中值定理和导数的应用.ppt.ppt
合集下载
3_1 微分中值定理与导数应用
![3_1 微分中值定理与导数应用](https://img.taocdn.com/s3/m/074724335a8102d276a22f24.png)
第一节 微分中值定理与导数应用
罗尔(Rolle)定理 罗尔( ) 设函数 f ( x ) 满足条件: 满足条件: (1) f ( x )在闭区间[a , b] 上连续; 上连续; (2) 内可导; f ( x ) 在开区间 ( a , b ) 内可导; (3) 在区间端点的函数值相等,即 f (a ) = f (b ), 在区间端点的函数值相等, 那末在 ( a , b ) 内至少有一点ξ ( a < ξ < b ), 使得函数 在该点的导数等于零, f ( x ) 在该点的导数等于零,即
利用泰勒公式证明不等式
上二阶可导, 例1 设函数 y = f ( x ) 在区间 [0,1]0, max f ( x ) = 2, 证明在 证明在(0,1)至少存在一 至少存在一
0 ≤ x ≤1
点 ξ , 使得 f ′′(ξ ) ≤ −16. 证
0 ≤ x ≤1
矛盾, 但 f ′( x ) = 5( x 4 − 1) < 0, ( x ∈ (0,1)) 矛盾,∴ 为唯一实根 .
拉格朗日(Lagrange)中值定理 拉格朗日(Lagrange)中值定理 (Lagrange)
如果函数f 满足下列条件 如果函数 (x)满足下列条件 (1) 在闭区间 b]上连续; 在闭区间[a, 上连续 上连续; (2)在开区间(a, b)内可导; )在开区间( )内可导; 那末在(a , b ) 内至少有一点ξ ( a < ξ < b ), 使等式 f ( b ) − f (a ) = f ′(ξ )(b − a ) 成立. 成立.
即
f ′(ξ ) = 2ξ [ f (1) − f ( 0)].
泰勒(Taylor)中值定理 泰勒(Taylor)中值定理 (Taylor)
罗尔(Rolle)定理 罗尔( ) 设函数 f ( x ) 满足条件: 满足条件: (1) f ( x )在闭区间[a , b] 上连续; 上连续; (2) 内可导; f ( x ) 在开区间 ( a , b ) 内可导; (3) 在区间端点的函数值相等,即 f (a ) = f (b ), 在区间端点的函数值相等, 那末在 ( a , b ) 内至少有一点ξ ( a < ξ < b ), 使得函数 在该点的导数等于零, f ( x ) 在该点的导数等于零,即
利用泰勒公式证明不等式
上二阶可导, 例1 设函数 y = f ( x ) 在区间 [0,1]0, max f ( x ) = 2, 证明在 证明在(0,1)至少存在一 至少存在一
0 ≤ x ≤1
点 ξ , 使得 f ′′(ξ ) ≤ −16. 证
0 ≤ x ≤1
矛盾, 但 f ′( x ) = 5( x 4 − 1) < 0, ( x ∈ (0,1)) 矛盾,∴ 为唯一实根 .
拉格朗日(Lagrange)中值定理 拉格朗日(Lagrange)中值定理 (Lagrange)
如果函数f 满足下列条件 如果函数 (x)满足下列条件 (1) 在闭区间 b]上连续; 在闭区间[a, 上连续 上连续; (2)在开区间(a, b)内可导; )在开区间( )内可导; 那末在(a , b ) 内至少有一点ξ ( a < ξ < b ), 使等式 f ( b ) − f (a ) = f ′(ξ )(b − a ) 成立. 成立.
即
f ′(ξ ) = 2ξ [ f (1) − f ( 0)].
泰勒(Taylor)中值定理 泰勒(Taylor)中值定理 (Taylor)
第3章微分中值定理与导数的应用第一节-PPT精选文档
![第3章微分中值定理与导数的应用第一节-PPT精选文档](https://img.taocdn.com/s3/m/2180e3084b35eefdc8d3337b.png)
几何意义:
在曲线弧 至少有一点 该点处的切线平 行于弦 AB .
O y C1 y=f(x) C2 A a B
AB 上 C ,在
h
b
x
证明
作辅助函数
f ( b ) f ( a ) F ( x ) f ( x ) ( x a ) , b a
容 易 验 证 ,F 足 罗 尔 定 理 的 条 件 , (x)满
2. 罗尔(Rolle)定理
如果函数 yf(x) 满足条件: (1) 在闭区间 [a, b] 上 连续,(2)在开区间(a, b)内可导,(3) f(a)f(b),则至少 存在一点(a, b),使得f () 0。 几何解释:
如果连续光滑的曲线 yf(x) 在端点 A、B 处的 纵坐标相等。那么,在 曲线弧上至少有一点 C( , f()),曲线在 C点 的切线平行于 x 轴。 y A C yf(x) B
于是 a, b ,使
即
f ( b ) f ( a ) F ( ) f ( ) 0 , b a f (b) f (a) f ( ) . ba
例3
, 在 上 满 足 拉 格 朗 日 定 理 的 条 件 , f ( x ) ln x [ 1 , e]
f(x)不满足条件(1)
f(x)不满足条件(2)
f(x)不满足条件(3)
例1
f(x )sin x ,
在 上 连 续 , 内 可 导 , [ 0 ,] () f ( ) 0 ,
验证
f ( ) 0 , (0, ) . f (x ) cos x , 2 2
1 f ( x ) , x
f(e ) f( 1 ) 1 , e1 e1
e 1 ( 1 , e, )
在曲线弧 至少有一点 该点处的切线平 行于弦 AB .
O y C1 y=f(x) C2 A a B
AB 上 C ,在
h
b
x
证明
作辅助函数
f ( b ) f ( a ) F ( x ) f ( x ) ( x a ) , b a
容 易 验 证 ,F 足 罗 尔 定 理 的 条 件 , (x)满
2. 罗尔(Rolle)定理
如果函数 yf(x) 满足条件: (1) 在闭区间 [a, b] 上 连续,(2)在开区间(a, b)内可导,(3) f(a)f(b),则至少 存在一点(a, b),使得f () 0。 几何解释:
如果连续光滑的曲线 yf(x) 在端点 A、B 处的 纵坐标相等。那么,在 曲线弧上至少有一点 C( , f()),曲线在 C点 的切线平行于 x 轴。 y A C yf(x) B
于是 a, b ,使
即
f ( b ) f ( a ) F ( ) f ( ) 0 , b a f (b) f (a) f ( ) . ba
例3
, 在 上 满 足 拉 格 朗 日 定 理 的 条 件 , f ( x ) ln x [ 1 , e]
f(x)不满足条件(1)
f(x)不满足条件(2)
f(x)不满足条件(3)
例1
f(x )sin x ,
在 上 连 续 , 内 可 导 , [ 0 ,] () f ( ) 0 ,
验证
f ( ) 0 , (0, ) . f (x ) cos x , 2 2
1 f ( x ) , x
f(e ) f( 1 ) 1 , e1 e1
e 1 ( 1 , e, )
§3.1-微分中值定理PPT课件
![§3.1-微分中值定理PPT课件](https://img.taocdn.com/s3/m/f1f0a851680203d8ce2f24ea.png)
1 x2
1 x2
f ( x) C , x [1,1]
又 f (0) arcsin 0 arccos 0 0 ,
即
C
.
arcsin
x
arccos
x
2
.
2
2
2
说明 欲证x I , f ( x) C0 ,只需证在 I上
f ( x) 0,且 x0 自证 arctan x arc
则在开区间 (a, b)内至少存在一点 ,使得 f (b) f (a) f ( ) F (b) F (a) F ( )
广义微分中值定理
20
微分中值定理
柯西(1789 – 1857)
法国数学家, 他对数学的贡献主要集中 在微积分学, 复变函数和微分方程方面 . 一生发表论文800余篇, 著书 7 本 ,《柯 西全集》共有 27 卷. 其中最重要的的是为巴黎综合学 校编写的《分析教程》,《无穷小分析概论》, 《微积 分在几何上的应用》 等, 有思想有创建, 对数学的影 响广泛而深远 . 他是经典分析的奠人之一, 他为微积分 所奠定的基础推动了分析的发展.
0
由条件,则 f ( x1 ) f ( x2 ), 即在区间I中任意两
点的函数值都相等,所以, f ( x) C.
17
微分中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x0) arcsin x0 arccos 0x, x [1,1]
f ( x) 1 ( 1 ) 0.由推论
f (1) 0 f (2) (2) 结论正确
方程f ( x) 0, 即3x2 8x 7 0有实根
x1
1 (4 3
37),
第三章中值定理与导数的应用课件
![第三章中值定理与导数的应用课件](https://img.taocdn.com/s3/m/fb58b07c4a35eefdc8d376eeaeaad1f3469311b3.png)
那么在(a,b)内至少有一点 使等式
f (b) f (a) f ' ( ) 成立 F (b) F (a) F ' ( )
例1:验证罗尔定理对函数y ln sin x在区间
[
6
,
5
6
]的正确性
解:y ln sin x在[ , 5 ]上连续
66
y ln sin x在( , 5 )上可导
66
lim 2 cos3x 3 1 x0 3 cos2x 2
例6:求
lim
x
xn ex
(n 0, 0)
解:lim xn lim n xn1 lim n (n 1) xn2
e e x x x
x x
2 ex
lim n! 0
x n ex
例7:求 lim x sin x
且f ( ) ln 1 f (5 )
6
2
6
又
y'
c os x
ctgx
令
0
x
(
, 5 )sin x源自2 662罗尔定理正确
例2:证明arctgx arcctgx
2
证 : (arctgx arcctgx)' 1 1 0 1 x2 1 x2
arctgx arcctgx c
取x 1 c c
若f (x)是一般的函数,且它存在直到n 1 阶的导数,那么
n
f (x)
f (k) (a) (xa)k ?
k 0 k!
泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x)在含有 x0 的某个开区间(a, b)内具有直到(n 1)阶的导数,则
当 x在(a, b)内时, f ( x)可以表示为( x x0 )的一个
f (b) f (a) f ' ( ) 成立 F (b) F (a) F ' ( )
例1:验证罗尔定理对函数y ln sin x在区间
[
6
,
5
6
]的正确性
解:y ln sin x在[ , 5 ]上连续
66
y ln sin x在( , 5 )上可导
66
lim 2 cos3x 3 1 x0 3 cos2x 2
例6:求
lim
x
xn ex
(n 0, 0)
解:lim xn lim n xn1 lim n (n 1) xn2
e e x x x
x x
2 ex
lim n! 0
x n ex
例7:求 lim x sin x
且f ( ) ln 1 f (5 )
6
2
6
又
y'
c os x
ctgx
令
0
x
(
, 5 )sin x源自2 662罗尔定理正确
例2:证明arctgx arcctgx
2
证 : (arctgx arcctgx)' 1 1 0 1 x2 1 x2
arctgx arcctgx c
取x 1 c c
若f (x)是一般的函数,且它存在直到n 1 阶的导数,那么
n
f (x)
f (k) (a) (xa)k ?
k 0 k!
泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x)在含有 x0 的某个开区间(a, b)内具有直到(n 1)阶的导数,则
当 x在(a, b)内时, f ( x)可以表示为( x x0 )的一个
中值定理与导数的应用(高等数学)省名师优质课赛课获奖课件市赛课一等奖课件
![中值定理与导数的应用(高等数学)省名师优质课赛课获奖课件市赛课一等奖课件](https://img.taocdn.com/s3/m/e9625639793e0912a21614791711cc7931b778f8.png)
函数旳极大值与极小值统称为极值,使函数取得 极值旳点称为极值点.
定义 使导数为零的点(即方程f ( x) 0的实根)叫 做函数f ( x)的驻点.
定理(必要条件) 设 f ( x) 在点x0 处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0.
注意:可导函数 f ( x) 的极值点必定是它的驻 点, 但函数的驻点却不一定 是极值点.
2、罗必塔法则
(1). 0 型及 型未定式 0
定义 这种在一定条件下经过分子分母分别求导再 求极限来拟定未定式旳值旳措施称为罗必塔法则.
(2). 0 , , 00,1 , 0型未定式
关键:将其他类型未定式化为罗必塔法则可处理 旳类型 ( 0 ), ( ) .
0
定理 设(1)当x 0时,函数 f ( x) 及 F ( x) 都趋于零; (2) 在 a 点的某领域内(点 a 本身可以除外 ), f ( x) 及 F ( x) 都存在且 F ( x) 0; (3) lim f ( x) 存在(或为无穷大);
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内F(x) 0
至少存在一点
(a,b) , 使
f (b) f (a) F (b) F (a)
f ( ) . F( )
注意:若令F(x)=x,则柯西中值定理变为拉氏中值 定理,即拉
0
原式
lim
x
1
1
x 1 x2
2
lim
x
1
x
2
x
2
1.
例8
求
lim
x0
tan x x2 tan
x x
.
解
定义 使导数为零的点(即方程f ( x) 0的实根)叫 做函数f ( x)的驻点.
定理(必要条件) 设 f ( x) 在点x0 处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0.
注意:可导函数 f ( x) 的极值点必定是它的驻 点, 但函数的驻点却不一定 是极值点.
2、罗必塔法则
(1). 0 型及 型未定式 0
定义 这种在一定条件下经过分子分母分别求导再 求极限来拟定未定式旳值旳措施称为罗必塔法则.
(2). 0 , , 00,1 , 0型未定式
关键:将其他类型未定式化为罗必塔法则可处理 旳类型 ( 0 ), ( ) .
0
定理 设(1)当x 0时,函数 f ( x) 及 F ( x) 都趋于零; (2) 在 a 点的某领域内(点 a 本身可以除外 ), f ( x) 及 F ( x) 都存在且 F ( x) 0; (3) lim f ( x) 存在(或为无穷大);
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内F(x) 0
至少存在一点
(a,b) , 使
f (b) f (a) F (b) F (a)
f ( ) . F( )
注意:若令F(x)=x,则柯西中值定理变为拉氏中值 定理,即拉
0
原式
lim
x
1
1
x 1 x2
2
lim
x
1
x
2
x
2
1.
例8
求
lim
x0
tan x x2 tan
x x
.
解
第三章微分中值定理与导数应用第一节微分中值定理
![第三章微分中值定理与导数应用第一节微分中值定理](https://img.taocdn.com/s3/m/964c1cafaeaad1f346933fe5.png)
f (b) f (a) f ( ) g(b) g(a) g( )
f (b) f (a) f ( ).
ba
例4 设函数f ( x)在[0,1]上连续, 在(0,1)内可导, 证明 :
至少存在一点 (0,1), 使 f ( ) 2[ f (1) f (0)].
则在(a, b)内至少存在一点, 使得 () 0.
即 f ( ) f (b) f (a) g( ) 0,
g(b) g(a)
f (b) f (a) f ( ) . g(b) g(a) g( )
当 g( x) x, g(b) g(a) b a, g( x) 1,
拉格朗了函数在一个区间 上的增量与函数在这区间内某点处的导数之间的关系.
定理 若函数 f ( x)在区间I 内的导数恒
等于零, 则在区间I 内,f ( x)恒为常量.
证 任取x1, x2 I , 由(1) 式知
f ( x2 ) f ( x1 ) f ( )( x2 x1 ) , 在x1, x2 之 间.
设 另有 x1 (0, 2), x1 x0 , 使 f ( x1 ) 0.
f ( x) 在 x0, x1 之间满足罗尔定理的条件,
至少存在一个 (在 x0, x1 之间),使得 f () 0. 但 f ( x) 5x4 1 0 x (0, 2) 矛盾, 为唯一实根.
那么在(a, b)内至少有一点(a b),使得函数 f ( x)在该点的导数等于零,
即 f '() 0
例如 f ( x) x2 2x 3
( x 3)(x 1). 在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0, f (x) 2(x 1),
高中物理课件-第三章-微分中值定理、导数的应用
![高中物理课件-第三章-微分中值定理、导数的应用](https://img.taocdn.com/s3/m/68d0388425c52cc58ad6be9e.png)
lim x3 1 . x x 1
一、 0 0 型不定式 定理:设函数 f (x) 与 F (x) 满足:
0
(1)在点 a 的某去心邻域U (a) 内可导且 F(x) 0;
(2)
lim
xa
f
(x)
0,
lim
x a
F ( x)
0;
f (x)
(3)
lim
xa
F
(
x)
存在(或
).
则
lim
xa
f F
(x) (x)
提示: f (2) f (1) f (0) f (1) 0, 且 f (x) 在三个区间 [2,1], [1,0] 和[0,1] 上都满足 Rolle 定理的条件.
在 (2,1), (1,0), (0,1) 内分别至少存在一点1, 2, 3 使 f (1) 0, f (2) 0, f (3 ) 0 .即 f (x) 0 至少有三个实根.
F( )
f
( ) 2
f
( )
由 F ( ) 0 得 f ( ) f ( ).
【例】设 f (x) 在[a,b]上连续,在(a, b) 内可导且 f (a) f (b) 0,
证明:在(a,b) 内至少存在一点 使 f ( ) f ( ). 提示:令 F(x) ex f (x) ,可验证 F (x) 在[a,b] 上满足 Rolle
g(x) 0, f (a) f (b) g(a) g(b) 0.
证明:(1)在(a,b)内 g(x) 0;
(2)在(a,b)内至少存在一点, 使得
f ( ) g( )
f ( ) . g( )
提示:(1)假设c (a,b) 使 g(c) 0, 则由 Rolle 定理,
微分中值定理与导数应用.ppt
![微分中值定理与导数应用.ppt](https://img.taocdn.com/s3/m/ed79c70bfd0a79563d1e726f.png)
拉格朗日中值公式又称有限增量公式. 拉格朗日中值定理又称有限增量定理.
定理 如果函数 f (x) 在区间 I 上的导数恒为零, 那末 f (x) 在区间 I 上是一个常数.
第一节 中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x) arcsin x arccos x, x [1,1]
f (b) F (b)
f (a) F (a)
f '( F '(
). )
第一节 中值定理
证: 作辅助函数
( x) f ( x) f (a) f (b) f (a) [F ( x) F (a)]. F(b) F(a)
( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 () 0.
弦AB方程为 y f (a) f (b) f (a) ( x a).
ba 曲线 f ( x) 减去弦 AB,
所得曲线a, b两端点的函数值相等.
第一节 中值定理
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 F () 0. 即 f () f (b) f (a) 0
y f (x)
2 b x
第一节 中值定理
第一节 中值定理
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 如果函数 f(x)满足
(1)在闭区间[a, b]上连续; (2)在开区间(a, b) 内可导; 那么在(a, b)内至少有一点(a b) ,使得
f (b) f (a) f ' ()(b a) .
定理 如果函数 f (x) 在区间 I 上的导数恒为零, 那末 f (x) 在区间 I 上是一个常数.
第一节 中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x) arcsin x arccos x, x [1,1]
f (b) F (b)
f (a) F (a)
f '( F '(
). )
第一节 中值定理
证: 作辅助函数
( x) f ( x) f (a) f (b) f (a) [F ( x) F (a)]. F(b) F(a)
( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 () 0.
弦AB方程为 y f (a) f (b) f (a) ( x a).
ba 曲线 f ( x) 减去弦 AB,
所得曲线a, b两端点的函数值相等.
第一节 中值定理
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 F () 0. 即 f () f (b) f (a) 0
y f (x)
2 b x
第一节 中值定理
第一节 中值定理
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 如果函数 f(x)满足
(1)在闭区间[a, b]上连续; (2)在开区间(a, b) 内可导; 那么在(a, b)内至少有一点(a b) ,使得
f (b) f (a) f ' ()(b a) .
第四章 中值定理及导数的应用
![第四章 中值定理及导数的应用](https://img.taocdn.com/s3/m/94489bfefab069dc5022012f.png)
B
o
a
b
x
calculus
证明
因为f ( x)在[a, b]上连续,
则 f ( x)在 [a, b] 上取得最大值 M 和最小值 m .
1) 若 M m, 即 f (x )恒为常数,
f ( x ) 0, 可取(a, b)内任一点作 为 ;
a
b
calculus
2) 若 M m, 由 f (a ) f (b) 知, M , m至少有一个要在(a, b)内取得. 不妨设 M 在 ( a , b) 内点 处取得, 即
calculus
因此,在(-2,-1)内至少存在一点1使f ' 1 )=0 ( 在(-1,1)内至少存在一点2使f ' 2 )=0,在(1, ( 3)内至少存在一点3使f (3 )=0,也即1、2、3
'
是f ' x)=0的实根. (
又由于f ' x)=0为三次方程,所以它最多有三个 ( 实根,因而f ' x)=0只能有三个实根,它们分别 ( 在区间(-2,-1),(-1,1),(1,3)内.
calculus
例4 设f ( x)在[0,1]上连续,在( a, b)内可导, 且f (1) 0, 证明 : 至少存在一点 (0,1)使得 2 f ( ) f ' ( ) sin 2 0.
分析 当 (0,1)时,有 2 f ( ) f ' ( )sin 2 0
' x
[ xf ' ( x) f ( x)] F ( x) xf ( x)
0 [ xf ( x)]
x
0
calculus
例3 设f ( x)在[a, b](0 a b)上连续,在(a, b) 内可导,且f (a) b, f (b) a, 证明在(a, b)内至 f ( ) ' 少存在一点,使得f ( ) .
o
a
b
x
calculus
证明
因为f ( x)在[a, b]上连续,
则 f ( x)在 [a, b] 上取得最大值 M 和最小值 m .
1) 若 M m, 即 f (x )恒为常数,
f ( x ) 0, 可取(a, b)内任一点作 为 ;
a
b
calculus
2) 若 M m, 由 f (a ) f (b) 知, M , m至少有一个要在(a, b)内取得. 不妨设 M 在 ( a , b) 内点 处取得, 即
calculus
因此,在(-2,-1)内至少存在一点1使f ' 1 )=0 ( 在(-1,1)内至少存在一点2使f ' 2 )=0,在(1, ( 3)内至少存在一点3使f (3 )=0,也即1、2、3
'
是f ' x)=0的实根. (
又由于f ' x)=0为三次方程,所以它最多有三个 ( 实根,因而f ' x)=0只能有三个实根,它们分别 ( 在区间(-2,-1),(-1,1),(1,3)内.
calculus
例4 设f ( x)在[0,1]上连续,在( a, b)内可导, 且f (1) 0, 证明 : 至少存在一点 (0,1)使得 2 f ( ) f ' ( ) sin 2 0.
分析 当 (0,1)时,有 2 f ( ) f ' ( )sin 2 0
' x
[ xf ' ( x) f ( x)] F ( x) xf ( x)
0 [ xf ( x)]
x
0
calculus
例3 设f ( x)在[a, b](0 a b)上连续,在(a, b) 内可导,且f (a) b, f (b) a, 证明在(a, b)内至 f ( ) ' 少存在一点,使得f ( ) .
第四章中值定理与导数的应用1
![第四章中值定理与导数的应用1](https://img.taocdn.com/s3/m/4e5a845bdf80d4d8d15abe23482fb4daa58d1d32.png)
x0
例14. 求 lim n ( n n 1). 0型
则至少存在一点 (a, b) , 使得 f ( ) 0 .
y y f (x)
A
B
Oa
bx
实际上, 切线与弦线 AB 平行.
费马(Fermat)引理:
且
存在
(或 )
证:设
则
0 0
y O x0 x
y y f (x)
注意:
O a
bx
1) 定理条件条件不全具备, 结论不一定成立. 例如,
A
Oa
弦 AB 的方程: y f (a) f (b) f (a) (x a)
ba
bx
利用罗尔中值定理 证明
注1:在[a, b]内的任意闭区间 [ x1, x上2 ],拉格朗日中值 定理均成立.
特别地, 若 x 与 x +Δx为区间(a, b)内的任意两点,则有
y f (x x) f (x) f (x x)x (0 1)
(化简)
lim
x0
2 cos3
x
2
连续使 用罗必 达法则
下面的介绍的是利用倒数法 或取对数法将其它的不定型 转化为可以运用罗必达法则 计算的例题 .
例8 求 lim x ln x . 0
x0
用另一种形式 颠倒行不行 ?
解
倒数法
lim
x0
x ln
x
lim
x0
ln x 1
x
行 , 但繁些 .
f (1) f (2 ) f (3) 0 . 其中, 1 (a, b) , 2 (b, c) , 3 (c, d ) ,
即 f (x) 0 至少有三个实根.
f (x) 是四次多项式, f (x) 是三次多项式,
例14. 求 lim n ( n n 1). 0型
则至少存在一点 (a, b) , 使得 f ( ) 0 .
y y f (x)
A
B
Oa
bx
实际上, 切线与弦线 AB 平行.
费马(Fermat)引理:
且
存在
(或 )
证:设
则
0 0
y O x0 x
y y f (x)
注意:
O a
bx
1) 定理条件条件不全具备, 结论不一定成立. 例如,
A
Oa
弦 AB 的方程: y f (a) f (b) f (a) (x a)
ba
bx
利用罗尔中值定理 证明
注1:在[a, b]内的任意闭区间 [ x1, x上2 ],拉格朗日中值 定理均成立.
特别地, 若 x 与 x +Δx为区间(a, b)内的任意两点,则有
y f (x x) f (x) f (x x)x (0 1)
(化简)
lim
x0
2 cos3
x
2
连续使 用罗必 达法则
下面的介绍的是利用倒数法 或取对数法将其它的不定型 转化为可以运用罗必达法则 计算的例题 .
例8 求 lim x ln x . 0
x0
用另一种形式 颠倒行不行 ?
解
倒数法
lim
x0
x ln
x
lim
x0
ln x 1
x
行 , 但繁些 .
f (1) f (2 ) f (3) 0 . 其中, 1 (a, b) , 2 (b, c) , 3 (c, d ) ,
即 f (x) 0 至少有三个实根.
f (x) 是四次多项式, f (x) 是三次多项式,
导数及拉格朗日中值定理课件
![导数及拉格朗日中值定理课件](https://img.taocdn.com/s3/m/9d99b11c4a7302768e99397a.png)
那个大的就是最大值,那个小的就是最小值;
注意:如果区间内只有一个极值,则这个极值就 是最值.(最大值或最小值)
求出某些量的最大值和最小值对于许多实际 问题都显得十分重要。 例如求时间最短、利润最大、成本最低等等。 相应,大学生数学建模竞赛题几乎都是优化问题, 或说必须用优化思想、方法去分析解决。初等数 学中用二次函数、三角函数、不等式等等方法可 以求函数最值,这里我们将看到,高等数学用导 数如何提供一种更有效的方法来解决许多最优化 问题。
y’ + _ +
x
y
-1
3
在区间 (,1) 和区间(3,) 上,有 y 0 在区间 (1,3) 上,有 y 0 得 函数在 (,1) 和(3,)上递增;在 (1,3上递减 ) .
单调性的解题步骤:
1.求已知函数的一阶导数;
2.根据一阶导函数求驻点和奇点; 3.依据临界点(驻点、奇点可统称为分界点)将函数的
函数的极大值与极小值统称为极值,使函数取得极 值的点称为极值点. 极值是函数的局部性概念:极大值可能小于极小值,极小值 可能大于极大值.
定理:设 f ( x ) 在点 x0 处具有导数 , 且在 x0 处取得极值 , 那么必定 f ( x0 ) 0 .
'
注意: (1) 极值是局部概念---局部最大或最小;一个 函数在一个区间内只可能有一个最大值、一个最小值, 但可能有多个极大值和极小值。 (2)可导函数的极值点必是它的驻点.反之,函 数的驻点不一定是极值点。
拉格朗日(Lagrange)中值定理 如果函数 f(x)在闭区间[a , b]上连续, 在开区间 ( a , b ) 内 可导,那么在( a , b ) 内至少有一点 ( a b ) ,使等式
第五讲 导数与微分,微分中值定理及导数的应用
![第五讲 导数与微分,微分中值定理及导数的应用](https://img.taocdn.com/s3/m/cb042a88ff00bed5b8f31d74.png)
则 f 为I上的凸函数
第五讲 导数与微分,微分中值Th及导数的应用
定义 2:设曲线 y f (x)在点(x0,f (x0 ))处有穿过曲线的切线,且在切点旁, 曲线在切线的两侧分别是严格凸和严格凹的,这是切点(x0,f (x0 ))为曲线 y f (x) 的拐点. Th1:设 f 为区间 I 上的可导函数,则下述论断互相等价 (i) f 为 I 上的凸函数 (ii) f (x) 为 I 上的增函数 (iii)对 x1, x2 I ,有 f (x2 ) f (x1) f (x1)( x2 x1)
f (x0 x) f (x0 ) f (x0 )x
绝对误差 y f (x0) x
相对误差 y f (x0 ) x y f (x)
第五讲 导数与微分,微分中值Th及导数的应用
7. 微分学基本 Th(导数的应用) (1)费马 Th (2)Rolle 中值 Th (3)Lagrange 中值 Th
f
'(x0 )
lim
x x0
f
'( )
f '(x0
0)
同理可得若 f '(x) 在 x0 点处存在右极限,则必有
f
'(x0 )
第五讲 导数与微分,微分中值Th及导数的应用
Th2:设 f 为区间 I 上的二阶可导函数,则在 I 上 f 为凸(凹)函数
f (x) 0 ( f (x) 0), x I
Th3:......,则 (x0 , f (x0 )) 为曲线 y
f (x) 的拐点
f (x) 0
Th4:设 f 在 x0 可导。在U 0 (x0 ) 内二阶可导,若在U 0 (x0 ) 和U 0 (x0 ) 上 f (x) 的
第三章 中值定理与导数的应用
![第三章 中值定理与导数的应用](https://img.taocdn.com/s3/m/8e65c33710a6f524ccbf85ba.png)
第3章 中值定理与导数的应用
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;
微分中值定理与导数的应用课件
![微分中值定理与导数的应用课件](https://img.taocdn.com/s3/m/3fb7aa752bf90242a8956bec0975f46526d3a743.png)
x
ex x
,
0
.
29
第30页/共112页
例6
tan x lim x tan3x
证 设 f (t) ln(1 t),
f (t)在[0, x]上满足拉格朗日定理的条件,
f ( x) f (0) f ()(x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x
111 x
1 1 1, 1 x 1
(2) 若 M m. f (a) f (b),
最值不可能同时在端点取得. 设 M f (a),
则 (a, b),使 f ( ) M .
由费马引理,
f ( ) 0 .
5
第6页/共112页
注意: 如果定理的三个条件有一个不满足,则定理的结论就可能不成立。
y
y
y
B
A
B
A
B
A
aO
bx a O c bx a O
而 f (0) , 且 f (1) f (1) ,
2
2
故 f ( x) , x 1,1 .
2
类似可得: arctan x arccot x , x R .
2 15
第16页/共112页
利用拉格朗日定理可证明不等式.
例5 证明: 1 ln b 罗尔(Rolle)定 理 如果函数yf(x)满足条件:(1)在闭区间[a, b]上连续,(2)在开区间(a, b)内可
导,(3) f(a)f(b),则至少存在一点(a, b),使得f () 0。
几何解释:
如果连续光滑的曲线 yf(x) 在端点 A、B 处的 纵坐标相等。那么,在 曲线弧上至少有一点
ex x
,
0
.
29
第30页/共112页
例6
tan x lim x tan3x
证 设 f (t) ln(1 t),
f (t)在[0, x]上满足拉格朗日定理的条件,
f ( x) f (0) f ()(x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x
111 x
1 1 1, 1 x 1
(2) 若 M m. f (a) f (b),
最值不可能同时在端点取得. 设 M f (a),
则 (a, b),使 f ( ) M .
由费马引理,
f ( ) 0 .
5
第6页/共112页
注意: 如果定理的三个条件有一个不满足,则定理的结论就可能不成立。
y
y
y
B
A
B
A
B
A
aO
bx a O c bx a O
而 f (0) , 且 f (1) f (1) ,
2
2
故 f ( x) , x 1,1 .
2
类似可得: arctan x arccot x , x R .
2 15
第16页/共112页
利用拉格朗日定理可证明不等式.
例5 证明: 1 ln b 罗尔(Rolle)定 理 如果函数yf(x)满足条件:(1)在闭区间[a, b]上连续,(2)在开区间(a, b)内可
导,(3) f(a)f(b),则至少存在一点(a, b),使得f () 0。
几何解释:
如果连续光滑的曲线 yf(x) 在端点 A、B 处的 纵坐标相等。那么,在 曲线弧上至少有一点
理学微分中值定理与导数的应用
![理学微分中值定理与导数的应用](https://img.taocdn.com/s3/m/914b80727275a417866fb84ae45c3b3567ecdd8d.png)
lim
x2 6x 4 2
注意: 如果
lim
f ( x)仍为 0
型未定式,且f(x),g(x)满足
x x0 g( x)
0
定理条件,则可继续使用洛必达法则.
返回 上页 下页
例2
求 lim x0
sin 2
x
x sin x4
x
cos
x
.
解
sin2 x x sin x cosx
lim
x0
x4
lim
x0
证 由于f(x)=ln(1+x)在[0,+∞)上连续、可导,
对任何x>0,在[0, x]上运用微分中值公式,
f(x)-f(0)=f′( x)x,
即
x
ln(1+x)= 1 x
由于
x 1 x
<
x
1
<x,lt;<1 ),
(0< <1).
x
1 x <ln(1+x)<x.
返回 上页 下页
x 0
x
x 0
x
返回 上页 下页
因f(x)在达到最大值,所以不论x是正的还是负的, 总有
f( + x)-f()≤0.
当x>0时, 当x<0时,
f ( x) f ( ) 0
x
f ( x) f ( ) 0
x
f ( ) lim f ( x) f ( ) 0
x 0
x
f ( ) lim f ( x) f ( ) 0
(3) lim f ( x) 存在(或为∞) x g( x)
lim f ( x) lim f ( x) x g( x) x g( x)
注 罗尔定理的三个条件缺少其中任何一个,定理的结 论将不一定成立.
高等数学》课件4.微分中值定理与导数的应用
![高等数学》课件4.微分中值定理与导数的应用](https://img.taocdn.com/s3/m/9aa26e802f60ddccdb38a093.png)
思考题
1. 将拉格朗日中值定理中的条件 f (x) “在 闭区间[a,b]上连续”换为“在开区(a,b) 内连续” 后,定理是否还成立?试举例(只需画图)说明.
2. 罗尔(Rolle)中值定理是微分中值定理中一 个最基本的定理.仔细阅读下面给出的罗尔中值定理 的条件与结论,并回答所列问题.
罗尔(Rolle)中值定理 若 f (x)满足如下 3 条: (1) 在闭区间[a,b]上连续; (2) 在开区间(a,b)内可导; (3) 在 区 间 [a,b] 端 点 出 的 函 数 值 相 等 , 即
例1
求
lim
x1
x3 x3 x
3x 2
x
2
. 1
解
lim
x 1
x3 x3 x
3x 2
x
2
1
=
lim
x 1
3x2 3x2
3 2x
1
= lim 6x = 6 = 3 .
x1 6x 2
4
2
例 2 求lim1 cos x . xπ tan x
解 lim1 cos x = lim sin x = 0.
推 论 2 如 果 对 (a,b) 内 任 意 x , 均 有 f (x) g(x),则在(a,b) 内 f (x)与 g(x)之间只差一个 常数,即 f (x) g(x) C (C 为常数).
证 令F (x) f (x) g(x),则F(x) 0,由推论 1 知 , F(x) 在 (a,b) 内 为 一 常 数 C , 即 f (x) g(x) C, x (a,b),证毕.
f (a) f (b),则在开区间(a,b) 内至少存在一点 ,使 得 f ( ) 0.
需回答的问题: (1) 罗尔中值定理与拉格朗日中值定理的联系与