产生(Vignal et al.2002; Liu and Cordes 2004)。

SNP是一种点突变,可以产生不同的等位基因,包括已知基因座内的核苷酸位点的替换。

自从发现它有最多的多样性以来,SNPs 就成为分子标记中人们最关注的标志。

斑马鱼中,每隔145-219对碱基有一个SNP标记。

它们在遗传学上呈共显性,适合自动化基因型分析,不需要其它标记或者方法的辅助就可以发现未知的同源位点的多态性(Stickney et al. 2002; Vignal et al. 2002; Liu andCordes 2004)。

SNP的变化也许会引起一些重要水产的数量性状相关的表型变化,比如生长相关特征。

鉴定斑马鱼中功能基因多态性是使SNP与养殖鱼类高产性状相关连的桥梁(Fjalestad etal.2003; Ryyna nen and Craig2006; Lo Pestri et al. 2009; De-Santis and Jerry2007)。

这篇综述的主要目的是呈现斑马鱼中与营养和生长关系最大的方面,随着它在研究大马哈鱼中所起到的特殊作用从而证明它是研究水产营养基因组学研究的理想生物模型。

斑马鱼作为模式生物的优势斑马鱼有许多作为模式生物的优点,包括它们较小的体型、较短的繁殖周期(12-14周)、较强的繁殖能力、很容易饲养和容易在实验室环境中操作等(Clark 2003)。

而且斑马鱼有很对的基因工具和可以从基因分析中获得的相关信息,与水产鱼类相比有特别的基因。

对斑马鱼基因组片段的第八次修改在2008年完成(Orban andWu2008),最近即2010年十月“斑马鱼基因组计划”和NCBI的“基因组联合参考”完成了对它的第九次修订。

人类基因组和斑马鱼基因组中存在的共线性基因已经阐明(Barbazuk et al. 2000),同样的共线性基因也在斑马鱼和绿斑河豚中阐明(Woods et al. 2005)。

来源于虹鳟基因组图谱的证据表明,虹鳟和斑马鱼的基因也存在共线性(Rexroad et al.2005, 2008)。

考虑到这些不同种与斑马鱼基因的共线性和现在已有的证据,最近的一次修订认为在包括保守基因的小区域水平,斑马鱼和鲑科鱼类之间也存在丰富的共线性。

在最近的一次对大西洋鲑~1mb片段的研究中发现,某个区域的基因序列在三种模式鱼中都是保守的,它们是青鳉、河豚和斑马鱼,但是只有斑马鱼可能鉴定鲑鱼与之相类似的基因(Quinn et al. 2008)。

在鲶鱼中报道的43000代细菌人工染色体末端序列(BES)显示,在鲶鱼和斑马鱼中有保守的共线区域。

总共有10943个鲶鱼BES序列(17.3%)与斑马鱼基因用blast做了重点比对,有3221个特有的匹配位点。

这为在斑马鱼中建立以这些鲶鱼基因位点为基础的比对图谱提供了一个平台(Liu et al.2009)。

因此,考虑到这些基因组的共线性,用斑马鱼基因组中具有的且与它们吻合的基因库资源来运用于有重大经济意义的鱼类研究。

斑马鱼和其它水产鱼类的基因组和遗传资源斑马鱼的C值接近平均水平——1848pg(Animal Genome Size Database),估计含有1700000000个碱基对,差不多是人类基因组大小的一半(Postlethwait 2004)。

斑马鱼可获取的信息包括35204个基因、1481937个EST(表达序列标签)、161330个GSS(基因组勘测序列)和662236个SNP位点(National Centerfor Biotechnology Information; NCBI)斑马鱼中712个基因中的2035个SNP位点由Stickney等人测定(2002) and later Woods et al. (2005)。

开发的一个更加完整的基因组图谱主要包括基因中的4073个SNP标记位点和EST标记。

Braldy 等人在39%的斑马鱼基因片段中鉴定了大约550000个潜在SNP位点。

它们已经被证明是这些SNP的子组,人们发现超过70%的可能证明的多态性位点,而且证明将近390000SNP位点是有效的可以应用的。

到目前为止,在硬骨鱼中,SNP的运用仅局限于大马哈鱼,运用保守位点(遗传共线性)可以在种间找到并验证SNP位点(Smith et al. 2005)。

另一方面,人们已经将飞速发展的基因组和遗传资源运用于重要经济养殖鱼类的研究中,比如叉尾鮰(Li et al. 2007; Xu et al.2007)、虹鳟(Rexroad III et al. 2003;Govoroun et al. 2006)、大西洋鲑(Thorsenet al. 2005; Davidson et al. 2010)、大西洋鳕(Nielsen et al. 2006; Wesmajervi et al. 2007; Johansen et al. 2009)和金头鲷(Franch et al. 2006; Sengeret al. 2006; Sarropoulou et al.2007)。

大西洋鲑的遗传信息包括3974个基因、498212个EST标签、203387个GSS序列和1344个SNP位点(NCBI, January 2011)。

最近,大西洋鲑中9057个参考基因的全长特点已经阐明(Leong et al. 2010),几个SNP标记也已经发现。

比如Hayes等人在100866个EST 中发现2507个潜在的线性SNP位点。

用同样的方法,Boulding等通过连锁图谱鉴定了129个EST中的间隔的SNP位点,并证明位于连锁群上的79个SNP标记与生长率、肥满度、体型和皮肤色素沉积等数量性状相关。

Moen等完成了1369个SNP标记,其中304个已经在连锁图谱中用基因锚定确定了它们的位置。

一群来源于大西洋鲑SNP芯片(CIGENE)的15225个SNP位点以发展成为可能用于全基因组筛选(WGS)的基因工具,人们考虑对2991个但拷贝的多态性SNP进行进一步的分析研究(Dominik et al. 2010)。

鲶鱼的遗传信息包括超过500000个EST标签(Wang et al. 2010; Li et al. 2007)、超过10000个全长cDNA(Chen et al. 2010)、超过300000个潜在的SNP位点(Wang et al. 2010)和正在研制的高通量的SNP芯片(Luet al. 2010)。

相关文档
最新文档