四川省成都七中2013-2014学年七年级上学期期中考试数学试题

合集下载

四川省成都七中2014届数学(理)三轮复习综合训练(七) Word版含答案

四川省成都七中2014届数学(理)三轮复习综合训练(七) Word版含答案

成都七中高2014届三轮复习综合训练(七)理科命题人:赵柏鲜本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页,第Ⅱ卷3至6页.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.1.在复平面内,复数z 和22ii-表示的点关于虚轴对称,则复数z =A. 2455i +B.2455i -C. 2455i -+D. 2455i --2.若集合{}(){}2,,lg 1xM y y x R S x y x ==∈==-,则下列各式中正确的是A. MS M = B. M S S = C. M S = D. M S =∅3.已知命题000:,2lg ,p x R x x ∃∈->命题2:,0,q x R x ∀∈>则( )A. p q ∨命题是假命题B. p q ∧命题是真命题C. ()p q ⌝∨命题是假命题 D. ()p q ⌝∧命题是真命题4.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为( ) A. 2- B. 2 C. 4- D. 45.程序框图如图所示,该程序运行后输出的S 的值是 ( )A .12- B .13 C .3- D .26.某几何体的三视图如图所示,则它的表面积为( ) A .B. C.2+π( D . 7.已知直线a 和平面α,则能推出//a α的是A. ,//,//b a b a α存在一条直线且B. ,,b a b b α⊥⊥存在一条直线且C. ,,//a ββαβ⊂存在一个平面且D. ,//,//a ββαβ存在一个平面且 8.已知数列{}n a 的前n 项和()10nn S a a =-≠,则数列{}n aA. 一定是等差数列B. 一定是等比数列C.或者是等差数列,或者是等比数列D. 既不可能是等差数列,也不可能是等比数列9.已知有一个公园的形状如图所示,现有3种不同的植物药种在此公园的,,,,A B C D E 这五个区域内,要求有公共边的两块相邻区域不同的植物,则不同的种法共有 A. 16种 B. 18种 C. 20种 D. 22种10.已知函数()()2ln 1f x a x x =+-,在区间()0,1内任取两个实数,p q ,且p q ≠,若不等式()()111f p f q p q+-+>-恒成立,则实数a 的取值范围为A. [)11,+∞B. [)13,+∞C. [)15,+∞D. [)17,+∞二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.若22nx ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则展开式中的常数项是12.设变量,x y 满足约束条件140340x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数3z x y =-的最大值为13.已知在边长为1的正方形ABCD ,M 为BC 的中点,E 在线段AB 上运动,则EM EC 的取值范围是14.设ABC ∆的内角A BC 、、所对应的边分别为a b c 、、,()3cos cos 2A CB -+=,2b ac =,则B =15.如图,从一点O 引出三条射线,,OA OB OC 与直线l 分别交于,,A C B 三个不同的点,则下列命题正确的是 .○1若(),OC OA OB R λμλμ=+∈,则1λμ+=; ○2若先引射线,OA OB 与l 交于,A B 两点,且,OA OB 恰好是夹角为90的单位向量,再引射线OC 与直线l 交于点C (C 在,A B 之间),则OAC ∆的面积18OAC S ∆≤的概率是14; ○3若2,1OA OB ==,OA 和OC 的夹角为30,OB 和OC 夹角为45,则6OC =○4若C 为AB 中点,P 为线段OC 上一点(不含端点),且OP kOC =,过P 作直线m 分别交射线,OA OB 于,A B '',若,OA aOA OB bOB ''==,则ab 的最大值是2k成都七中高2014届三轮复习综合训练(七)第Ⅱ卷三、解答题:本大题共6小题,满分75分.其中16-19每题12分,20题13分,21题14分.16.某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.17.已知函数()1sin 3f x x ωπ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的部分图象如图所示,其中P 为函数图象的最高点,,A B 是函数图象与x 轴的相邻两个交点,若y 轴不是函数()f x 图象的对称轴,且1tan 2APB ∠=.(1)求函数()f x 的解析式;(2)若[]1,2x ∈,求函数()f x 的取值范围.BD18.已知数列{}n a 的各项均为正数, n S 为其前n 项的和,且对于任意的n N *∈,都有()241n n S a =+(1)求证:数列{}n a 为等差数列;(2)若2n n tS ≥对于任意的n N *∈恒成立,求实数t 的最大值.19.如图,已知在地面时菱形的四棱锥P ABCD -中,ABC ∆是边长为2的正三角形,2AP BP PC ===(1)求证:平面PAB ⊥平面ABCD ; (2)求二面角A PC D --的余弦值.20.如图,设抛物线()21:40C y mx m =>的准线l 与x 轴交于点1F ,其焦点为2F ,以1F ,2F 为焦点,离心率为12e =的椭圆2C 与抛物线1C 在x 轴上方交点为P ,连接2PF 并延长2PF 交抛物线于点Q ,M 是抛物线1C 上一动点,且M 在P 与Q 之间运动. (1)当1m =时,求椭圆2C 的方程;(2)当12PF F ∆的边长恰好是三个连续的自然数时,求MPQ ∆面积的最大值.21.已知函数()()21ln 12f x a x x a x =+-+. (1)求函数()f x 的单减区间;(2)若()0f x ≥对定义域内的任意x 恒成立,求实数a 的取值范围; (3)证明:对于任意正整数,m n ,不等式()()()()111ln 1ln 2ln nm m m n m m n +++>++++恒成立.成都七中高2014届三轮复习综合训练(七)答案命题人:赵柏鲜一、选择题 1.解析: A2.解析: D 因为()()0,1M S =+∞=+∞,,3.4. D5.A6.A .【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆2111122S ππ=⋅=,侧面三角形212222S =⋅⋅=和侧面扇形315522S ππ=⋅⋅=,151522222S πππ+∴=++=+,故选A .7.解析: C 因为,,A B D a α⊂中,均有可能 8.9.二、填空题11.12.13.1415.三、解答题 16. 解:(1)众数:8.6; 中位数:8.75 ;……………………………2分(2)设i A 表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则140121)()()(3162121431631210=+=+=C C C C C A P A P A P ; …………………6分(3)ξ的可能取值为0,1,2,3.6427)43()0(3===ξP ;6427)43(41)1(213===C P ξ; 64943)41()2(223===C P ξ;641)41()3(3===ξP ……..……………..10分所以ξξE 27279101230.7564646464=⨯+⨯+⨯+⨯=. ………..……….…12分 另解:ξ的可能取值为0,1,2,3.则1~(3,)4B ξ,3313()()()44k k kP k C ξ-==.所以ξE =75.0413=⨯.18.19.21.。

四川省成都七中实验学校2015-2016学年七年级上学期期中考试数学试题

四川省成都七中实验学校2015-2016学年七年级上学期期中考试数学试题

成都七中实验学校初2015级七年级(上)期中素质测试数 学 试 题考生注意:1、开考之前请考生将自己的姓名、班级、考号等准确的填写在指定的位置,对错误填写的考生成绩以0分计算。

2、本试卷分A 卷、B 卷,A 卷总分100分、B 卷50分,全卷总分150分。

考试时间120分钟。

A 卷(100分)一、 选择题(每小题3分,共30分)1、圆锥体的截面不可能为( )A 、三角形B 、 圆C 、 椭圆D 、矩形 2、若a 的倒数为-12,则a 是( ) A 、12 B 、-12C 、2D 、-23、(-2)5表示( )A 、5乘以(-2)的积B 、5个(-2)连乘的积C 、 2个-5相乘的积D 、5个(-2)相加的和 4、两个互为相反数的有理数相除,其结果( )A 、商为正数B 、商为负数C 、 商为-1或无意义D 、商为15、已知数轴上表示-3和-100的两个点分别为A 、B ,那么A 、B 两点间的距离是( ) A 、97 B 、100 C 、103 D 、36、下列说法不正确的是( )A 、 a 2b 和ab 2是同类项B 、a 的系数是0C 、 15xy 2-15y 2x=0D 、20a 2b-(-17a 2b)=37a 2b7、代数式:3m+n,3ab,π523xy ,ba 22,m ,-13,733y x -,2ab -3c 中的单项式有( )A 、3个;B 、4个;C 、5个;D 、6个8、在下列说法中,(1)在有理数中,没有最小的正整数;(2)立方等于它本身的数只有两个;(3)有理数a 的倒数是1a;(4)若a=b ,则|a|=|b|。

其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个9、一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( )A 、(1+20%)aB 、(1+20%)8%aC 、a %)81%)(201(-+D 、8%a10、按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A 、2个B 、3个C 、4个D 、5个 二、填空题(每题4分,共20分)11、要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x =____,y =______ 12、()20162015)4(25.0-⨯-=__________;()=-+-20162015)2(213、代数式0.6x a b 与3113y a b --是同类项,则x y +=________________14、如果|-x|=4,那么x= ;如果a 2=4,那么a= ;如果y 3=8,那么y= 15、某工厂原计划每天生产a 个零件,实际每天多生产b 个零件,那么生产m 个零件比原计划提前_____________________天 三、计算(每小题5分,共20分)16、)6()7(452-+--+- 17、 ()223232-⨯-⨯--|-1|18、21114()(60)31215--⨯- 19、 %252155.2425.0)41()370(⨯+⨯+-⨯-四、解下列各题(共17分)20、(5分)化简:22223232ab a b ab a b +---+21、(6分)先化简再求值:()()()2222225424,2,1mn m n m n m n ----+=-=其中1 2 3x y第11题22、(6分)已知|x+2|+(y-21)2=0,求代数式31x 3-2x 2y+32x 3+3x 2y-7的值。

四川省成都七中2013-2014学年高一数学(上)半期考试试题及答案

四川省成都七中2013-2014学年高一数学(上)半期考试试题及答案

成都七中2013-2014学年度上期 高2016届半期考试数学试题考试时间:120分钟;试卷满分:150分第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设全集}5,4,3,2,1{=U ,集合}4,2,1{=M ,则集合=M C U ( ) (A )}4,2,1{ (B )}5,4,3{ (C )}5,2{ (D )}5,3{2.下列函数中,与2x y =是同一函数的是( )(A )2)(x y = (B )x y = (C )||x y = (D )33x y = 3.函数)0(,1log 2>=x xy 的大致图象为( )(A ) (B ) (C ) (D )4.已知函数⎩⎨⎧>-≤-=0),2(0,1)(2x x f x x x f ,则))1((f f 的值为( )(A )1- (B )0 (C )1 (D )25.函数)(,R x y ∈=αα为奇函数,且在区间),0(+∞上单调递增,则实数α的值等于( ) (A )1- (B )21(C )2 (D )3 6.设3.03.02.03.0,2.0,3.0===c b a ,则c b a ,,的大小关系为( ) (A )b a c >> (B )a b c >> (C )c b a >> (D )b c a >> 7.函数)),2[]0,((,12)(+∞-∞∈-=x x xx f 的值域为( ) (A )]4,0[ (B )]4,2()2,0[ (C )),4[]0,(+∞-∞ (D )),2()2,(+∞-∞8.若10052==ba ,则下列关系中,一定成立的是( )(A )ab b a =+22 (B )ab b a =+ (C )10=+b a (D )10=ab9.若函数ax x x f 2)(2-=在区间]2,0[的最小值为)(a g ,则)(a g 的最大值等于( ) (A )4- (B )1- (C )0 (D )无最大值 10.设函数)(ln )(2R a a x x x f ∈-+=,若存在],1[e b ∈,使得b b f f =))((成立,则实数a 的取值范围是( )(A )]1,0[ (B )]2,0[ (C )]2,1[ (D )]0,1[-第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11. 函数)34(log 5.0-=x y 的定义域为 .12.化简:=+++5lg 5lg 2lg 2lg 22ln e .13.定义在R 上的偶函数)(x f 在区间),0[+∞上单调递增,且0)1(=f ,则关于x 的不等式0)1(<+x f 的解集是 .14.函数)2013(log )(ax x f a -=在区间)1,0(上单调递减,则实数a 的取值范围是 .15.如果函数)(x f y =在定义域内给定区间],[b a 上存在0x )(0b x a <<满足ab a f b f x f --=)()()(0,则称函数)(x f y =在区间],[b a 上的“平均值函数”,0x 是它的一个均值点.若函数1)(2++-=mx x x f 是]1,1[-上的平均值函数,则实数m 的取值范围是 .三、解答题(本大题共6小题,75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题共12分)(1)设2)(,2)(xx x x e e x g e e x f --+=-=,证明:)()(2)2(x g x f x f ⋅=; (2)若14log 3=x ,求xx-+44的值.17.(本小题共12分)已知集合}1)1(log |{2<-=x x A ,集合},02|{22R a a ax x x B ∈<--=, (1)当1=a 时,求集合B A ;(2)若A B A = ,求实数a 的取值范围.18.(本小题共12分)在20世纪30年代,地震科学家制定了一种表明地震能量大小的尺度,就是利用测震仪衡量地震的能量等级,等级M 与地震的最大振幅A 之间满足函数关系0lg lg A A M -=,(其中0A 表示标准地震的振幅)(1)假设在一次4级地震中,测得地震的最大振幅是10,求M 关于A 的函数解析式; (2)地震的震级相差虽小,但带来的破坏性很大,计算8级地震的最大振幅是5级地震最大振幅的多少倍.19.(本小题共12分)已知定义在R 的奇函数)(x f 满足当0>x 时,|22|)(-=xx f ,(1)求函数)(x f 的解析式;(2)在右图的坐标系中作出函数)(x f y =的图象,并找出函数的单调区间;(3)若集合})(|{a x f x =恰有两个元素,结合函数)(x f 的图象求实数a 应满足的条件.20.(本小题共13分)已知函数ln()(x x f +=(Ⅰ)判断并证明函数)(x f y =的奇偶性; (Ⅱ)判断并证明函数)(x f y =在R 上的单调性;(Ⅲ)当]2,1[∈x 时,不等式0)12()4(>++⋅x x f a f 恒成立,求实数a 的取值范围. .21.(本小题共14分)已知函数)0,,,()(2≠∈++=a R c b a c bx ax x f ,对任意的R x ∈,都有)2()4(x f x f -=-成立,(1)求b a -2的值;(2)函数)(x f 取得最小值0,且对任意R x ∈,不等式2)21()(+≤≤x x f x 恒成立,求函数)(x f 的解析式;(3)若方程x x f =)(没有实数根,判断方程x x f f =))((根的情况,并说明理由.成都七中2013-2014学年度上期高2013级半期考试数学试题(参考答案)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(D )2.(C ) 3.(C ) 4.(B ) 5.(D ) 6.(D ) 7.(B ) 8.(A ) 9.(C ) 10.(A )第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11. ]1,43( 12. 3 13. )0,2(- 14. ]2013,1( 15. )2,0( 三、解答题(本大题共6小题,75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题共12分)解:(1)2)2(22xx e e x f --=, …………………… 2分2222)()(222xx x x x x e e e e e e x g x f ----=+⋅-⋅= …………6分(2)3log 4=x , ……………………8分 由对数的定义得3144,3431log 4===-xx ,……………10分 所以31044=+-xx……………………12分 17.(本小题共12分)解(1)}21|{},31|{<<-=<<=x x B x x A , ………………2分 所以}21|{<<=x x B A ……………………5分(2)由A B A = 得B A ⊆, ……………………6分 当0>a 时,}2|{},31|{a x a x B x x A <<-=<<=所以23321≥⇒⎩⎨⎧≥≤-a a a ……………………8分当0<a 时,}2|{},31|{a x a x B x x A -<<=<<=所以3312-≤⇒⎩⎨⎧≥-≤a a a , ……………………10分综上得:3-≤a 或23≥a ……………………12分 18.(本小题共12分)解:(1)将10,4==A M 代入函数关系0lg lg A A M -=:3lg lg 10lg 400-=⇒-=A A解得001.00=A ,所以函数解析式为3lg +=A M …………………6分 (2)记8级地震的最大振幅为8A ,5级地震的最大振幅为5A 则0880808108lglg lg 8A A A A A A =⇒=⇒-=, 同理05510A A =, …………………10分 所以1000:58=A A …………………12分 19.(本小题共12分)解(1)设0<x ,则0>-x|2)21(||22|)(-=-=-∴-x x x f ,又)()(x f x f -=-|2)21(|)(--=∴x x f …………………2分所以函数)(x f 的解析式为:⎪⎪⎩⎪⎪⎨⎧<--=>-=0|,2)21(|0,00|,22|)(x x x x f x x …………………4分(2)图象如图所示,…………………6分由图象得函数的减区间为)0,1[-和]1,0( (取闭区间不得分) 增区间为]1,(--∞和),1[+∞ …………………8分 (3)作直线a y =与函数)(x f y =的图象有两个交点,则)1,0()0,1( -∈a ……………12分(没排除0扣2分) 20.(本小题共13分)解:(1)要使函数有意义,则012>++x xx x x x ≥=>+||122012>++∴x x 的解集为R ,即函数)(x f 的定义域为R ……………1分 )()1ln()11ln()1ln()(222x f x x x x x x x f -=++-=++=++-=-所以函数)(x f y =是奇函数 …………………3分 (2)设),0[,21+∞∈x x ,且21x x < 则2222112111ln)()(x x x x x f x f ++++=-,210x x <≤212221,11x x x x <+<+∴所以1110222211<++++<x x x x ,即011ln222211<++++x x x x所以)()(21x f x f <所以函数)(x f y =在),0[+∞上为增函数, 又)(x f 为奇函数,所以函数)(x f y =在R 上为增函数 …………………7分 (3)不等式0)12()4(>++⋅x x f a f 等价于)12()4(+->⋅x x f a f)()(x f x f -=-)12()4(-->⋅∴x x f a f函数)(x f y =在R 上为增函数所以原不等式等价于124-->⋅xxa …………………10分 即x xa )21()21(2-->在区间]2,1[上恒成立, 只需max 2))21()21((x xa --> 令u u y u x--==2,)21( 由复合函数的单调性知x xy )21()21(2--=在区间]2,1[上为增函数 所以当2=x 时,165))21()21((max 2-=--xx 即165->a …………………13分 21.(本小题共14分)解:(1)由)2()4(x f x f -=-知,函数)(x f y =图象的对称轴方程为1-=x ,…………………2分 所以0212=-⇒-=-b a ab…………………3分 (2)当1-=x 时,0=+-c b a , 不等式2)21()(+≤≤x x f x 当1=x 时,有1)1(1≤≤f , 所以1)1(=++=c b a f …………………6分 由以上方程解得41,21,41===c b a 函数)(x f y =的解析式为412141)(2++=x x x f …………………8分(3)因为方程x x f =)(无实根,所以当0>a 时,不等式x x f >)(恒成立, 所以x x f x f f >>)())((, 故方程x x f f =))((无实数解, 当0<a 时,不等式x x f <)(恒成立, 所以x x f x f f <<)())((, 故方程x x f f =))((无实数解,综上得:方程x x f f =))((无实数解 …………………14分。

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)1 / 12四川省成都七中2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 中国很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章在世界数学史首次正式引入负数,如果收入200元,记作: 元,那么 元表示 A. 支出140元 B. 收入140元 C. 支出60元 D. 收入60元 【答案】C【解析】解:如果收入200元,记作: 元,那么 元表示支出60元, 故选:C .首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2. 2018年9月20日至24日,第十七届中国西部国际博览会在四川成都举行,本次西博会上签约投资合作项目总投资约7900亿元,用科学记数法表示7900亿元为 元.A. B. C. D. 【答案】D【解析】解:将 用科学记数法表示为: . 故选:D .科学记数法的表示形式为 的形式,其中 ,n 为整数 确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对值 时,n 是正数;当原数的绝对值 时,n 是负数.此题考查了科学记数法的表示方法 科学记数法的表示形式为 的形式,其中 ,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图所示的几何体的截面是A.B.C.D.【答案】B【解析】解:由图可得,截面的交线有4条,截面是四边形且邻边不相等,故选:B.根据截面与几何体的交线,即可得到截面的形状.本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.若a、b互为相反数,cd互为倒数,则的值是A. B. C. D. 1【答案】B【解析】解:、b互为相反数,cd互为倒数,,,,故选:B.根据a、b互为相反数,cd互为倒数,可以求得所求式子的值本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.5.点A在数轴上距原点3个单位长度,且位于原点左侧,若一个点从点A处左移4个单位长度,再右移1个单位长度,此时终点所表示的数是A. B. C. D. 0【答案】B【解析】解:点A在数轴上距离原点3个单位长度,且位于原点左侧若一个点从点A 处左移动4个单位长度,再右移1个单位长度,点A表示的数是,,即点A最终的位置在数轴上所表示的数是.故选:B.根据数轴上点的运动规律“左减右加”解答此题.本题考查数轴,解题的关键是能看懂题意,根据题意可以得到点A的运动路线.6.已知单项式与互为同类项,则为A. 1B. 2C. 3D. 4【答案】D【解析】解:单项式与互为同类项,,,,.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)则.故选:D.根据同类项的概念求解.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.7.下列各组运算中,运算中结果相同的是A. 和B. 和C. 和D. 和【答案】A【解析】解:,,此选项符合题意;B.,,此选项不符合题意;C.,,此选项不符合题意;D.,,此选项不符合题意;故选:A.根据有理数的乘方的运算法则逐一计算可得.本题主要考查有理数的乘方,解题的关键是熟练掌握有理数的乘方的运算法则.8.下列各式一定成立的是A. B.C. D.【答案】C【解析】解:A、原式,故本选项错误.B、原式,故本选项错误.C、原式,故本选项正确.D、原式,故本选项错误.故选:C.根据去括号与添括号的方法解答.考查了去括号与添括号去括号规律: ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项不变号; ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项都要变号.9.已知,则代数式的值为A. 18B. 14C. 6D. 2【答案】A【解析】解:,原式,故选:A.原式变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.现有五种说法: 一个数,如果不是正数,必定是负数; 几个有理数相乘,当负因数有偶数个时,积的符号为正; 两数相减,差一定小于被减数;是5次单项式;是多项式其中错误的说法有3 / 12A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:一个数,如果不是正数,必定是负数和0,故 错误;几个不等于0有理数相乘,当负因数有偶数个时,积的符号为正,故 错误;如,所以两数相减,差不一定小于被减数,故 错误;是3次单项式,故 错误;是多项式,故 正确;即错误的个数是4个,故选:D.根据实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义逐个判断即可.本题考查了实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义等知识点,能熟记知识点的内容是解此题的关键.二、填空题(本大题共8小题,共32.0分)11.比较大小:______.【答案】【解析】解:,,,.故答案为:.根据两个负数相比较,绝对值大的反而小可得答案.此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则: 正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小.12.是一个______次二项式.【答案】五【解析】解:是一个五次二项式.故答案为:五.利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.此题主要考查了多项式的次数,正确把握相关定义是解题关键.13.绝对值大于1不大于4的所有负整数的积为______.【答案】【解析】解:绝对值大于1不大于4的所有负整数为,,,积为,故答案为:.先求出绝对值大于1不大于4的所有负整数,再求出积即可.本题考查了有理数的大小比较法则、绝对值和有理数的乘法,能求出绝对值大于1不大于4的所有负整数是解此题的关键.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)14.某果园去年的产值是x万元,今年的产值比去年增加,今年的产值是______万元.【答案】【解析】解:根据题意知,今年的产值是万元,故答案为:.今年的产值等于去年的产值加上增产的产值,由此列出代数式即可.此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.15.,,且有,则______.【答案】【解析】解:,,,,又,,或,;当,时,;当,时,;综上,,故答案为:.根据绝对值的定义,求出a,b的值,再由,得a,b异号,从而求得的值.本题考查了有理数的加法、乘法和绝对值运算,注互为相反数的两个数的绝对值相等.16.已知多项式是三次三项式,则m的值为______.【答案】【解析】解:由题意得:,且,解得:.故答案为:.根据多项式次数定义可得,再根据项数定义可得,再解即可.此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.17.定义:若,则称a与b是关于数n的“平衡数”比如3与是关于的“平衡数”,5与12是关于17的“平衡数”现有与为常数始终是数n的“平衡数”,则它们是关于______的“平衡数”.【答案】12【解析】解:与为常数始终是数n的“平衡数”,,即,解得:,即,故答案为:12利用“平衡数”的定义判断即可.此题考查了整式的加减,弄清题中的新定义是解本题的关键.5 / 1218.小明家有一个如图的无盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到其平面展开图若长方体纸盒的长、宽、高分别是a,b,单位:cm,则它的展开图周长最大时,用含a,b,c的代数式表示最大周长为______cm.【答案】【解析】解:如图:,这个平面图形的最大周长是.故答案为:.根据边长最长的都剪,边长最短的剪的最少,可得答案.此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.三、计算题(本大题共3小题,共32.0分)19.计算:【答案】解:;;;.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【解析】根据有理数的加法可以解答本题;根据有理数的乘除法可以解答本题;先算小括号里的,再根据有理数的除法即可解答本题;先算小括号里的,再算中括号里的,然后根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.20.已知,.求;现有,当,时,求C的值.【答案】解:,,;,,当,时,.【解析】将,整体代入后化简即可;由可得,将,整体代入并且化简,再把,代入计算即可.本题考查了整式的加减,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成半径相同请用代数式表示装饰物的面积:______,用代数式表示窗户能射进阳光的面积是______结果保留当,时,求窗户能射进阳光的面积是多少?取小亮又设计了如图2的窗帘由一个半圆和两个四分之一圆组成,半径相同,请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?7 / 12【答案】【解析】解:根据圆的面积公式:装饰物的面积是,窗户能射进阳光部分面积是窗户的面积减去装饰物的面积,窗户能射进阳光的面积是;当,时,;如图2,窗户能射进阳光的面积,,,此时,窗户能射进阳光的面积更大,,此时,窗户能射进阳光的面积比原来大.故答案为:,根据圆的面积公式求出即可;根据长方形的面积公式列出式子,再根据圆的面积公式求出阴影部分的面积,再相减即可;根据得出的式子,再把a、b的数值代入即可求出答案;利用的方法列出代数式,两者相比较即可.此题考查列代数式以及代数式求值,注意利用长方形和圆的面积解决问题.四、解答题(本大题共6小题,共52.0分)22.化简:.【答案】解:.【解析】直接去括号再合并同类项得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.23.如图是5块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面对应的位置分别画出你所看到的几何体的形状图.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【答案】解:三视图如图所示:【解析】根据主视图,左视图,俯视图的定义画出图形即可;本题考查作图三视图,解题的关键是理解主视图,左视图,俯视图的意义,属于中考常考题型.24.已知有理数a,b,c在数轴上对应位置如图所示:请用“”将a,b,c连接起来为______;试判断:______0,______0;化简:;【答案】【解析】解:由图可得:,;;;;故答案为:;;.根据有理数的大小比较即可;根据有理数的大小比较解答即可;根据绝对值化简解答即可.本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.25.为了鼓励居民节约用电,某市执行居民生活用电实行阶梯电价标准:每户每月用电量不超过180度的部分,每度电元,超过180度的部分,每度元;市民陈先生家7月份用电量为300度,陈先生7月份的电费应为多少元?陈先生8月份交了238元电费,请计算出陈先生8月份的用电量应为多少度?陈先生一家积极响应号召节约用电,9月份的一家用电量为x度取整数,请用含x的代数式表示陈先生一家9月份应交多少元电费?【答案】解:元.答:陈先生7月份的电费应为186元.设陈先生8月份的用电量为x度,,.根据题意得:,解得:.答:陈先生8月份的用电量应为380度.设陈先生一家9月份应交y元电费.根据题意得:当时,;9 / 12当时,.综上所述:陈先生一家9月份应交电费金额为.【解析】根据居民生活用电阶梯电价标准,即可求出陈先生7月份应交电费;设陈先生8月份的用电量为x度,结合可得出,由居民生活用电阶梯电价标准及陈先生8月份交了238元电费,即可得出关于x的一元一次方程,解之即可得出结论;设陈先生一家9月份应交y元电费,分及两种情况,找出y关于x的关系式,此题得解.本题考查了一元一次方程的应用、有理数的混合运算以及列代数式,解题的关键是:根据居民生活用电阶梯电价标准,列式计算;找准等量关系,正确列出一元一次方程;分及两种情况,找出y关于x的关系式.26.【情景背景】如图所示,将一个边长为1的正方形纸片分割成7个部分,部分 是边长为1的正方形纸片面积的一半,部分 是部分 面积的一半,部分 是部分 面积的一半,以此类推.如图中的阴影部分面积是______;受此启发,得到______;进而计算:______;【迁移应用】计算:______;【解决问题】计算;【答案】【解析】解:如图中的阴影部分面积是,故答案为:;受此启发,得到,故答案为:;,故答案为:;【迁移应用】设,则,,化简,得,四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)故答案为:;【解决问题】令,,,化简,得,原式.根据题意和图形可以解答本题;根据中的结果可以求得所求式子的值;根据题目中式子的特点可以求得所求式子的值;【迁移应用】根据题目中式子的特点可以求得所求式子的值;【解决问题】根据题目中式子的特点可以求得所求式子的值.本题考查数字的变化类、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.27.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足.求A,B两点之间的距离;数轴上点A的左侧的点C,使,且满足,求数d.现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为秒;为何值时B球第二次撞向右侧挡板;在这段时间内,A、B两小球的距离为4时,请直接写出此时b的值.【答案】解:.,,,,;数轴上点A的左侧的点C,使,,,,11 / 12;根据题意可知,当B球第二次撞向右侧挡板时小球共行的路程为:,秒,故t为36秒时B球第二次撞向右侧挡板;,,在这段时间内,A、B两小球的距离为4时,此时或6.【解析】根据非负数的性质,求出a和b便可;先根据,列出c的方程求得c,再根据,求得结果;求出当B球第二次撞向右侧挡板时小球共行的路程便可;距原B球左右4个单位长度的点表示的数便是所求结果.本题主要考查了数轴的性质,涉及求数轴上两点的距离,非负数的性质,一元一次方程的应用,基础题,难度不大,关键是掌握两点距离公式体现数形结合的思想.。

四川省成都七中2013-2014学年高一下学期期末考试数学试题 Word版含解析

四川省成都七中2013-2014学年高一下学期期末考试数学试题 Word版含解析
当 ,即 ,解为 ;4分
当 ,即 ,解为 ;8分
当 ,即 ,无解;11分
综上,不等式的解集为当 ,解为 ;当 ,解为 ;
当 ,无解12分
【思路点拨】对参数进行分类争辩即可.
19.已知向量 ,向量 .
(1)求 在 方向上的投影;
(2)求 的最大值;
(3)若 , , , ,求 .
【学问点】向量的数量积公式;向量的坐标表示;分类争辩的思想方法;等比数列求和.
【思路点拨】将 = 绕原点 逆时针方向旋转 得到 后可得 两点关于 轴对称,据此可得结果.
9.设 , ,则有()
A. B. C. D. 的大小关系不确定
【学问点】两角差的正弦公式;万能公式;正弦函数的单调性.
【答案解析】A解析:解:由于 ,
由正弦函数的单调性可知 ,故选A.
【思路点拨】先把两个三角式化简,再利用正弦函数的单调性即可.
【学问点】组合几何体的面积、体积问题.
【答案解析】2解析:解:设球半径为r,则由 可得 ,解得 .故答案为:2.
【思路点拨】设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.
14.在等比数列 中, ,则该数列的前9项的和等于ቤተ መጻሕፍቲ ባይዱ____.
【学问点】等比数列的性质.
【答案解析】13解析:解:由于 , 所以 ,而 ,所以该数列的前9项的和
10.如图,在直角梯形 中, 点 在阴影区域(含边界)中运动,则有 的取值范围是()
A. B. C. D.
【学问点】向量的坐标表示;简洁的线性规划.
【答案解析】C解析:解:以BC所在的直线为 轴,以BA所在的直线为 轴建立坐标系,如下图:
可得 , , , ,设 ,所以 ,令

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.解:﹣的倒数等于﹣.故选D.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.解:∵﹣1<0,2>0,0=0,﹣(﹣3)>0,>0,∴正数有3个,故选:B.点评:本题考查了正数和负数,大于0是判断数是正数的标准,不能只看符号.3.解:67万=670 000=6.7×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、相同字母的指数不同,不是同类项,选项错误;D、正确.故选D.点评:本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.解:A、2a+3b不属于同类项,不能合并,此选项错误;B、﹣a﹣a=﹣2a,原题计算错误,此选项错误;C、ab﹣ba=0,计算正确,此选项正确;D、5a3﹣4a3=a3,原题计算错误,此选项错误.故选:C.点评:此题考查合并同类项,注意正确判定和运算.6.解:近似数8.6的准确值a的取值范围是8.55≤a<8.65.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所有这些数字都叫这个近似数的有效数字.7.解:设另一边为y,则2(x+y)=30,∴y=15﹣x,该模具的面积=x(15﹣x).故选A.点评:本题考查了列代数式,主要利用了长方形的周长与面积,是基础题.8.解:∵a<﹣1,∴a<﹣1<1<﹣a.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.9.解:a2+1一定是正数,所以①正确;近似数5.20精确到百分位,而5.2的精确到十分位,所以②错误;若ab>0,a+b<0,则a<0,b<0,所以③正确;代数式、是整式,是分式,所以④错误;若a<0,则|a|=﹣a,所以⑤正确.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.也考查了绝对值、有理数的运算和整式.10.解:根据题意得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,当n为奇数时,An=﹣,当n为偶数时,An=,∴A2013=﹣=﹣1007,A2014==1007.故选:D.点评:此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(每题3分,共30分)11.解:以4.00米为标准,若小东跳出了3.85米,记作﹣0.15米,那么小东跳了4.22米,可记作0.22米,故答案为:0.22米.点评:本题考查了正数和负数,理解正负数表示相反意义的量是解题关键.12.解:∵(﹣1)3=﹣1,(﹣0.5)2=0.25,而|﹣1|=1,|﹣2|=2,∴﹣1>﹣2,∴﹣2<(﹣1)3<(﹣0.5)2.故答案为﹣2<(﹣1)3<(﹣0.5)2.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.解:∵单项式﹣0.25a3b的数字因数是﹣0.25,所有字母指数的和=3+1=4,∴此单项式的系数为﹣0.25,次数为4,∴(﹣0.25)×4=﹣1.故答案为:﹣1.点评:本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.14.解:∵单项式﹣5x m y3与7x2y n是同类项,∴m=2,n=3,则(m﹣n)2012=(﹣1)2012=1.故答案为:1.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.解:∵个位数字为m,十位数字为n,∴这个两位数是10n+m;故答案为:10n+m.点评:此题考查了列代数式,要能读懂题意,找到所求的量的等量关系,关键是掌握两位数=十位数字×10+个位数字.16.解:多项式a3+5﹣3ab2+b3﹣3a2b的各项分别为a3、5、﹣3ab2、b3、3a2b;按照字母a的降幂排列为:a3﹣3a2b﹣3ab2+b3+5,则第三项为:﹣3ab2;故答案是:﹣3ab2.点评:本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.解:∵多项式3x3﹣2x2+x+|k|x2﹣5中不含x2的项,∴﹣2+|k|=0,解得:k=±2,故答案为:±2.点评:本题考查了对多项式的应用,关键是能根据题意得出算式﹣2+|k|=0.18.解:由题意得:1﹣m+2m﹣3=0,解得:m=2.故填2.点评:本题考查相反数及解方程的知识,比较简单,注意细心运算.19.解:∵a+b=﹣3,c+2b=﹣5,∴原式=a+2c﹣c+3b=a+c+b+2b=(a+b)+(c+2b)=﹣3﹣5=﹣8.故答案为:﹣8点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.解:∵==×(1﹣),==×(﹣),==×(﹣),==×(﹣),…,∴前20个数的和=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+﹣+…+﹣),=×(1﹣),=.故答案为:.点评:本题是对数字变化规律的考查,根据分母的特点写出乘积的形式并裂项是解题的关键,也是本题的难点.三、解答题(共90分)21.解:(1)原式=﹣4﹣6=﹣10;(2)原式=4×5+8÷4=20+2=22 ;(3)原式=﹣(﹣2)+9×(﹣2)=2﹣18=﹣16;(4)原式=﹣1﹣×(9+1)=﹣1﹣×10=﹣1﹣2=﹣3.点评:本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.绝对值符号有括号的作用.22.解:(1)2a﹣5b﹣3a+b=﹣a﹣4b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1),=﹣4x2+2xy+4x2+4xy﹣4,=6xy﹣4.点评:本题考查了合并同类项法则,单项式乘多项式,整式化简一般先去括号,然后合并同类项,细心运算即可.23.解:原式=x﹣2×+2×y2﹣x+y2,=x﹣x,=﹣x+y2,当x=,y=﹣2时,原式=﹣+(﹣2)2=﹣+4=.点评:本题考查了整式的加减﹣化简求值;做题时要按照题目的要求进行,注意格式及符号的处理是正确解答本题的关键.24.解:(1)移项合并得:3x=﹣12,解得:x=﹣4;(2)去括号得:6x﹣3=2﹣2x﹣1,移项合并得:8x=4,解得:x=;(3)去分母得:12﹣2(2x﹣5)=3(3﹣x),去括号得:12﹣4x+10=9﹣3x,移项合并得:x=13.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.25.解:(1)根据题意得:A=(5x2﹣2x+7)﹣(x2+3x﹣2)=5x2﹣2x+7﹣x2﹣3x+2=4x2﹣5x+9;(2)∵(x﹣2)2=0,∴x﹣2=0,即x=2,则原式=16﹣10+9=15.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.解:(1).(2)C村与A村相距10+(﹣5)﹣(﹣3)=8(千米).(3)3+2+10=15(千米),答:邮递员一共骑车15千米.点评:本题考查了数轴和有理数的计算的应用,关键是能根据题意列出算式.27.解:解方程5(x﹣5)+2x=﹣4得,x=3;解方程2x+m﹣1=0得,x=,∵两方程有相同的解,∴=3,解得m=﹣5.点评:本题考查的是同解方程,熟知如果两个方程的解相同,那么这两个方程叫做同解方程是解答此题的关键.28.解:(1)如图:;(2)原式=﹣(2a﹣b)﹣(b﹣c)﹣2(c﹣a)=﹣2a+b﹣b+c﹣2c+2a=﹣c.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.29.(10分)某校七年级四个班的学生去植树,一班植a棵,二班植的棵树比一班的2倍少40棵,三班植的棵树比二班植的一半多30 棵,四班植的棵树比三班的一半多30棵(1)用a的代数式表示三班植树多少棵?(2)用a的代数式表示四个班共植树多少棵?(3)求a=80时,四个班中哪个班植的树最少?考点:列代数式;代数式求值.分析:(1)根据一班植树a棵,二班植树的棵数比一班的2倍少40棵得出二班植树(2a﹣40)棵,三班植树的棵数比二班的一半多30棵,得出三班植树=(2a﹣40)+30=(a+10)棵;(2)利用四班植树的棵数比三班的一半多30棵,得出四班植树=(a+10)+30=(a+35)棵,进而得出答案.(3)把a=80代入分别计算出四个班植树棵树即可.解答:解:(1)∵一班植树a棵,∴二班植树(2a﹣40)棵,三班植树=(2a﹣40)+30=(a+10)棵;四班植树=(a+10)+30=(a+35)棵,(2)四个班共植树:a+(2a﹣40)+(a+10)+(a+35)=(a+5)棵;(3)把a=80时,一班植树80棵,二班植树:2×80﹣40=120(棵),三班植树:80+10=90(棵),四班植树:80+35=75(棵),故三班植树最少.点评:本题主要考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.30.(10分)如图,从左到右,在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.8 &# x ﹣5 2 …(1)可求得x=8,第2006个格子中的数为﹣5;(2)判断:前m个格子中所填整数之和是否可能为2008?若能,求m的值;若不能,请说出理由;(3)如果a、b为前三个格子中的任意两个数,那么所有的|a﹣b|的和可以通过计算|8﹣&|+|8﹣#|+|&﹣#|+|#﹣&|+|&﹣8|+|8﹣&|得到,若a、b为前19个格子中的任意两个数,则所有的|a﹣b|的和为2436.考点:一元一次方程的应用;绝对值;有理数的加法.分析:(1)根据三个相邻格子的整数的和相等列式求出、x的值,再根据第9个数是2可得#=2,然后找出格子中的数每3个为一个循环组依次循环,在用2006除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解答:解:∵任意三个相邻格子中所填整数之和都相等,∴8+*+#=+#+x,解得x=8,+#+x=#+x﹣5,∴=﹣5,所以,数据从左到右依次为8、﹣5、#、8、﹣5、#、,第9个数与第三个数相同,即#=2,所以,每3个数“8、﹣5、2”为一个循环组依次循环,∵2006÷3=668…2,∴第2006个格子中的整数与第2个格子中的数相同,为﹣5.故答案为:8,﹣5.(2)8﹣5+2=5,2008÷5=401…3,且8﹣5=3,故前m个格子中所填整数之和可能为2008;m的值为:401×3+2=1205.(3)由于是三个数重复出现,那么前19个格子中,这三个数中,8出现了七次,﹣5和2都出现了6次.故代入式子可得:(|8+5|×6+|8﹣2|×6)×7+(|﹣5﹣2|×7+|2+5|×6)×6+(|﹣5﹣8|×7+|8+5|×7)×6=2436.故答案为2436.点评:本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.。

成都市武侯区2013-2014学年七年级上数学期末试题及答案

成都市武侯区2013-2014学年七年级上数学期末试题及答案

绝密★启用前成都市武侯区2013-2014学年(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果|a |=-a ,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A. b a + B. b a - C. ab D. -4a 4. 用一平面截一个正方体,不能得到的截面形状是A.直角三角形B.等边三角形C.长方形D.六边形 5. 下列平面图形中不能..围成正方体的是A. B. C. D.6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8aB .38a -C .(3)8a +D .38a +7. 下列说法正确的是A.23vt -的系数是-2B.233ab 的次数是6次C.5x y +是多项式D.21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A. 5(x+21-1)=6(x -l)B. 5(x+21)=6(x -l)C. 5(x+21-1)=6xD. 5(x+21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温.到2013年,据统计,海外学习汉语的人数达1.5亿.将1.5亿用科学记数法表示为 . 12.9时45分时,时钟的时针与分针的夹角是 . 13.点P 为线段AB 上一点,且AP =32PB ,若AB =10cm ,则PB 的长为 . 14.小明与小彬骑自行车去郊外游玩,事先决定早晨8点出发,预计每小时骑7.5千米,上午10时可到达目的地. 出发前他们决定上午9点到达目的地,那么实际每小时要骑 千米.15. 平面内两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么五条直线最多有 个交点.三、解答题:(本大题共5个小题,共55分) 16. (每小题6分,共24分)(1)计算:⎪⎭⎫ ⎝⎛+-⨯-125612124 (2)计算:()⎥⎦⎤⎢⎣⎡--÷-⨯--223351321(3)解方程:1615312=--+x x(4)先化简,再求值:)3123()31(22122y x y x x +-+--,其中x ,y 满足(x -2)2+|y +3|=0.a17. (本小题满分6分)如图,点C 是线段AB 的中点,点D 是线段AC 的中点,已知图中所有..线段..的长度之和为26,求线段AC 的长度.18. (本小题满分6分)一张长为a 、宽为b 的铁板(a >b),从四个角截去四个边长为x 的小正方形2b x ⎛⎫< ⎪⎝⎭,做成一个无盖的盒子,用代数式表示: (1)无盖盒子的表面积(用两种方法表示); (2)无盖盒子的容积.(不要求化简.....)19. (本小题满分9分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加体育锻炼的情况,对部分学生参加体育锻炼的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求体育锻炼时间为1.5小时的人数,并补充条形统计图; (3)求表示户外活动时间 1小时的扇形圆心角的度数;(4)本次调查中学生参加体育锻炼的平均时间是否符合要求?20.(本小题满分10分)市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠. 某人两次购物分别用了134元和466元. 问:(1)此人两次购物其物品如果不打折,值多少钱? (2)在此活动中,他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品是更节省还是亏损?说明你的理由.BB 卷(共50分)一、填空题(每小题4分,共20分): 21. 计算:=--+-++-213)878(212836. 22. 如果-2≤x ≤2,那么代数式()212-+x 的最大值为 ,最小值为 .23. 如图,从点O 引出6条射线OA 、OB 、OC 、OD 、OE 、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE=∠DOE,∠EOF=140°,则∠COD 的度数为 .24. 用⊕表示一种运算,它的含义是:B A ⊕=()()111++++B A x B A .如果3512=⊕,那么=⊕43 .25. 已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…, 根据前面各式的规律,以下等式(n 为正整数), ① 1+3+5+7+9+…+(2n -1)=2n ;②1+3+5+7+9+…+(2n +3)=()23+n ;③ 1+3+5+7+9+…+2013=21007 ; ④101+…+2013=21007-250 其中正确的有 个.二、解答题(本大题共3个小题,共30分): 26.(本小题满分8分)已知:2222424,363,A x xy y B x xy y =-+=-+且23,16,1,x y x y ==+=求()()423A A B A B +--+⎡⎤⎣⎦的值.27.(本小题满分10分)已知∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图1,当∠BOC=70°时,求∠DOE 的度数;(2)如图2,当射线OC 在∠AOB 内绕O 点旋转时,∠DOE 的大小是否发生变化若变化,说明理由;若不变,求∠DOE 的度数;(3)当射线OC 在∠AOB 外绕O 点旋转时,画出图形....,判断∠DOE 的大小是否发生变化. 若变化,说明理由;若不变,求∠DOE 的度数.28.(本小题满分12分)某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A 种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?BO F DC A成都市武侯区2013-2014学年(上)期末教学质量测评七年级数学参考答案及评分标准A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

成都外国语学校2014级七上期中数学试卷及答案[1]

成都外国语学校2014级七上期中数学试卷及答案[1]

成都外国语学校2011-2012学年度上期期中考试初一数学试卷命题人:郭绍海 审题人:叶新全 试卷负责人:刘钢考试时间:120分钟A 卷 (100分)一、选择题:(每小题3分,共45分)1、下列计算中,正确的是( ) A.328327-=- B. 339464⎛⎫-=- ⎪⎝⎭ C. 21124⎛⎫--= ⎪⎝⎭ D. 239525⎛⎫-=- ⎪⎝⎭2、下列说法正确的是( )A.两数相加,和不小于每一个加数;B.任何一个有理数除以它的相反数都等于-1;C.几个有理数相乘,若负因数有奇数个,则积为正数;D.有理数中有最大的负整数和最小的正整数。

3、图( )不是正方体的展开图。

4、如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是( )5、如果0mn <,m n >,0m n +<,则有( )A. 0m >,0n <B. 0m >,0n >C. 0m <,0n >D. 0m <,0n <6、下列说法错误的是( )A.倒数和它本身相等的数,只有1和-1;B.相反数与本身相等的数只有0;C.立方等于它本身的数只有0、1和-1;D.绝对值等于本身的数是正数。

7、计算()200320040.1258-⨯的结果是( )A.-1B.1C.-8D.88、下列判断错误的是( )A. 0是代数式B. 式子2x-5是代数式C. 3>2是代数式D. x=2不是代数式9、下列式子中正确的是( )A. 22232a a a -=B. 22321a a -=C. 2233a a -=D. 2232a a a -=10、某商品提价25%后,欲恢复原价,则应降价( )A. 20%B. 25%C. 40%D. 30%11、已知代数式2344m m -+的值为8,则代数式29122m m -+的值为( )A. 8B. 10C. 14D. 1212、在日历上,如果某月的10日是星期五,那么这个月里星期四是( )日A. 4B. 15C. 20D. 3013、如果a ,b 互为相反数,下列结论不一定成立的是( ) A. 0a b += B.1a b =- C. 2ab a =- D. a b = 14、0abc ≠,a b c abc a b c abc +++的最大值是m ,最小值是n ,则的值是( ) A. 8 B. -8 C. -10 D. 1015、0a b c ++=,1111114a b c b c c a a b ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是( ) A. 4 B. 3 C. 2 D. 1二、填空题:(每小题2分,共20分)1、a ,b ,c ,d 都是有理数,a ,b 互为相反数,c ,d 互为倒数,则3224cd a b --= 。

2014-2015学年上学期七年级数学期中考试(共7份)

2014-2015学年上学期七年级数学期中考试(共7份)

2014—2015学年上学期期中考试七年级数学试卷一 、选择题.(每小题3分,共30分) 1. 7-的倒数是( )A. 17-B. 7C. 17D. -72.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是( )A. 71.496010⨯千米 B. 714.96010⨯千米C. 81.496010⨯千米 D. 90.1496010⨯千米 3.下列计算正确的是 ( ) A 、326= B 、2416-=- C 、880--= D 、523--=- 4.下列各式2251b a -,121-x ,25-,2y x -,222b ab a +-中单项式有( )A 、4个B 、3个C 、2个D 、1个5.有理数a b ,在数轴上的位置如图所示,下列各式不正确的是 ( ) A 、0<+b aB 、0<abC 、0<baD 、0<-b a6.下列说法正确的是 ( ) ①最大的负整数是1-;②数轴上表示数2和2-的点到原点的距离相等;③当0≤a 时,a a -=成立;④5+a 一定比a 大;⑤3)2(-和32-相等.A 、2个B 、3个C 、4个D 、5个7.七年级同学进行体能测试,一班有a 个学生,平均成绩m 分,二班有b 个学生,平均成绩b 分,则一、二班所有学生的平均成绩为: ( ) A 、b a n m ++ B 、2nm + C 、b a nb ma ++ D 、n m nb ma ++8.用棋子摆出下列一组“口”字,按照这种方法白下区,则摆第n 个“口”字需用旗子( )9.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式mcd m +-2的值为 ( ) A 、3- B 、3 C 、5- D 、3或5-10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A.40 B.45 C.51 D.56二.填空题。

四川省成都七中实验学校2014-2015学年七年级上学期期中考试 数学试题

四川省成都七中实验学校2014-2015学年七年级上学期期中考试 数学试题

3.温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为( )A .81310⨯B .91.310⨯C .81.310⨯D .91.34下面不是同类项的是 ( )A .-2与12B .2m 与2nC .-14a 2b 与a 2b D .-x 2y 2与y 2x 25.下列各数2-,)2(--,2)2(-,3)2(-,22-中,负数的个数为( )A .1个B .2个C .3 个D .4个6.下列计算正确的是( )A .y x yx y x 22223=-B .235=-y yC .277a a a =+D .ab b a 523=+7.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是 ( )A .0a b +>B .0ab >C .0b a -<D .a b >8.如图是一个正方体盒的展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A 、B 、C 内的三个数依次为( )A.1,-2,0B.0,-2,1C.-2,0,1D.-2,1,09.下列说法错误的是( )A 、1322--xy x 是二次三项式B 、1+-x 不是单项式C 、232xy π-的系数是π32- D 、222xab -的次数是6 10.下列说法中正确的是( )A .正数和负数统称有理数B .相反数大于本身的数是负数C .1)1()1(--+-n n = -1(n 是大于1的整数)D .若,a b =则a b =.二、耐心填一填:(每小题4分,共24分)11.2.5的相反数是 ,31-的倒数是 . 12.523y x -的系数是____________. 单项式2715x y π-的次数是________. 13.若 ,则a= .b= .14.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的-3和x ,那么x 的值为 .15. 已知622x y 和313m n x y -是同类项,则2m n += . 16.一桶油连桶的重量为x 千克,桶重量为y 千克,如果把油平均 分成3份,每份油的重量是 ____________千克.三、细心算一算(共26分)17.计算:(每小题4分,共16分)(1)(12)5(14)(39)--+--- (2) (﹣﹣)×(﹣60)(3)()[]2432611--⨯-- (4)121)41()32()3(2÷⎥⎦⎤⎢⎣⎡-+---18.化简或求值(每小题5分,共10分)(1)化简:)343(4232222x y xy y xy x +---+ 0|2|)3(2=-++a b(2)先化简,再求值:22222537()7---x y xy x y xy ,其中21==-x y ,四、解答下列各题(共20分)19.(6分)下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.20.(6分)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下: +10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2升,求从出发到收工共耗油多少升?21.(8分)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表。

四川省成都七中2013-2014高二下学期期中考试理科数学试题(含答案解析)(2014.04)

四川省成都七中2013-2014高二下学期期中考试理科数学试题(含答案解析)(2014.04)

第 1 页 共 15 页成都七中2013-2014学年度(下)期中考试试题高 二 数 学(理科)考试说明:(1)考试时间:120分钟,试卷满分:150分;(2)请将选择题答案涂在答题卡上,将非选择题答在答题卡相应位置上.一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1. 已知命题tan 1p x R x ∃∈=:,使,以下正确的是( )A.tan 1p x R x ⌝∃∈≠:,使B. tan 1p x R x ⌝∃∉≠:,使C . tan 1p x R x ⌝∀∈≠:,使 D. tan 1p x R x ⌝∀∉≠:,使2. 抛物线2y x =的焦点坐标是( )A.(14 , 0) B.(14-, 0) C.(0, 14) D.(0, 14-)3.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是() A.1203622=+y x (x ≠0) B.1362022=+y x (x ≠0) C.120622=+y x (x ≠0) D.162022=+y x (x ≠0)4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319B .316C .313D .3105.“m =3”是“椭圆1522=+m y x 的离心率510=e ”的( ) A.充分但不必要条件 B.必要但不充分条件C.充要条件D.既不充分也不必要条件6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=7.当x 在(,)-∞+∞上变化时,导函数'()f x 的符号变化如下表:则函数()f x 的图象的大致形状为( )。

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)一、选择题(每小题3分,共30分)1.(3分)(2013•重庆)在﹣2,0,1,﹣4.这四个数中,最大的数是( )A . ﹣4B . ﹣2C . 0D . 12.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A . 1.505×109元B . 1.505×1010元C . 0.1505×1011元D . 15.05×109元3.(3分)(2014•毕节地区)计算﹣32的结果是( )A . 9B . ﹣9C . 6D . ﹣64.(3分)下面说法正确的有( )(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A . 4个B . 3个C . 2个D . 1个5.(3分)数轴上到2的距离是5的点表示的数是( )A . 3B . 7C . ﹣3D . ﹣3或76.(3分)若m 、n 满足|2m+1|+(n ﹣2)2=0,则m n 的值等于( )A . ﹣1B . 1C . ﹣2D .7.(3分)(1999•山西)用语言叙述代数式a 2﹣b 2,正确的是( )A . a ,b 两数的平方差B . a 与b 差的平方C . a 与b 的平方的差D . b ,a 两数的平方差8.(3分)如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( )A . 3B . 4C . 5D . 6 9.(3分)(2013•济宁)如果整式x n ﹣2﹣5x+2是关于x 的三次三项式,那么n 等于( )A . 3B . 4C . 5D . 610.(3分)(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A.8B.9C.10 D.11二、填空题(每小题4分,共20分)11.(4分)计算﹣(﹣3)=_________,|﹣3|=_________,(﹣3)2=_________.12.(4分)单项式﹣的系数是_________,次数是_________.13.(4分)若3a m b5与4a2b n+1是同类项,则m+n=_________.14.(4分)(2009•孝感)若|m﹣n|=n﹣m,且|m|=4,|n|=3,则(m+n)2=_________.15.(4分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_________.三、解答题(共50分)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.17.(8分)计算:(1)2×(﹣5)+22﹣3÷;(2)﹣(﹣3)2﹣3+0.4×[(﹣1)]÷(﹣2).18.(10分)化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.19.(6分)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|20.(6分)已知多项式x2+ax﹣y+b和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣(4a2+ab+b2)的值.21.(6分)小虫从A点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm),依次记为:+6,﹣4,+10,﹣8,﹣7,+13,﹣9.解答下列问题:(1)小虫在爬行过程中离A点最远有多少距离?(2)小虫爬行到最后时距离A点有多远?(3)小虫一共爬行了多少厘米?22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为_________元,乙旅行社的费用为_________元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为_________.(用含a的代数式表示,并化简.)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)一、填空:(其中23、24小题每题2分,25小题3分,共7分)23.(2分)计算:(﹣3)2016+(﹣3)2015=_________.24.(2分)已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为_________.25.(2分)小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是_________;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是_________;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可)_________.二、探究题26.(7分)根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:_________,B:_________.(2)观察数轴,与点A的距离为4的点表示的数是:_________.(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?27.(6分)一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a和﹣2的两点之间的距离是3,那么a=_________;(2)若数轴上表示数的点位于﹣4与2之间,那么|a+4|+|a﹣2|的值是_________;当a取_________时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是_________.(3)依照上述方法,|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值是_________.2013-2014学年四川省成都七中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2013•重庆)在﹣2,0,1,﹣4.这四个数中,最大的数是()A.﹣4 B.﹣2 C.0D.1考点:有理数大小比较.分析:根据正数大于0,负数小于0,负数绝对值越大越小即可求解.解答:解:在﹣2,0,1,﹣4.这四个数中,大小顺序为:﹣4<﹣2<0<1,所以最大的数是1.故选D.点评:此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.2.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将150.5亿元用科学记数法表示1.505×1010元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•毕节地区)计算﹣32的结果是()A.9B.﹣9 C.6D.﹣6考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选:B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.4.(3分)下面说法正确的有()(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A.4个B.3个C.2个D.1个考点:有理数.分析:根据整数、正数、负数、绝对值、有理数的概念对各选项判断后选取答案即可.解答:解:(1)正整数、零和负整数统称整数,故说法错误;(2)0既不是正数,又不是负数,故说法正确;(3)有绝对值最小的有理数,是0,故说法正确;(4)正有理数、零和负有理数统称有理数,故说法错误.故选C.点评:本题考查了有理数的有关定义,比较简单.用到的知识点:整数包括正整数、负整数和0;0既不是正数,又不是负数;0是绝对值最小的有理数;正有理数、零和负有理数统称有理数.此题是基础知识题,需要熟练掌握.5.(3分)数轴上到2的距离是5的点表示的数是()A.3B.7C.﹣3 D.﹣3或7考点:数轴.分析:此题只需明确平移和点所对应的数的变化规律:左减右加;该数是在点2的基础上进行变化.解答:解:如图,数轴上到2的距离是5的点表示的数是:2﹣5=﹣3,2+5=7;所以数轴上到2的距离是5的点表示的数是﹣3或7.故选D.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,由此可以看出,“数形结合”在解题过程中还是占有一定的优势.6.(3分)若m、n满足|2m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1 B.1C.﹣2 D.考点:非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质求m、n的值,代入所求代数式计算即可.解答:解:∵|2m+1|+(n﹣2)2=0,∴2m+1=0,n ﹣2=0,解得m=﹣,n=2,∴m n =(﹣)2=,故选D .点评:本题考查了非负数的性质.几个非负数的和为0,则这几个非负数都为0.7.(3分)(1999•山西)用语言叙述代数式a 2﹣b 2,正确的是( )A . a ,b 两数的平方差B . a 与b 差的平方C . a 与b 的平方的差D . b ,a 两数的平方差考点: 代数式.分析: 要根据代数式的顺序用语言叙述出来.解答: 解:a 2﹣b 2用语言叙述为a ,b 两数的平方差.故选A .点评: 主要考查了用数学语言叙述代数式的能力,注意a 2﹣b 2表示a 与b 两数的平方差.8.(3分)如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( )A . 3B . 4C . 5D . 6考点:直线、射线、线段. 分析:根据线段的定义,写出所有线段后再计算条数. 解答:解:如图,线段有:线段AB 、线段AC 、线段AD 、线段BC 、线段BD 、线段CD 共6条. 故选D . 点评:本题主要考查线段的定义,注意寻找要做到不重不漏.9.(3分)(2013•济宁)如果整式x n ﹣2﹣5x+2是关于x 的三次三项式,那么n 等于( )A . 3B . 4C . 5D . 6考点: 多项式.专题: 计算题.分析: 根据题意得到n ﹣2=3,即可求出n 的值.解答: 解:由题意得:n ﹣2=3,解得:n=5.故选C点评: 此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.10.(3分)(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A.8B.9C.10 D.11考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.二、填空题(每小题4分,共20分)11.(4分)计算﹣(﹣3)=3,|﹣3|=3,(﹣3)2=9.考点:有理数的乘方;相反数;绝对值.分析:根据相反数的定义,绝对值的性质和有理数的乘方进行计算即可得解.解答:解:﹣(﹣3)=3,|﹣3|=3,(﹣3)2=9.故答案为:3;3;9.点评:本题考查了有理数的乘方,相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.12.(4分)单项式﹣的系数是﹣,次数是3.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式定义得:单项式﹣的系数是﹣,次数是3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.13.(4分)若3a m b5与4a2b n+1是同类项,则m+n=6.考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=2,n+1=5,求出n,m 的值,再代入代数式计算即可.解答:解:∵3a m b5与4a2b n+1是同类项,∴m=2,n+1=5,解得:m=2,n=4∴m+n=6.故答案为6.点评:本题考查同类项的定义、方程思想,是一道基础题,比较容易解答.14.(4分)(2009•孝感)若|m﹣n|=n﹣m,且|m|=4,|n|=3,则(m+n)2=49或1.考点:有理数的乘方;绝对值.专题:计算题.分析:根据已知条件,结合绝对值的性质得到m,n的值,再根据乘方的意义进行计算.解答:解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49.故答案为:49或1点评:绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.15.(4分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是6.考点:尾数特征.分析:观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.解答:解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.点评:本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到“每四个数一组,个位数字循环”是解题的关键.三、解答题(共50分)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.考点:有理数大小比较;数轴.分析:首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.解答:解:如图所示:,﹣|﹣4|<﹣|﹣2|<﹣1<0.5<﹣(﹣2)<﹣9﹣3)<3.5.点评:此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.17.(8分)计算:(1)2×(﹣5)+22﹣3÷;(2)﹣(﹣3)2﹣3+0.4×[(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:(1)利用有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进而得出答案;(2)利用有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进而得出答案.解答:解:(1)原式=﹣10+4﹣6=﹣12;(2)原式=﹣9﹣3+×(﹣)×=﹣12﹣×(﹣)=﹣11.7.点评:此题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(10分)化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.考点:整式的加减—化简求值;整式的加减.专题:计算题.分析:(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.解答:解:(1)原式=﹣2ab+3a﹣4a+2b+2ab=﹣a+2b;(2)原式=5a2+3b2+2a2﹣2b2﹣5a2+3b2=2a2+4b2,当a=﹣1,b=时,原式=2+1=3.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(6分)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|考点:绝对值;数轴.专题:探究型.分析:先根据数轴上各点的位置确定2a、a+c、1﹣b、﹣a﹣b的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.解答:解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1.点评:本题考查的是绝对值的性质及数轴的特点,根据数轴上各点的位置对2a、a+c、1﹣b、﹣a﹣b的符号作出判断是解答此题的关键.20.(6分)已知多项式x2+ax﹣y+b和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣(4a2+ab+b2)的值.考点:整式的加减;整式的加减—化简求值.专题:计算题.分析:已知多项式相减列出关系式,去括号合并得到最简结果,根据结果与x无关求出a与b的值,原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.解答:解:∵多项式x2+ax﹣y+b和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,(x2+ax﹣y+b)﹣(bx2﹣3x+6y﹣3)=x2+ax﹣y+b﹣bx2+3x﹣6y+3=(1﹣b)x2+(a+3)x﹣7y+b+3∴1﹣b=0,a+3=0,解得:a=﹣3,b=1,则原式=(3a2﹣6ab﹣3b2)﹣(4a2+ab+b2)=3a2﹣6ab﹣3b2﹣4a2﹣ab﹣b2=﹣a2﹣7ab﹣4b2=﹣9+21﹣4=8.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(6分)小虫从A点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm),依次记为:+6,﹣4,+10,﹣8,﹣7,+13,﹣9.解答下列问题:(1)小虫在爬行过程中离A点最远有多少距离?(2)小虫爬行到最后时距离A点有多远?(3)小虫一共爬行了多少厘米?考点:数轴;正数和负数.分析:(1)分别依次进行计算,根据绝对值的大小比较即可;(2)把行驶的所有路程相加,然后根据有理数的加法运算法则进行计算,再根据绝对值的性质即可得解;(3)把行驶的所有数据求绝对值相加,然后根据有理数的加法运算法则进行计算即可求解.解答:解:(1)∵6﹣4=2;2+10=12;12﹣8=4;4﹣7=﹣3;﹣3+13=10;10﹣9=1.∴小虫在爬行过程中离A点最远有12cm;(2)∵由(1)可知,最后计算结果为1,∴小虫爬行到最后时距离A点有1cm.(3)6+|﹣4|+10+|﹣8|+|﹣7|+13+|﹣9|=6+4+10+8+7+13+9=57cm.点评:本题考查的是数轴,正负数的意义,以及有理数的加法运算,绝对值的性质,解题关键是理解“正”和“负”的相对性,运算比较复杂,一定要认真.22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为1500a元,乙旅行社的费用为1600a﹣1600元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为7a.(用含a的代数式表示,并化简.)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)考点:列代数式.分析:(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.解答:解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣1600=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.一、填空:(其中23、24小题每题2分,25小题3分,共7分)23.(2分)计算:(﹣3)2016+(﹣3)2015=2×32015.考点:有理数的乘方.专题:计算题.分析:把(﹣3)2016转化为指数是2015的幂,然后进行计算即可得解.解答:解:(﹣3)2016+(﹣3)2015=(﹣3)×(﹣3)2015+(﹣3)2015=(﹣3+1)×(﹣3)2015=2×32015.故答案为:2×32015.点评:本题考查了有理数的乘方,转化为指数是2015的幂是解题的关键.24.(2分)已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为﹣6.考点:代数式求值.分析:由当x=﹣3时,代数式ax3+bx+1的值为8,可求得27a+3b=﹣7,继而求得当x=3时,代数式ax3+bx+1的值.解答:解:∵当x=﹣3时,代数式ax3+bx+1的值为8,∴﹣27a﹣3b+1=8,∴27a+3b=﹣7,∴当x=3时,ax3+bx+1=27a+3b+1=﹣7+1=﹣6.故答案为:﹣6.点评:此题考查了代数式的求值,此题难度不大,注意掌握整体思想的应用.25.(2分)小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是25;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是﹣5;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可)(﹣5)×(﹣5)﹣15.考点:有理数的混合运算.专题:图表型.分析:(1)找出﹣5与﹣5两张卡片,乘积最大,求出最大值即可;(2)找出﹣5与1两张卡片,之商最小,求出最小值即可;(3)利用运算符号将四个数字连接,计算结果为24即可.解答:解:(1)(﹣5)×(﹣5)=25;(2)(﹣5)÷1=﹣5;(3)(﹣5)×(﹣5)﹣15=25﹣1=24.故答案为:(1)25;(2)﹣5;(3)(﹣5)×(﹣5)﹣15点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.二、探究题26.(7分)根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:1,B:﹣2.5.(2)观察数轴,与点A的距离为4的点表示的数是:5和﹣3.(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?考点:数轴.分析:(1)观察数轴,直接得出结论;(2)根据题意得出两种情况:当点在表示1的点的左边时,当点在表示1的点的右边时,列出算式求出即可;(3)①A点与﹣2表示的点相距4单位,其对称点为﹣1,由此得出与B点重合的点;②对称点为﹣0.5,M点在对称点左边,离对称点2011÷2=1005.5个单位,N点在对称点右边,离对称点1005.5个单位,由此求出M、N两点表示的数.解答:解:(1)利用数轴得出:A:1 B:﹣2.5;故答案为:1,﹣2.5;(2)分为两种情况:①当点在表示1的点的左边时,数为1﹣4=﹣3;②当点在表示1的点的右边时,数为1+4=5;故答案为:5和﹣3;(3)①∵A点与﹣2表示的点重合,∴A点与﹣2关于﹣0.5对称,∴B点与表示1.5的点重合,②∵数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,∴M、N两点表示的数分别是﹣1006,1005.点评:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.27.(6分)一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;(2)若数轴上表示数的点位于﹣4与2之间,那么|a+4|+|a﹣2|的值是6;当a取1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是9.(3)依照上述方法,|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值是16.考点:数轴;绝对值.分析:(1)根据数轴上与一点距离相等的点有两个,分别位于该点左右,可得a有两个值;(2)根据﹣4<a<2,可得|a+4|=a+4,|a﹣2|=2﹣a;根据线段上的点与两端点的距离和最小,且让|a﹣1|=0,可得a的值;(3)根据线段上的点与两端点的距离和最小,且让|a﹣2|=0或|a﹣4|=0,可得原式的最小值.解答:解:(1)∵=3,∴a+2=3,或a+2=﹣3,∴a=﹣5或a=1,故答案为:﹣5或1;(2)①∵﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,②∵|a+5|+|a﹣1|+|a﹣4|的值最小,∴﹣5<a<4,|a﹣1|=0,∴a=1,|a+5|+|a﹣1|+|a﹣4|的最小值等于9,故答案为:6,1,9;(3)∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值,∴﹣6<a<4,且让|a﹣2|=0或|a+4|=0,∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值=16,故答案为:16.点评:本题考查了数轴上点的距离,注意与一点距离相等的点有两个,线段上与两端点的距离和最小的点在线段上.。

四川省成都七中实验学校2013-2014学年七年级上学期语文期中试题 (word版含答案)

四川省成都七中实验学校2013-2014学年七年级上学期语文期中试题 (word版含答案)

四川省成都七中实验学校2013-2014学年初一上学期期中考试语文试题A 卷 ( 共 100 分 )第 I 卷 ( 选择题共 18 分 )2.下面语句中书写准确无误的一项是:A. 尴尬宽敞繁花嫩叶持之以恒B. 酝酿时晨独具惠眼各得其所C. 栅栏威摄蛛丝马迹生死决别D.水藻复盖形影不离美不盛收3、下列语句中加点的成语使用不正确的一项是:A.井房的经历使我求知的欲望油然而生....。

B.王老师说这番话时,竟第一次严肃得面无一丝笑容,一时间满教室鸦雀无声。

.....C.为了我班能在校运会上取得好成绩,班主任老师虚张声势....,鼓励大家发扬“更快、更高、更强”的体育精神,得到同学们热烈响应。

D.张飞本就是暴怒无常....的性格,一听关羽投靠了曹操,立马怒目圆瞪,掀翻桌椅,地面瞬时一片狼藉。

4.下列句子中没有语病的一项是:A.回到家乡,我又看到了熟悉的乡亲和动听的乡音。

B.《西游记》这部小说对我很感兴趣,每读一遍我都爱不释手。

6.结合语境,在下面语段中的横线处填写句子最恰当的是:春意甚浓了,但在北方还是五风十雨,春寒料峭,__________,又来了一场沁人心脾的冷雨。

A.刚吹过一阵暖人心意的春风B.一阵乌云刚刚布满天空C.刚飞过一群欢叫的大雁D.一堆堆令人生寒的积雪还依稀可见二、阅读下面的文言文,完成 7~9题。

(6分,每小题2分)《论语》十二章子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”曾子曰:“吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩。

”子曰:“温故而知新,可以为师矣。

”子曰:“学而不思则罔,思而不学则殆。

”子曰:“贤哉,回也!一箪食,一瓢饮,在陋巷,人不堪其忧,回也不改其乐。

贤哉,回也!”子曰:“知之者不如好之者,好之者不如乐之者。

”子曰:“饭疏食饮水,曲肱而枕之,乐亦在其中矣。

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题一、单选题1.有理数2024的相反数是()A .2024B .2024-C .12024D .12024-2.下列图形中可以作为一个正方体的展开图的是()A .B .C .D .3.单项式22x y -的系数和次数分别是()A .2、3B .2-、3C .2、2D .2-、24.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为()A .278710⨯B .37.8710⨯C .47.8710⨯D .50.78710⨯5.下列计算正确的是()A .2a a a +=B .3265x x x -=C .22234-=-ab ba a bD .235325x x x +=6.用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④三棱柱,截面形状可能是三角形的几何体有()A .1个B .2个C .3个D .4个7.有理数a 、b 在数轴上的位置如图所示,则下列式子正确的是()A .0a b ->B .10a +>C .0a b +<D .a b>-8.观察下面点阵图的规律,第9幅点阵图中有()个◯.A .18B .28C .32D .36二、填空题9.比较大小:23-35-.(填“<”、“>”或“=”)10.单项式13m x y -与4n xy 的和是单项式,则m n 的值为.11.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为.12.已知有理数a 、b 满足()2310a b -++=,则a b ÷=.13.三个连续偶数中,n 是最小的一个,这三个数的和为.三、解答题14.计算(1)12150.25123412⎛⎫⎛⎫++--+- ⎪ ⎪⎝⎭⎝⎭(2)()75336964⎛⎫-+-⨯- ⎪⎝⎭(3)()6536556-÷⨯÷-(4)()()241110.5153---⨯⨯--15.先化简,再求值:()()222212482352xy xy x y xy x y --+-其中13x =,3=-y .16.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,请你画出从正面和从左面看到的这个几何体的形状图.17.若5a =,3b =,(1)若0ab <,求a b +的值;(2)若a b a b +=+,求a b -的值.18.国庆期间,银行的储蓄员小张在办理业务时,约定存入为正,取出为负.某天上午8点他领取备用金40000元开始工作,接下来的两个小时,他先后办理了七笔存取业务:25000+元, 8100-元,4000+元,6700-元,14000+元,16000-元,1800+元.(1)10点时,小张手中的现金有多少元?(2)请判断在这七笔业务中,小张在第几笔业务办理后,手中的现金最少?(3)若每办一笔业务,银行发给业务员存取业务金额的0.2%作为奖励,则办理这七笔业务小张应得奖金多少元?四、填空题19.若323a b -=则代数式3124a b -+=.20.如图,已知四个有理数m 、n 、p 、q 在一条缺失了原点和刻度的数轴上对应的点分别为M 、N 、P 、Q ,且0m p +=,则在m ,n ,p ,q 四个有理数中,绝对值最小的一个是.21.已知长方形的长为4cm ,宽为3cm ,将其绕它的一边所在的直线旋转一周,得到一个立体图形,则该立体图形的体积为.(结果保留π)22.给出一列数:112123123,,,,,,,,,,,121321121kk k k -- ,在这列数中,记第40个值等于1的项的序号为m ,则m =.23.对任意一个三位数n ,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数和与111的商记为()F n ,例如:123n =,对调百位与十位上的数字得1213n =,对调百位与个位上的数字得2321n =,对调十位与个位上的数字得3132n =,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236F =.①()261F =;②若,s t 都是“相异数”,其中10083,50210s x t y =+=+(19,19x y ≤≤≤≤,,x y 都是正整数),规定:()()F s k F t =,当()()29F s F t +=时,则k 的最大值为.五、解答题24.已知2331A a ab a =-+--,221B a ab =--+,(1)求3A B -;(2)若3A B -的值与a 的取值无关,求b 的值.25.有理数a b c 、、的位置如图所示,(1)比较大小∶a c -_______0,b c -_______0,a b -_______0;(2)化简式子∶b a c b c a b +-+---;(3)若1,a b c =-、为整数()0a c b <<<,x y 、为有理数,且()()15x a x b y a y c -+--+-=,求b 的最大值.26.如图,点O 为数轴上的原点,点,A B 分别为数轴上两点,对应的数分别为,a b ,已知10,a =3AB AO =,点A 与点B 的中点为点E .若动点P 从点O 出发,以1个单位长度/秒的速度沿数轴正方向匀速运动,同时动点Q 从点B 出发以v 个单位长度/秒的速度沿数轴负方向匀速运动,(1)填空:点B 表示的数为,点E 表示的数为;(2)经过8秒时,16PQ =,求v 的值;(3)当点P 运动到线段AB 上,74v =,取PQ 的中点F ,若32mOB nAPEF-是定值(其中m ,n 为常数),求m 与n 的等量关系.。

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.122.北京时间2022年11月21日0点,万众瞩目的卡塔尔世界杯全面打响,据统计在小组赛的赛程中,场均观看直播人数达到了70620000人,则70620000用科学记数法表示为( )A.7.062×104B.70.62×106C.0.7062×108D.7.062×1073.用一个平面去截一个正方体,截面的形状不可能是( )A.梯形B.五边形C.六边形D.七边形4.下列运算正确的是( )A.−5−5=0B.2×(−5)=−10C.(−13)2=−19D.(−2)÷12=−1 5.下列代数式:①a+1;②-3ab 7;③5;④−2a+5b ;⑤a ;⑥1a .其中单项式有( ) A.1个 B.2个 C.3个 D.4个6.已知2a x b 4与−a 2b y-1是同类项,则x y 的值为( )A.6B.−6C.−10D.107.下列变形,错误的是( )A.−(a −b)=−a+bB.−2(a+b)=−2a −2bC.−a −b=−(a −b)D.a −b=−(−a+b)8.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑩个图中棋子的颗数是( )A.84B.99C.103D.122二、填空题(每小题4分,共20分)9.比较大小:−37____−38(填“<”或“>”). 10.如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c=____.11.多项式x 3−2x 2y 2+3y 2是____次____项式.12.如果4a −9与3a −5互为相反数,那么a 2−a+1的值等于____.13.某种T 形零件尺寸如图所示.用含有x 、y 的代数式表示阴影部分的周长是____.(结果要化简)三、解答题(共48分)14.计算或化简(每小题4分,共20分)(1)(−65)−7−(−3.2)+(−1) (2)(−60)×(34+56−12) (3)−36÷65×56÷(−5) (4)12×|−3|+(−12)2−(−1) (5)−22×[(2−8)÷6]−18÷(−3)215.(6分)已知|a −2|+(b +12)2=0,求a 2b −(3ab 2−a 2b)+2(2ab 2−a 2b)的值. 10题图a 13 -2 1+b c+10.5x ① ② ③ ④16.(6分)如图1,是一个用小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你在如图2方格纸中画出它从正面和从左面看到的平面图形.17.(6分)已知|x |=3,|y|=7.(1)若x y <0,求x +y 的值;(2)若|x −y|=x −y ,求2x +y 的值.18.(10分)杭州亚运会的举办,不仅提升了杭州的国际影响力,也为杭州的旅游业带来了巨大的发展机遇.随着亚运会的到来,杭州每月的游客人数较往年同期有明显增长,已知杭州2023年1月的游客人数为17.0百万人次,接下来7个月的游客人数变化情况如表:注:表中的数据为当月的游客人数相比前一个月游客人数的变化量.(1)杭州2023年4月份的游客人数是多少百万人次?(2)杭州2023年2月到8月,哪个月游客人数最多?最多是多少百万人次?哪个月游客人数最少?最少是多少百万人次?(3)假设杭州市每个月为旅游业建设支出50亿元,2023年前4个月每百万人次的游客能为杭州市旅游业带来收入10亿元,而随着亚运会的临近,5月到8月每百万人次的游客为杭州市旅游业带来的收入提升至20亿元,则2023年1月到8月杭州市34 32 1 图1 图2 从正面看 从左面看旅游业的总利润是多少亿元?B 卷(满分50分)一、填空题(每小题4分,共20分)19.已知a 2−2a=1,则多项式2023−2a 2+4a 的值是______.20.计算12+14+…+12100=______.21.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字−4、−2、0、1、2、4,则三个小立方块的下底面所标字母代表的数字的和为______.22.已知n 为正整数,n(n+1)(n+2)的末位数字记为f(n).如n=2时,f(2)=4,则f(1)+f(2)+f(3)+…+f(2023)的值为______.23.对于一个四位正整数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“进步数”,如:1245就是一个进步数.对于一个“进步数”M 记为abcd̅̅̅̅̅̅,它的千位数字和百位数字组成的两位数为ab ̅̅̅,十位数字和个位数字组成的两位数为cd̅̅̅,将这两个两位数求和记作t ;它的千位数字和十位数字组成的两位数为ac ̅,它的百位数字和个位数字组成的两位数为bd̅̅̅̅,将这两个两位数求和记作s ,当s −t=36时,M 的最大值与最小值的和为______.二、解答题(共30分)24.(8分)已知A=3a 2−ab+2a+1,B=2a 2+ab −2.(1)若a=3,b=−1,求A −2B 的值.(2)若2A −3B 的值与a 无关,求b 的值.A B FA DE B D E25.(10分)请利用“数形结合”的数学方法解决下列问题.(1)有理数a 、b 、c 在数轴上的位置如图,化简:|b −c|−|a+b|+|c −a|.(2)请你找出所有符合条件的整数x ,使得|2+x |+|x −5|=11.(3)若m 、n 为非负整数,且(|m −2|+|m −6|)(|n −1|+|n+2|)=24,求m 、n 的值.26.(12分)如图,在数轴上点A 表示数a ,点B 表示b ,点C 表示数c.单项式−6x b y 次数是3,a 是这个单项式的系数,|c+1|=9.(1)a=______,b=______,c=________.(2)若点P 从点A 出发,以每秒2个单位的速度沿数轴向右运动,点Q 从点C 出发,以每秒1个单位的速度沿数轴向左运动.点P 与点Q 同时出发,经过多少秒后,线段PB 的中点M 到点Q 的距离为6.(3)在(2)的条件下,当点P 与点Q 相遇后,两点都立即掉头,速度不变,此时点N 开始从点B 出发,以每秒1个单位的速度向左运动,点P 运动的时间为t 秒,当PQ=4PN 时,求点P 在数轴上对应的数.成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.12xb1.解:负数的绝对值是正数,两者之和为0,故选A 。

四川省成都市锦江区成都市七中育才学校2023-2024学年七年级上学期期中数学试题

四川省成都市锦江区成都市七中育才学校2023-2024学年七年级上学期期中数学试题

四川省成都市锦江区成都市七中育才学校2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .直线MN 与直线NM 是同一条直线C .射线PM 与射线MP 是同一条射线4.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字字是()A .习5.多项式325x x -A .5-6.用一个平面去截一个几何体,若截面的形状是三角形,则这个几何体不可能(A .正方体7.已知63m n -与8A .6x =,y =8.已知有理数a ,A .a b -<B .0ab <三、解答题(1)请在方格内分别画出从这个几何体的三个不同方向看到的形状图;(2)求出该几何体的体积和表面积.17.已知有理数a b c d ,,,在数轴上的位置如图所示:(1)化简:d b c c a -++-;(2)若a b =,且c d ,互为倒数,数m 在数轴上对应的点M 到原点的距离等于()2202313a b m cd m ++-+的值.18.某电商平台直播间从成都大运会开幕式第一天起开启了为期一周的直播公益活动,21.已知A ,B ,C 在同一直线上,22.设3a x =-,1b x =-,c 23.数学高速发展,各种程序应运而生,天府软件园的程序员发明了数学中的一种新数运算,它们取名“和倒倍数”,a 的“和倒倍数”是2ππ1+,已知1a 依次类推,则2023a =.五、解答题24.已知24234M x x y xy =-+-,2332N x x y xy =--+.(1)请利用合并同类项的方法,表示出图2所示某校园的总面积:______(结果用含a ,b 的代数式表示).(2)爱思考的莉莉联想到在卓越课堂上老师留下的问题:“如何速算3733⨯”.她画出长方形ABCD ,割下图形①放至图形②位置,如图3所示,则长方形ABCD 的面积为“()()37333030373710034371221⨯=⨯+++⨯=⨯⨯+⨯=”;请用莉莉的方法通过画图说明“4842⨯”的计算技巧,标出必要数据,并书写出此方法的计算过程(直接计算不得分).(3)设有两个十位数字相同均为m ,且个位数字和为10的两位数,其中一个数的个位数字为n ,请学习(2)中莉莉的方法,用含m ,n 的代数式表示这两数之积的计算方法并化简.26.已知有理数a ,b 在数轴上对应的点分别为A ,B ,且a ,b 满足()2430a b ++-=.(1)填空:=a ______,b =______,AB =______;(2)若数轴上有P ,Q 两个动点,分别从A ,B 两点沿数轴同时相向而行,点P 的速度为3个单位长度/秒,点Q 的速度是点P 速度的1.5倍.当点Q 运动至A 点处,P ,Q 两点同时停止运动.取线段BQ 的中点C ,设运动时间为t 秒.①当t为何值时,线段PQ的长度与QC的长度相等;②定义:把一条线段平均分成三等分的两个点,都叫线段的三等分点.请问是否存在t 值,使得A,P,Q三点中有一点为另外两点构成线段的三等分点?。

【强烈推荐】成都七中初一上数学半期考试卷及答案

【强烈推荐】成都七中初一上数学半期考试卷及答案

成都七中初一上数学半期考试卷及答案(总分:120分检测时间120分钟命题人:陶远辉 审题人:孙华 魏进华温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。

注意所有解答题均要有完整过程,书写要工整,格式要规范。

相信你,你将取得理想的成绩!A 卷(共100分)第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.在-2,0,1,-4这四个数中,最大的数是( ).A .-4B .-2C .0D .12.去年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( ).A .910505.1⨯元B .1010505.1⨯元C .0.1505×1011元D .111005.15⨯元3.计算23-的值是( ).A .9B .-9C .6D .-64.下面说法正确的有( ).(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A .4个B .3个C .2个D .1个5.数轴上到2的距离等于5的点表示的数是( ).A .3B .7C .-3D .-3或76.若m 、n 满足0)2(122=-++n m ,则n m 的值等于( ).A .-1B .1C .-2D .41 7.用语言叙述代数式22b a -,正确的是( ).A .a ,b 两数的平方差B .a 与b 差的平方C .a 与b 平方的差D .b ,a 两数的平方差8.如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( ).A .3B .4C .5D .69.如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( ).A .3B .4C .5D .610.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )盒.A .8B .9C .10D .11第Ⅱ卷 (非选择题 共70分)二、填空题(每小题4分,共20分)11.计算-(-3)= ,|-3|= ,2)3(-= . 12.单项式-522y x 的系数是,次数是. 13.若53b a m 与124+n b a 是同类项,则n m +=.14.若m n n m -=-,且4=m ,3=n ,则2)(n m += .15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是.三、解答题(共50分)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.)2(--,2-,211-,5.0,)3(--,4--,5.317.计算(每小题4分,共8分)(1)2132)5(22÷-+-⨯(2))2()211(4.03)3(2-÷⎥⎦⎤⎢⎣⎡-⨯+---18.化简(每小题5分,共10分)(1)ab b a a ab 2)2(2)32(+--+-.(2)先化简,再求值:)35()(235222222b a b a b a ---++,其中a =-1,b =21.19.(6分)已知a 、b 、c 在数轴上的位置如图所示,化简:b a b c a --+--+-12a .20.(6分)已知:关于x 、y 的多项式b y ax x +-+2 与多项式3632-+-y x bx 的差的值与字母x 的取值无关,求代数式)4()2(32222b ab a b ab a ++---的值.21.(6分)小虫从A 点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm ),依次记为:+6,-4,+10,-8,-7,+13,-9.解答下列问题:(1)小虫在爬行过程中离A 点最远有多少距离?(2)小虫爬行到最后时距离A 点有多远?(3)小虫一共爬行了多少厘米?22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a (a >10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a 的代数式表示)(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a ,则这七天的日期之和为.(用含a 的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性)B 卷(共20分)一、填空:(其中23、24小题每题2分,25小题3分,共7分)23.计算:20152016)3()3(-+-=.24.已知当3-=x 时,代数式13++bx ax 的值为8,那么当3=x 时,代数式13++bx ax 的值为.25.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是.(3)从中取出除0以外的4.张.卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可).二、探究题26.(7分)根据下面给出的数轴,解答下面的问题:⑴请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A :, B :.⑵观察数轴,与点A 的距离为4的点表示的数是:.⑶若将数轴折叠,使得A 点与-2表示的点重合,则①B 点与哪个数表示的点重合?②若数轴上M 、N 两点之间的距离为2011 (M 在N 的左侧),且M 、N 两点经过折叠后互相重合,求M 、N 两点表示的数分别是多少。

四川省成都七中2014届高三上学期期中考试数学理试题 Word版含答案

四川省成都七中2014届高三上学期期中考试数学理试题 Word版含答案

成都七中2013-2014学年高三上期半期考试数学试卷(理科)考试时间:120分钟 总分:150分 命题人:张世永 审题人:杜利超一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1.已知全集U=R ,集合A={}13>x x ,B={}0log 2>x x ,则A ∪B=( ) A .{}0>x xB .{}1>x xC .{}10<<x xD .{}0<x x2.“函数2)(-=kx x f 在区间[]1,1-上存在零点”是“3≥k ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知1tan()2πα-=,则sin cos 2sin cos αααα+-=( ) A .41B .21C .41-D .21-4.定义运算bc ad d c b a -=,则函数32cos 12sin )(x xx f =的最小正周期为( ) A .4πB .2πC .πD .2π 5.函数3)1()(2---=x a ax x f 在区间[)∞+-,1上是增函数,则实数a 的取值范围是( )A .⎥⎦⎤ ⎝⎛∞-31,B .(]0,∞-C .⎥⎦⎤⎝⎛31,0D .⎥⎦⎤⎢⎣⎡31,06.已知函数m x x x f +-=3)(3只有一个零点,则实数m 的取值范围是( ) A .[]2,2- B .()2,-∞-∪()∞+,2 C .()2,2-D .(]2,-∞-∪[)∞+,27.ΔABC 中,已知a 、b 、c 分别是角A 、B 、C 的对边,且AB b a cos cos =,A 、B 、C 成等差数列,则角C=( ) A .3π B .6π C .6π或2π D .3π或2π8. 若函数()f x =(]1,∞-,则a 的取值范围是( )A .94-=aB .94-≥aC .94-≤aD .094<≤-a 9.已知定义在R 上的函数)(x f 满足)()(x f x f -=-,)()4(x f x f -=-,且在区间[]2,0上是减函数.若方程k x f =)(在区间[]8,8-上有两个不同的根,则这两根之和为( ) A .±8B .±4C .±6D .±210.已知函数⎪⎩⎪⎨⎧<-+-+≥-+=)0()3()4()0()1()(2222x a x a a x x a k kx x f ,其中R a ∈,若对任意的非零实数1x ,存在唯一的非零实数)(122x x x ≠,使得)()(12x f x f =成立,则k 的最小值为( ) A .151-B .5C .6D .8二、填空题(每小题5分,共25分,把答案填在题中的横线上。

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

2023~2024学年成都七中初中学校新初一入学分班考试数学试题(卷)(满分:100分时间:90分钟)一、选择题(将正确答案的番号填在括号里.每小题4分,共20分)1要使四位数104□能同时被3和4整除,□里应填()..A. 1B. 2C. 3D. 4【答案】D【解析】【分析】该题主要考查了数的整除,解答此题应结合题意,根据能被3和4整除的数的特征进行解答即可.根据能被4整除的数的特征:即后两位数能被4整除;能被3整除的数的特征:各个数位上数的和能被3整除,进行解答即可.+++=能被3整除,不【详解】解:A:后两位数是41,不能被4整除,各个数位上数的和是10416,6符合题意;+++=不能被3整除,不符合题意;B:后两位数是42,不能被4整除,各个数位上数的和是10427,7+++=不能被3整除,不符合题意;C:后两位数是43,不能被4整除,各个数位上数的和是10438,8+++=能被3整除,符合题意.D:后两位数是44,能被4整除,各个数位上数的和是10449,9故选:D.2. 用一只平底锅煎饼,每次只能放两只饼,煎熟一只饼需要2分钟(正反两面各需1分钟),那么煎熟3只饼至少需要_____分钟.()A. 4B. 3C. 5D. 6【答案】B【解析】【分析】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎,进而求解即可.【详解】∵若先把两只饼煎至熟,势必在煎第三只饼时,锅中只有一只饼而造成浪费,∴应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只饼同时熟, ∴煎熟3只饼至少需要3分钟. 故选:B .3. 投掷3次硬币,有2次正面朝上,1次反面朝上,那么第4次投掷硬币正面朝上的可能性是( ) A.12B.14C.13D.23【答案】A 【解析】【分析】本题主要考查可能性的大小,熟练根据概率的知识得出可能性的大小是解题的关键.根据每次投掷硬币正面朝上的可能性都一样得出结论即可. 【详解】解:每次投掷硬币正面朝上的可能性都为12. 故选:A .4. 一串珠子按照8个红色2个黑色依次串成一圈共40粒.一只蟋蟀从第二个黑珠子开始其跳,每次跳过6个珠子落在下一个珠子上,这只蟋蟀至少要( )次,才能又落在黑珠子上. A. 7 B. 8 C. 9 D. 10【答案】A 【解析】【分析】本题关键是理解这只蟋蟀跳跃的规律,难点是得出跳过的珠子数与循环周期之间的关系. 这是一个周期性的问题,蟋蟀每次跳过6粒珠子,则隔7个珠子,把珠子编上号码,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色;蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,因为周期是40,再根据周期性的知识解决即可. 【详解】解:观察可知,每次跳过6粒珠子,则隔7个珠子,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色.蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,即7的倍数; 周期应是40,4940−9=,就相当于一圈后落在“9”号黑珠子上; 即这只蟋蟀至少要7次,才能又落在黑珠子上;故选:A.5. 仓库里的水泥要全部运走,第一次运走了全部的12,第二次运走了余下的13,第三次运走了第二次余下的14,第四次运走了第三次余下的15,第五次运走了最后剩下的19吨.这个仓库原来共有水泥_____吨.()A. 78B. 56C. 95D. 135【答案】C【解析】【分析】本题考查分数除法的应用,此题应从后向前推算,分别求出第三,二,一次运过之后,还剩下的数量,即可求解.【详解】∵第五次只剩下19吨,∴第三次运过之后,还剩下195 19154÷−=吨,那么第二次运过之后,还剩下951951443÷−=吨,那么第一次运过之后,还剩951951332÷−=吨那么没经过运输之前,仓库中有9519522÷=吨,故选:C .二、填空题(每小题3分,共30分)6.132吨=()吨()千克.70分=()小时.【答案】①. 3 ②. 500 ③. 7 6【解析】【分析】根据1吨=1000千克、1小时=60分计算即可.【详解】解:∵11000=5002×千克,∴132吨=(3)吨(500)千克.∵70÷60=76小时,∴70分=(76)小时. 故答案为:3,500;76.【点睛】本题考查了单位换算,熟练掌握1吨=1000千克、1小时=60分是解答本题的关键. 7. 把0.45:0.9化成最简整数比是_____∶_____;11:812的比值是_____. 【答案】 ①. 1 ②. 2 ③. 1.5 【解析】【分析】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.用比的前项除以后项即可.详解】解:0.45:0.91:2=,11111:12 1.58128128=÷=×= 故答案为∶1,2,1.5. 8. 111112123123100+++++++++++ . 【答案】200101【解析】【分析】先确定,分数的变化规律,后整理计算即可. 【详解】∵12112()123n (1)1n n n n ==−++++++ ,∴111112123123100+++++++++++ =1111112()1223100101−+−++−=12(1)101−=200101. 【点睛】本题考查了分数中的规律问题,熟练掌握拆项法找规律计算是解题的关键. 9. 定义运算:35a b a ab kb =++ ,其中a 、b 为任意两个数, k 为常数.比如:27325277k =×+××+ ,若5273= ,则85= _____.【答案】244 【解析】【分析】此题考查了有理数的四则混合运算和解一元一次方程,根据5273= 得到方程,解方程得到4k =,【再计算85 即可.【详解】解:由5235552273k =×+××+= , 解得4k =,∴853*********=×+××+×= , 故答案为:24410. 某年的10月份有四个星期四、五个星期三,这年的10月8日是星期_____. 【答案】一 【解析】【分析】本题主要考查数字规律,有理数混合运算,根据题意,找出循环规律,是解题的关键. 【详解】解:10月有31天,四个星期四,五个星期三,∴31号是星期三,31823−=(天),2373÷=(周) 2(天),把星期三往前推2天,是星期一, ∴10月8号是星期一, 故答案为:一.11. 某小学举行数学、语文、科学三科竞赛,学生中至少参加一科的:数学203人,语文179人, 科学165人,参加两科的:数学、语文143人, 数学、科学116人,语文、科学97人.三科都参加的:89人,这个小学参加竞赛的总人数为_____人. 【答案】280 【解析】【分析】根据题意,至少参加一科的:数学203人,语文179人,常识165人.参加两科的:数学,语文143人,数学、常识116人,语文、常识97人,三科都参加的有89人.根据容斥问题,参加三科的人数为:(20317916514311697)++−−−人,由于三科都参加的有89人,所以这个小学参加竞赛的总人数为:(2031791651431169789)++−−−+.据此解答.本题考查了容斥问题的灵活运用,关键是明确它们之间的包含关系.【详解】解:2031791651431169789280++−−−+=(人) 答:这个小学参加竞赛的总人数有280人. 故答案为:280.12. 一个长方体的长、宽、高之比为3:2:1,若长方体的棱长总和等于正方体的棱长总和,则长方体的表面积与正方体的表面积之比为_____,长方体的体积与正方体的体积之比为_____. 【答案】 ①. 11:12 ②. 3:4【解析】【分析】此题主要考查了长方体和正方体的棱长总和、表面积、体积的计算,直接把数据代入公式解答即可.设长方体的长宽高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.根据长方体和正方体的表面积公式计算求得长方体表面积与正方体的表面积比;根据长方体和正方体的体积公式计算求得长方体体积与正方体的体积之比【详解】设长方体的长、宽、高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.长方体表面积为()22323222a a a a a a a ××+×+×=, 正方体表面积为()226224a a ×=,其比为2222:2411:12a a =.长方体体积为 3326a a a a ××=,正方体体积为()3328a a =,其比为336:83:4a a =. 故答案为:11:12; 3:4.13. 甲、乙两地相距300千米,客车和货车同时从两地相向开出,行驶2小时后,余下的路程与已行的路程之比是3:2,两车还需要经过_____小时才能相遇. 【答案】3 【解析】由于客车和货车的速度和一定,行驶的时间和路程成正比例,所以根据“余下的路程与已行的路程之比是3:2”可得:余下的路程需要的时间与已行的时间之比也是3:2,据此求解即可. 【详解】由题意得:2233÷=(小时) 故答案:3.14. 如图,长方形ABCD 中,12AB =厘米,8BC =厘米,平行四边形BCEF 的一边BF 交CD 于G ,若梯形CEFG 的面积为64平方厘米,则DG 长为_____.【答案】4厘米 【解析】为【分析】本题考查了梯形的面积公式,一元一次方程的实际运用,解题的关键是设未知数,找准等量关系,建立方程求解.根据图形可得=64ABGD CEFG S S =梯形梯形,设DG 的长度为x 厘米, 则有()1128642x +××=,解出方程即可. 【详解】解:由图可知:长方形ABCD 和平行四边形BCEF 底边和高相同,故它们面积相同,GCB ABCD ABGD S S S =− 矩形梯形,64BCEF GCB CEFG S S S =−= 梯形平方厘米,, =64ABGD CEFG S S ∴=梯形梯形,设DG 的长度为x 厘米, 则()1128642x +××= ()128642x +××896128x +=832x =4x =,即DG 长为4 厘米, 故答案为:4厘米.15. 自然数按一定的规律排列如下:从排列规律可知,99排第_____行第_____列. 【答案】 ①. 2 ②. 10 【解析】【分析】本题考查了规律问题的探究.通过观察知第1行中的每列中的数依次是1、2、3、4、5…的平方;在第2行中的每列中的数从第2列开始依次比相应的第1行每列中的数少1;据此规律第1行中的10列的数是10的平方,第2行中的10列的数是100199−=.【详解】解:由图表可得规律:每列的第1个数就是列的平方; 10的平方是100,99在100的下方, 所以99排在第2行第10列, 故答案为:2;10.三、计算题(能用简便方法计算的请用简便方法计算.共20分)16. (1) 计算:2255977979 +÷+ ;(2) 计算:121513563+++×; (3) 计算:47911131531220304256−+−+−; (4) 计算:11111155991313171721++++×××××. 【答案】(1)13;(2)136;(3)78;(4)521【解析】(1)将229779 + 变形为551379+,可进行简便运算;(2)利用乘法分配律,将原式变形为11525136353++×+×进行简便运算; (3)利用裂项相消法进行简便运算; (4)利用裂项相消法进行简便运算; 【详解】解 :(1)2255977979 +÷+6565557979+÷+5555137979=+÷+13=;(2)121513563+++× 11525136353=++×+× 35252353=×+× 5223=+ 136=;(3)47911131531220304256−+−+− 4111111111133445566778 =−+++−+++−+4111111111133445566778=−−++−−++−− 118=-78=; (4)11111155991313171721++++××××× 11111111111455991313171721 =×−+−+−+−+−111421 =×−120421=× 521=. 四、解答题(请写出必要的解题过程.每小题6分,共30分)17. 如图所示是两个正方形,大正方形边长为8,小正方形边长为4,求图中阴影部分的面积.(单位:厘米,π取3.14)【答案】20.56平方厘米 【解析】【分析】本题考查计算不规则图形的面积,BEF △的面积减去小正方形与扇形GAF 面积之差,即可求出阴影部分的面积. 【详解】解:()21184444π424 ×+×−×−××24164π=−+ 84 3.14=+×20.56=(平方厘米)答:阴影部分面积为20.56平方厘米.18. 学校计划用一批资金购置一批电脑,按原价可购置60台,现在这种电脑打折优惠,现价只是原价的75%,用这批资金现在可购买这种电脑多少台?【答案】用这批资金现在可购买这种电脑80台. 【解析】1,用1乘上60台,就是总钱数,然后用1乘上75%求出现在的单价,再用总钱数除以现在的单价即可. 【详解】设原来每台的单价是1(160)(175%)80×÷×=台答:用这批资金现在可购买这种电脑80台19. 在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中纯酒精的量是多少千克?【答案】丙缸中纯酒精的量是12千克 【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精量218123=×=(千克), ∴丙缸中纯酒精的量是12千克. 20. 一家工厂里2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件.如果把单独让男工加工和单独让女工加工进行比较,要在一天内完成任务,女工要比男工多多少人?【答案】女工要比男工多18人.【解析】【分析】本题主要考查了二元一次方程组的应用——工程问题.解题的关键是熟练掌握工作量与工作效率和工作时间关系,列方程计算.设男工的工作效率为x ,女工的工作效率为y ,根据2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件,列出方程组,解方程组即可.【详解】设男工的工作效率为x ,女工的工作效率为y , 根据题意得,324108101x y x y += +=, 解得,112130x y = =, 如果单独让男工加工或单独让女工加工, 需要女工113030÷=(人), 需要男工111212÷=(人), 女工比男工多181230=−(人). 的故女工比男工要多18人.21. 如图,有一条三角形的环路,A 至B 段是上坡路,B 至C 段是下坡路,A 至C 段是平路,A 至B 、B 至C 、C 至A 三段距离的比是345::,小琼和小芳同时从A 出发,小琼按顺时针方向行走,小芳按逆时针方向行走,2个半小时后在BC 上的D 点相遇,已知两人上坡速度是4千米/小时,下坡速度是6千米/小时,在平路上的速度是5千米/小时.问C 至D 段是多少千米?【答案】2千米【解析】【分析】本题主要考查了二元一次方程组的实际应用,设3km 4km 5km km AB a BC a AC a CD x ====,,,,根据时间=路程÷速度,结合2个半小时后在BC 上的D 点相遇,列出方程组求解即可.【详解】解:设3km 4km 5km km AB a BC a AC a CD x ====,,,, 由题意得,34 2.5465 2.554a a x a x − += += 解得2x a ==,答:CD 的实际距离为2千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013—2014学年度七年级(上)数学半期试题
(总分:120分 检测时间120分钟
命题人:陶远辉 审题人:孙华 魏进华
温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。

注意所有解答题均要有完整过程,书写要工整,格式要规范。

相信你,你将取得理想的成绩!
A 卷(共100分)
第Ⅰ卷 (选择题 共30分)
1. 选择题(每小题3分,共30分)
1.在-2,0,1,-4这四个数中,最大的数是( ).
A .-4
B .-2
C .0
D .1
2.去年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( ).
A .910505.1⨯元
B .1010505.1⨯元
C . 0.1505×1011元
D .11
1005.15⨯元 3.计算23-的值是( ).
A .9
B .-9
C .6
D .-6
4.下面说法正确的有( ).
(1)正整数和负整数统称整数; (2)0既不是正数,又不是负数;
(3)有绝对值最小的有理数; (4)正数和负数统称有理数.
A .4个
B .3个
C .2个
D .1个
5.数轴上到2的距离等于5的点表示的数是( ).
A .3
B .7
C .-3
D .-3或7
6.若m 、n 满足0)2(122=-++n m ,则n m 的值等于( ).
A .-1
B .1
C .-2
D .
4
1 7.用语言叙述代数式22b a -,正确的是( ).
A .a ,b 两数的平方差
B .a 与b 差的平方
C .a 与b 平方的差
D .b ,a 两数的平方差
A .3
B .4
C .5
D .6
9.如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( ).
A .3
B .4
C .5
D .6
10.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们
的三视图,则货架上的红烧牛肉方便面至少有( )盒.
A .8
B .9
C .10
D .11
第Ⅱ卷 (非选择题 共70分)
二、填空题(每小题4分,共20分)
11.计算-(-3)= ,|-3|= ,2
)3(-= . 12.单项式-5
22y x 的系数是 ,次数是 . 13.若53b a m 与124+n b a 是同类项,则n m += .
14.若m n n m -=-,且4=m ,3=n ,则2)(n m += .
15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是 .
三、解答题(共50分)
16.(6分)在数轴上表示下列各数,并用“<”号连接起来.
)2(--,2-,2
11-,5.0,)3(--,4--,5.3
17.计算(每小题4分,共8分)
(1)2132)5(22÷
-+-⨯ (2))2()211(4.03)3(2-÷⎥⎦⎤⎢⎣
⎡-⨯+---
18.化简(每小题5分,共10分)
(1)ab b a a ab 2)2(2)32(+--+-.
(2)先化简,再求值:)35()(235222222b a b a b a ---++,其中a =-1,b =
2
1 .
19.(6分)已知a 、b 、c 在数轴上的位置如图所示,化简:b a b c a --+--+-12a .
20.(6分)已知:关于x 、y 的多项式b y ax x +-+2 与多项式3632-+-y x bx 的差的值与字母x 的取值无关,求代数式)4()2(32222b ab a b ab a ++---的值.
21.(6分)小虫从A 点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm ),依次记为:+6,-4,+10,-8,-7,+13,-9.解答下列问题:
(1)小虫在爬行过程中离A 点最远有多少距离?
(2)小虫爬行到最后时距离A 点有多远?
(3)小虫一共爬行了多少厘米?
22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.
(1)如果设参加旅游的员工共有a (a >10)人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含a 的代数式表示)
(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.
(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a ,则这七天的日期之和为 .(用含a 的代数式表示.)
(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性)
B 卷(共20分)
一、填空:(其中23、24小题每题2分,25小题3分,共7分)
23.计算:20152016)3()3(-+- = .
24.已知当3-=x 时,代数式13++bx ax 的值为8,那么当3=x 时,代数式13++bx ax 的值为 .
25.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 .
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是 .
(3)从中取出除0以外的4.张.
卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可) .
二、探究题
26.(7分)根据下面给出的数轴,解答下面的问题:
⑴请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A : , B : .
⑵观察数轴,与点A 的距离为4的点表示的数是: .
⑶若将数轴折叠,使得A 点与-2表示的点重合,则
①B 点与哪个数表示的点重合?
②若数轴上M 、N 两点之间的距离为2011 (M 在N 的左侧),且M 、N 两点经过折叠后互相重合,求M 、N 两点表示的数分别是多少。

27.(6分)一般地,数轴上表示数m 和数n 的两点之间的距离等于n m -,如:数轴上表示4和1的两点之间的距离是14-=3;表示-3和2两点之间的距离是23--=5 .
根据以上材料,结合数轴与绝对值的知识回答下列问题:
(1)如果表示数a 和-2的两点之间的距离是3,那么a = ;
(2)若数轴上表示数的点位于4-与2之间,那么4+a +2-a 的值是 ;当a 取 时,5+a +1-a +4-a 的值最小,最小值是 .
(3)依照上述方法, 6+a +2-a +4-a +4+a 的最小值是 .
2013—2014学年度七年级(上)数学半期试题答案
A 卷
一、选择题(每小题3分,共30分)
1.D 2.B 3.B 4.C 5.D 6.D 7.A 8.D 9.C 10.B
二、填空题
11、3 ,3 ,9 ; 12、52-
,3;13、6;14、1或49;15、6 三、解答题
16、图略 5.3)3()2(2
35.021124<--<--<<<-<--<--;17、(1)-12 (2)—7.8;18、(1)-a+2b (2)化简为:2242b a + 值为:3;19、-2a+c-1
20、原式=37)3()1(2++-++-b y x a x b
由于与字母x 的取值无关所以1-b=0 ,a+3=0得b=1,a=3
原式=2247b ab a ---
当b=1,a=3时
原式=8
21、(1)最远有12cm ;(2)距离A 点10cm ;(3)cm 4813781046=+-+-++-+
22、(1)甲旅行社的费用为1500a 乙旅行社的费用为1600(a-1)
(2)当a=20时,甲为1500×20=30000元,乙为1600×19=30400元
甲旅行社的费用更优惠
(3)(a-3)+(a-1)+a+(a+1)+(a+2)+(a+3)=7a
(4)当7a=63时,a=9 ,6号出发
当7a=126时,a=18,15号出发
当7a=189时,a=27,24号出发
B 卷
一、填空题
23、201532⨯; 24、-6 ;25、(1)25 (2)-5 (3) ()()5
155--⨯- 二、探究题
26、(1)A :1 B :-2.5;(2)-5和3;(3)①1.5 ②M:-1006 N:1005
27、(1)a=-5和1;(2)6 , a=1 ,最小值为9;(3)最小值:16。

相关文档
最新文档