数学建模经典案例_选课策略[1]
数学建模 选修课策略模型
黑龙江科技大学题目:选课策略数学模型班级:姓名:学号:摘要本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。
特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。
在不同的情况下建立不同的模型,最终计算出结果。
关键词 0-1规划选修课要求多目标规划模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。
模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。
模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。
一.问题的重述某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。
这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。
那么,毕业时最少可以学习这些课程中的哪些课程。
如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?二.模型的假设及符号说明1.模型假设1)学生只要选修就能通过;2)每个学生都必须遵守规定;2. 符号说明1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);三.问题分析对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;对于问题三,同时考虑两者,所占权重比一样,建立模型三;四.模型的建立及求解模型一目标函数:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)约束条件:x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;模型的求解:输入:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: -2.800000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -0.8000000X2 1.000000 -0.5000000X3 1.000000 -0.5000000X4 1.000000 -0.2000000X5 1.000000 -0.5000000X6 1.000000 -0.2000000X7 1.000000 0.1000000X8 0.000000 0.1000000X9 1.000000 -0.2000000Row Slack or Surplus Dual Price1 -2.800000 -1.0000002 3.000000 0.0000003 1.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000001.模型二:目标函数:min z=x1+x2+x3+x4+x5+x6+x7+x8+x9约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0模型的求解本文运用lingo运算球的结果:输入min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);输出:Global optimal solution found.Objective value: 6.000000Extended solver steps: 0Total solver iterations: 1Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000模型三:目标函数:Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0x1+x2+x3+x4+x5+x6+x7+x8+x9=6运用lingo解题:输入:max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;x1+x2+x3+x4+x5+x6+x7+x8+x9=6;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: 22.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -3.000000X2 1.000000 -2.000000X3 1.000000 -2.000000X4 0.000000 -1.000000X5 1.000000 -2.000000X6 1.000000 -1.000000X7 1.000000 0.000000X8 0.000000 0.000000X9 0.000000 -1.000000Row Slack or Surplus Dual Price1 22.00000 1.0000002 2.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 2.000000 0.00000011 0.000000 2.000000五.结果的检验与分析经过检验输入式子正确,结果多次验证一样。
全国数学建模大赛python编程经典案例
全国数学建模大赛是我国高校学子间的一场盛会,也是对学生数学建模能力的一次全面考验。
而在近年来,Python编程语言作为一种应用广泛的编程语言,在数学建模大赛中也展现出了其强大的应用能力。
下面,我们将逐一介绍几个在全国数学建模大赛中用Python编程取得优异成绩的经典案例。
一、航班调度优化航班调度一直是航空公司面临的重要问题之一,合理的航班调度可以最大程度地提高航空公司的运营效率和利润。
在数学建模大赛中,有学生利用Python编程对航班调度进行了优化,通过对航班起降时间、航班间隔、飞机维修等因素进行科学的建模与分析,提出了一套高效的航班调度方案,并最终获得了比赛的一等奖。
二、交通拥堵预测交通拥堵一直是城市管理中的难题,如何预测和缓解交通拥堵成为了各地政府和交通部门的重要任务。
在数学建模大赛中,有队伍利用Python编程对城市的交通流量、道路状况、车辆类型等数据进行建模,运用相关的数学模型和算法,成功地预测了未来一段时间内的交通拥堵情况,并提出了一系列有效的缓解措施,最终获得了比赛的优秀奖项。
三、疫情传播模拟近年来,新冠疫情的爆发给全球范围内带来了严重的影响,疫情传播的模拟和预测成为了疫情防控工作中的重要环节。
在数学建模大赛中,有团队利用Python编程对疫情传播进行了模拟,通过对人口流动、病毒传播途径、人裙免疫情况等因素进行综合分析,成功地建立了一套逼真的疫情传播模型,并提出了科学有效的疫情防控措施,最终斩获了比赛的金奖。
四、气象数据分析气象预测一直是气象部门和民众关注的焦点,有效地利用气象数据进行分析和预测可以对城市管理和民生产生重要影响。
在数学建模大赛中,有队伍运用Python编程对气象数据进行了深入的分析,通过对气象数据的趋势、变化规律、环境影响等方面进行科学建模和预测,取得了优异的比赛成绩,为气象预测提供了新的思路和方法。
总结可以看出,Python编程在全国数学建模大赛中发挥了重要作用,学生们利用Python编程对各种实际问题进行了深入的分析与研究,提出了一系列科学有效的解决方案,展现出了其强大的应用能力和潜力。
数学建模-选课问题
数学建模-选课问题选课问题⼀、摘要⼤学⽣在学习中常会遇到选课问题,既要使⾃⼰所选择的课程符合⾃⼰的兴趣,⼜要⽤最少的课程达到最好的效果,最重要是满⾜学校所修课程的要求以达到毕业,有些课程必须在具备基础科⽬学习经历的前提下才能进⾏选择,,在这多种因素引导下选课过程往往发⽣⽭盾。
因此只有对各种因素进⾏周密考虑,最终⽅可得出最优化的结果。
选课所得到的结果必然为整数,因此本题可以可归结为整数线性规划的最优化问题。
⼆.问题重述某学校规定,其运筹学专业的学⽣想要毕业,就⾄少要修过两门数学课,三门运筹学课和两门计算机课。
⽽其备选课程供有9种,按1到9编号,都有其各⾃对应的学分,以及对于先修课程的要求。
在满⾜题设要求的前提下,提出问题:1.学⽣毕业时最少可以学习哪些课程;2.学⽣选择哪些课程可以使⾃⼰选修的课程数量少⽽所获总学分多?三、问题分析根据题⽬要求,学⽣选修课程必须同时满⾜下列条件:(1)任何⼀个学⽣所选择的所有课程中,⾄少应包括两门属于数学类的课程,三门属于运筹学类的课程以及两门属于计算机类的课程;(2)课程编号为3、4、5、6、8、9的六门课选修前都必须先学过其他⼏门课。
要选3号或5号、9号课程就必须先学1、2号课程,要选4号或6号课程就必须先学7号课程,要学8号课程就必须先学5号课程。
因此,针对⽬标⼀,要求所选符合上述要求的课程数量最少,我们选择了以下⽅案⾸先选择1,2再选择课程5,8,其次选择课程课程7,6;如此来看这样只⽤选择六个课程就可以完成所也需要的要求,粗略的估计出选择1,2,5,8,7,6这⼏个课程是最好的结果;针对⽬标⼆,要求选择的符合要求的课程数量最少的同时其累计学分最多,我们也认为这个⽅案可以获得的学分为22分即是最好的结果。
但这都是主观上的判断,难免有偏差。
由于本题研究的是选课过程的最优化结果,因此⾸先必须根据所给条件,分析出各个课程之间的关系,并⽤清晰的数学表达式描述。
因此,我们建⽴0-1型整数线性规划模型,对结果进⾏分别预测后通过Matlab求解多⽬标规划模型,并将之前预测结果和求解结果进⾏⽐较,得到选课结果的最优化组合。
数学建模选课问题
1.问题提出对于问题一,我们必须考虑在学校和院系的规定的条件下对同学选课最少进行求解。
所以我们先从已知条件入手,把他们转化为约束条件,然后建立0-1整数优化模型,利用LINGO软件对其进行求解。
对于问题二,我们同样考虑在选修学分最少的情况下对同学选课最多进行求解。
但两者不能同时都满足,所以我们必须把这个双优化模型转化为单优化模型,然后再利用LINGO对其进行求解。
问题三则是考虑了选修课程限选人数的问题,所以必须针对不同的学生类型设计相应的选择方案。
同时考虑到选修的课程能否如愿选上,需要在已只知不同课程限选人数的情况下,利用对不同目标加权的方法对问题进行优化。
2符号说明与模型假设2.1符号说明表2:符号说明表注:其它符号在文中另加说明2.2模型假设(1):各个同学在选修课程时不受其他因素影响,只受学分和选修课程门数影响。
(2):学生选课是独立的,相互之间不影响。
(3):选课的学生有两种类型,一类是对这门课真正感兴趣的,另一类是“混学分”的,且这两类各占选课学生人数的一半。
(4):学生的信息是不公开的。
(5):问题三中没有提到的课程表示人数没有限制。
3模型建立和求解3.1问题一的解决3.1.1模型的建立用xi表示选修表中按照编号顺序的18门课程的选择(i=1,2,…18),其中xi 取值为1或者0。
其定义如下:采用目标规划的方法,考虑到学校的各种约束条件,将约束条件用数学表达式表示为一下几点:1:要使选修课程的总学分数不少于18,既有下面的不等式:2:任选课程的比例不能少于所修总学分的1/6,也不能超过1/3:3:课程号为5、6、7、8的课程必须至少选一门:4:选修某些课程必须同时选修其他课程,可以表示为:在达到以上要求的情况下,只考虑选修课程最少的情况,相应的目标函数为:在Lingo[1]中可以对该目标函数进行优化,其中约束条件为①②③④,由于上述条件中有大于关系,可以在两边乘以—1将约束条件全部转换成小于关系,这样便于在Lingo中求解.最后本文建立了如下的优化模型3.1.2模型的求解利用LINGO软件求解可以得到3.1.3问题一的结果最后本文得到了在学校和院系的要求下选课最少是选五门,选择方案是选择课程1,2,6,10,14。
全国数模竞赛题选讲1-最优捕鱼策略(96A)
Jingsaitixuanjiang
Jingsaitixuanjiang
假设这种鱼分 4 个年龄组,称 1 龄鱼,…,4 龄
0.8 3
k
2 3
s 40 ) e
2 3
0.8
1.22 10
k
2 3
11
10
11
a (1 e
)( e
0.42 k
s 30 2 e
s 40 ) e
0.8
]
F 3 s 30 F 4 s 40
F3
1 .6 [ 1 .2 2 1 0
3 a (1
重复 ⑵ ,根据递推关系算出下一年的
s 12 , s 22 , s 32 , s 42 ;
⑷ 再重复 ⑵、⑶ 当计算到年初与年末的各龄鱼 的数量一致时,即鱼群稳定为止,根据
G P 3 m 3 P4 m 4 算出年捕获量;
⑸ 另定 k 值,重复 ⑴ ~ ⑷; ⑹ 根据年捕获量最大原则,最后确定最佳的 k 值。
s 21 s 1 s 10 e
3)3 龄鱼即上一年末 2 龄鱼
0.8
s 31 s 2 s 20 e
4)4 龄鱼即上一年末 3 龄鱼
0.8
s 41 s 3 s 30 e
0.8
e
0.24 k
2 3
Jingsaitixuanjiang
3 、鱼群持续变化的递推关系
捞方式,该公司应采取怎样的策略才能使总收获量
数学建模 选课问题
选课问题声明:本人自做,仅作参考,不得商用,责任自负。
1 问题的提出课程选修是大学学分制教育制度的一个重要内容。
课程一般分为必修课、限选课、任选课、同时选修课等四类,各类大学都规定了学生必须完成的学分制。
现在有为同学要选修下一学期的课程,他发现可供选修的限定选修课(限选课)有8门,任意选修课(任选课)有10门。
由于有些课程之间相互关联,所以可能在选修某门课程时必须同时选修其他某门课程,课程信息见下表:按学校规定,学生每个学期选修的总学分数不能少于20学分,因此该同学必须在上述18门课中至少选修18个学分,学校还规定学生每学期选修任选课的比例不能少于所修总学分(包括2个必修学分)的1/6,也不能超过所修总学分的1/3。
学院也规定,课号为5,6,7,8的课程必须至少选一门。
1)为了达到学校和院系的规定,该同学下学期最少应该选几门课?应该选哪几门课?2)若考虑在选修最少学分的情况下,该同学最多可以选修几门课?选哪几门?3)若考虑到选修时课程能否如愿选上的问题,请多准备几套选择方案。
已知课程限选人数为1,2,3,4限选人数最多,5,6,7,8次之,13、17、18限选人数最少。
请考虑选课时的先后顺序(先选者先录,人满停选)。
2 基本假设(1)学生选修任何课程都是随机的,不存在主观意图。
实际生活中选课程是有主观意图的,但是本问题中不考虑这一点。
(2)学生只要选修某门课程,就认为他能够获得该门课程的学分,不考虑实际生活中的考试不及格得不到学分的情况。
(3)学校所给的课程,不管任何课程,都应当是做过调研,一般情况下学生只要选择,就能选上,而不会出现连选几门都选不上的局面。
也就是说选课所给的限制人数应当是合理的限制。
3 符号约定用xk表示2*18的选修课与对应的学分的矩阵,即⎥⎦⎤⎢⎣⎡111122233323334455181716151413121110987654321 用xk ()j i ,表示第i 行第j 列交叉点的元素。
数学建模竞赛模型选择策略
数学建模竞赛模型选择策略一、数学建模竞赛概述数学建模竞赛是一种将数学理论与实际问题相结合的竞赛形式,它不仅要求参赛者具备扎实的数学基础,还需要他们能够灵活运用数学工具解决实际问题。
这种竞赛形式在全球范围内广泛流行,吸引了众多数学爱好者和专业人士的参与。
数学建模竞赛的核心在于通过建立数学模型来描述和解决实际问题,这不仅是一种科学探索的过程,也是一种创新思维的体现。
1.1 数学建模竞赛的目的数学建模竞赛的主要目的在于培养学生的数学思维能力、创新能力和实践能力。
通过参与竞赛,参赛者可以更好地理解数学在实际问题中的应用,提高他们解决复杂问题的能力。
同时,竞赛还能激发参赛者的团队合作精神和竞争意识,促进他们在学术和职业生涯中的发展。
1.2 数学建模竞赛的特点数学建模竞赛具有以下几个显著特点:- 跨学科性:竞赛题目通常涉及多个学科领域,如经济、工程、生物等,要求参赛者具备跨学科的知识背景。
- 实践性:竞赛题目往往来源于实际问题,参赛者需要将理论知识与实际问题相结合,提出切实可行的解决方案。
- 创新性:竞赛鼓励参赛者进行创新思考,开发新的数学模型和算法,以解决复杂的实际问题。
- 团队性:竞赛通常以团队形式进行,强调团队合作和分工协作,培养参赛者的团队精神和协作能力。
二、数学建模竞赛模型选择策略在数学建模竞赛中,选择合适的模型是解决问题的关键。
模型的选择不仅影响解决方案的有效性,还影响整个竞赛的成败。
因此,制定科学的模型选择策略是至关重要的。
2.1 模型选择的重要性模型选择的重要性体现在以下几个方面:- 准确性:选择合适的模型可以更准确地描述和解决实际问题,提高解决方案的可靠性。
- 可行性:模型的选择需要考虑实际应用的可行性,确保模型能够在有限的时间内被有效求解。
- 创新性:选择创新的模型可以为解决问题提供新的思路和方法,提高解决方案的创新性。
- 通用性:选择具有通用性的模型可以提高解决方案的适用性,使其能够应用于更广泛的实际问题。
lingo实现 建立选课策略多目标模型
数学模型实验—实验报告9一、实验项目:选课策略模型建立和求解二、实验目的和要求a.根据题目要求建立优化模型b.通过Lingo软件求解模型三、实验内容1.根据教材4.4节内容建立选课策略多目标模型。
目标一:课程数最少;目标二:学分最多,1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;2)引入权重将两目标转化为单目标模型一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W2. 编写lingo程序求解:1)以课程数最少为单目标的优化模型(注意xi为0-1变量)min x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);运行结果如下:Global optimal solution found.Objective value: 6.000000Objective bound: 6.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.0000002)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。
(完整版)高中常见数学模型案例
高中常见数学模型案例中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。
”教材中常见模型有如下几种:一、函数模型用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。
函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。
1、正比例、反比例函数问题例1:某商人购货,进价已按原价a扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x与按新价让利总额y 之间的函数关系是_____________ 。
分析:欲求货物数x与按新价让利总额y之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。
若设新价为b,则售价为b( 1 -20%),因为原价为a,所以进价为a (1 - 25%)5 解:依题意,有b(1 0.2) a(1 0.25) b(1 0.2)0.25 化简得b a,所以45 ay 0.2bx a 0.2 x,即y x, x N4 42、一次函数问题例2:某人开汽车以60km/h的速度从A地到150km远处的B地,在B地停留1h后,再以50km/h 的速度返回A地,把汽车离开A地的路x ( km)表示为时间t ( h)的函数,并画出函数的图像。
分析:根据路程=速度X时间,可得出路程x和时间t得函数关系式x (t);同样,可列出v(t)的关系式。
数学建模实例及其解题思路剖析
数学建模实例及其解题思路剖析数学建模是一门将数学方法应用于实际问题解决的学科。
它通过建立数学模型,运用数学分析和计算方法,对问题进行分析、预测和优化。
数学建模的应用领域广泛,涵盖了自然科学、工程技术、经济管理等多个领域。
本文将以一个实际的数学建模实例为例,分析其解题思路和方法。
假设我们要解决一个城市交通拥堵问题。
首先,我们需要收集相关数据,包括道路网络、交通流量、交通信号灯等信息。
然后,我们可以建立一个数学模型来描述交通拥堵的程度。
常用的模型包括流体力学模型、网络模型和统计模型等。
在这个例子中,我们选择使用网络模型来描述城市道路网络。
首先,我们将城市道路网络抽象为一个有向图。
每个节点表示一个交叉口,每条边表示一条道路。
我们可以使用邻接矩阵或邻接表来表示这个有向图。
接下来,我们需要确定每条道路的通行能力和交通流量。
通行能力可以通过道路宽度、车道数和限速等因素来估计。
交通流量可以通过交通调查和传感器数据来获取。
将这些数据加入到图中,我们就可以得到一个具有权值的有向图。
接下来,我们需要计算每条道路的拥堵程度。
我们可以使用图论中的最短路径算法来计算每个节点之间的最短路径。
常用的最短路径算法包括Dijkstra算法和Floyd-Warshall算法。
通过计算最短路径的长度和通行能力的比值,我们可以得到每条道路的拥堵指数。
拥堵指数越高,表示该道路越容易发生交通拥堵。
在得到道路的拥堵指数后,我们可以进一步分析交通拥堵的原因。
例如,我们可以通过统计每个交叉口的拥堵指数,找出拥堵最严重的交叉口。
然后,我们可以分析该交叉口的交通信号灯设置和交通流量分布,找出导致拥堵的主要原因。
通过对交通拥堵原因的分析,我们可以提出相应的改进措施,如调整交通信号灯的时序、增加道路容量等。
除了分析交通拥堵的原因,我们还可以预测交通拥堵的趋势。
通过收集历史交通数据,我们可以建立一个时间序列模型来预测未来的交通流量。
常用的时间序列模型包括ARIMA模型和神经网络模型等。
新高考背景下高中数学建模教学策略与案例分析
新高考背景下高中数学建模教学策略与案例分析摘要:数学学科是高中阶段的基础课程,具有逻辑严密、抽象度较高、应用广泛等特点。
数学建模作为数学学科的六大核心素养之一,是将抽象的数学知识与现实世界联系在一起的重要工具。
随着新课改工作的深入推进,数学建模的重要性被越来越多的人所认识,并在日常教学工作中开展了相应的教学活动。
关键词:新高考;高中数学;建模教学策略引言由新课程、新教材、新高考构成的“三新”理念为高中数学学科的创新发展提供了充足动力,使学科能力培养目标更加明确。
数学建模是对现实问题进行数学抽象,用数学语言表达问题,以及用数学方法构建模型解决问题的素养,是高中数学的重要教学内容。
随着建模思想在数学教材与高考试题中比重增加,高中数学教师应及时调整教学策略,处理好建模教学的现存问题,助力学生全面发展数学学科核心素养。
一、丰富知识经验,注重小组合作学习不同的学生在建模过程中,受个体知识经验、知识储备以及心理因素的影响等,对于同一问题,不同的学生的关注点也会存在差异,对于问题的思考与理解也是不同的。
对此,可通过小组学习、交流、讨论等,激发学生调动原有的知识经验,从小组学习中获得补充,有效展开数学建模教学。
教师在建模教学过程中要看到每名学生的优点,发掘每名学生的魅力。
例如,在“茶水最佳饮用时间”数学建模任务中,教师可根据不同学生的特点进行分组,有的学生思维活跃、善于发现问题,能够发现茶叶类型、茶具等会影响茶水的口感;而有的学生比较细心且动手能力较强,可测量茶水的温度并进行记录;还有的学生具有较强的信息技术能力,这是数学建模中数据处理的关键能力。
教师充分利用这种小组合作的学习方式进行数学建模教学,就可以充分发挥每名学生的内在潜力。
二、巧妙设置课后习题,强化建模思想训练课后习题作为课堂教学的持续与延伸,在整个教学体系中占据着较为重要的地位,不仅可以帮助学生巩固课内所学的理论知识,还能够训练解题技巧,强化数学思想方法的训练,自然也会涉及到建模思想。
数学建模高考志愿选择策略.doc
高考志愿选择策略目录一、摘要 (2)二、问题重述 (3)三、模型假设 (3)四、符号说明 (4)五、模型建立与求解………………………………………………………………………5-9六、模型推广 (10)七、模型评价 (10)八、参考文献 (11)摘要本文主要解决的是在综合考虑各种因素下如何进行高考志愿选择的问题。
高考志愿选择的优劣有时对考生今后的发展起着至关重要的影响。
本文主要通过利用层次分析法解决考生高考志愿选择问题。
首先我们对问题进行合理的假设,做出影响高考志愿诸因素的层次结构图,然后做出各层的判断矩阵,对矩阵进行一致性检验,算出权向量,最后得到决策层对目标层的权重,从而解决了高考志愿选择的问题。
关键词高考志愿层次分析法判断矩阵一致性检验权重一、问题重述一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。
这个决策关系重大,如果抉择不当很可能就会错过自己心仪的高校。
在考生决策的过程需要考虑很多因素,如下表,假设每个考生可填写四个志愿。
现有北京甲、上海乙、成都丙、重庆丁四所大学。
考生通过网上信息初步考虑因素重要性主观数据如下表,试建立一个数学模型,经过建模计算,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。
表(1)相关权数北京甲上海乙成都丙重庆丁校誉名校自豪感0.220.750.70.650.6录取风险0.1980.70.60.40.3年奖学金0.0240.60.80.30.7就业前景0.1330.80.70.850.5生活环境离家近0.0610.20.410.8生活费用0.0640.70.30.90.8气候环境0.0320.50.60.80.6学习环境专业兴趣0.1320.40.30.60.8师资水平0.0340.70.90.70.65可持续发展硕士点0.0640.90.80.750.8博士点0.030.750.70.60.5二、模型的假设1、考生除考虑表中的因素外,其他因素忽略不计。
高中数学建模教学设计案例
高中数学建模教学设计案例一、教学任务及对象1、教学任务本教学案例聚焦于高中数学建模教学,旨在通过案例分析和实际问题解决,使学生掌握数学建模的基本方法与技能,激发学生运用数学知识解决实际问题的兴趣,提高学生的创新意识和团队合作能力。
教学内容主要包括:认识数学建模,了解数学建模的基本步骤,掌握数学建模的方法和技巧,运用数学知识解决实际问题。
2、教学对象本教学案例针对的是高中学生,他们已经具备了一定的数学基础知识,掌握了基本的数学运算和解决问题的方法。
在此基础上,通过数学建模教学,引导学生运用所学知识解决现实生活中的问题,提高学生的数学素养和实际问题解决能力。
此外,考虑到学生的个体差异,教学过程中将注重分层教学,关注每一个学生的成长与进步。
二、教学目标1、知识与技能(1)理解数学建模的定义和意义,掌握数学建模的基本方法和步骤;(2)能够运用所学的数学知识,如函数、方程、不等式、几何等,解决实际问题;(3)学会使用数学软件和工具,如MATLAB、Mathematica等,进行数学建模的计算和分析;(4)提高数学表达和逻辑推理能力,能够清晰地阐述自己的观点和解决问题的过程;(5)培养团队协作能力,学会在团队中发挥自己的优势,共同解决问题。
2、过程与方法(1)通过案例分析,使学生了解数学建模的实际应用,掌握数学建模的基本过程;(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、提出假设、建立模型、求解模型、验证模型,培养学生的问题解决能力;(3)注重启发式教学,鼓励学生独立思考、主动探究,提高学生的自主学习能力;(4)组织小组讨论和分享,促进学生之间的交流与合作,提高学生的沟通能力;(5)通过实践操作,使学生体会数学建模的乐趣,培养学生的学习兴趣和动手能力。
3、情感,态度与价值观(1)培养学生对数学建模的兴趣,激发学生学习数学的热情;(2)引导学生认识到数学知识在实际生活中的重要作用,增强学生的数学应用意识;(3)培养学生勇于面对困难、积极解决问题的态度,增强学生的自信心和毅力;(4)通过团队合作,培养学生的集体荣誉感和责任感,提高学生的团队协作精神;(5)培养学生的创新意识,鼓励学生敢于挑战权威,勇于提出不同的观点和解决方案;(6)引导学生树立正确的价值观,将所学知识用于国家和社会的发展,为我国科技创新和社会进步贡献力量。
数学建模作业二:选课策略
选课策略一、 问题描述对于上述课程,要求至少选两门数学课、三门运筹学课和两门计算机课。
试讨论: (1)为了选修课程门数最少,应学习哪些课程 ?(2)选修课程最少,且学分尽量多,应学习哪些课程 ?二、 问题分析设 xi =1为选修课号i 的课程,xi =0 不选该门课程。
约束条件:⑴ 最少2门数学课,3门运筹学课,2门计算机课:254321≥++++x x x x x ;398653≥++++x x x x x ;29764≥+++x x x x 。
⑵先修课程要求:02213≤--x x x ;02215≤--x x x ;074≤-x x ;076≤-x x ;058≤-x x ;02219≤--x x x 。
目标函数:选修课程门数:∑==91i ixZ ,学分:987654321322343445x x x x x x x x x W ++++++++=。
对于(1)要使选修课程门数最少,应使∑==91i i x Z Min;对于(2)要使选修课程最少且学分尽量多,应使∑==91i i x Z Min,987654321322343445x x x x x x x x x W Max ++++++++=。
课号课名 学分 所属类别先修课要求1 微积分 5 数学2 线性代数 4 数学3 最优化方法4 数学;运筹学 微积分;线性代数4 数据结构 3 数学;计算机 计算机编程5 应用统计 4 数学;运筹学 微积分;线性代数6 计算机模拟 3 计算机;运筹学计算机编程7 计算机编程 2 计算机 8 预测理论 2 运筹学应用统计9数学实验3运筹学;计算机微积分;线性代数三、问题求解(1)可利用mathematica8中的Minimize()函数进行线性规划求解:(代码)Minimize[x1+x2+x3+x4+x5+x6+x7+x8+x9,{x1==1||x1==0,x2==1||x2==0,x2==1||x2==0,x3==1| |x3==0,x4==1||x4==0,x5==1||x5==0,x6==1||x6==0,x7==1||x7==0,x8==1||x8==0,x9==1||x9==0,x 1+x2+x3+x4+x5>=2,x3+x5+x6+x8+x9>=3,x4+x6+x7+x9>=2,2x3-x2-x1<=0,2x5-x1-x2<=0,x4-x 7<=0,x6-x7<=0,x8-x5<=0,2x9-x1-x2<=0},{x1,x2,x3,x4,x5,x6,x7,x8,x9}]结果为故最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0。
数学建模与优化问题求解的实际案例
数学建模与优化问题求解的实际案例数学建模是一门应用数学的学科,通过建立数学模型来描述和解决实际问题。
在现实生活中,我们经常会遇到各种各样的问题,而数学建模可以帮助我们理清问题的本质,并提供一种科学的方法来解决问题。
优化问题是数学建模中的一个重要方向,它旨在找到最优解或最佳解决方案。
下面,我将通过一个实际案例来说明数学建模与优化问题求解的过程和方法。
假设我们是一家物流公司的经理,负责管理货物的配送。
我们面临的问题是如何合理安排货车的配送路线,以最小化总运输成本。
为了解决这个问题,我们可以采用数学建模的方法。
首先,我们需要收集一些相关的数据。
比如,我们需要知道货车的数量、容量和行驶速度,以及各个货物的重量、体积和目的地等信息。
然后,我们可以将这些数据转化为数学模型。
在这个案例中,我们可以将货车的配送路线看作是一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的优化问题,它要求在给定一组城市和每对城市之间的距离时,找到一条最短路径,使得每个城市都被访问一次且仅访问一次,最后回到出发城市。
在我们的问题中,每个目的地可以看作是一个城市,而货车的行驶路线就是旅行商要访问的路径。
接下来,我们可以使用数学方法来求解这个问题。
常用的方法包括贪婪算法、动态规划和遗传算法等。
在这个案例中,我们可以使用贪婪算法来解决TSP。
贪婪算法的基本思想是每次选择最优的下一步,直到达到目标。
具体来说,我们可以从起始点开始,每次选择离当前位置最近的未访问目的地作为下一个访问点,直到所有目的地都被访问过为止。
然而,贪婪算法并不一定能够得到最优解。
为了进一步优化结果,我们可以引入一些启发式规则或调整算法的参数。
比如,我们可以考虑货物的优先级,优先配送重要的货物或紧急的货物。
另外,我们还可以限制货车的行驶时间或距离,以避免超出预算或满足客户的要求。
除了TSP,数学建模还可以应用于其他优化问题,比如线性规划、整数规划和非线性规划等。
高考志愿选择策略的简单数学建模
2004-2005第二学期数学模型课程设计2005年6月20日-6月24日题目高考志愿选择策略(一)摘要:大学是广大中学生心目中神圣的知识殿堂,对于每个拥有"大学梦"的中学毕业生来说,填报高考志愿是他们通向高等学府关键的一步。
在填报高考志愿时,学生和家长往往要考虑各种因素来权衡利弊以做出最优决策,但面对错综复杂的情况在紧迫的时间里又很难做出正确的选择,而如果他们填报志愿不得当,又势必会对今后的发展有所影响,甚至于终生遗憾。
因此在这里,我将综合学生在报考时最关心的几个因素,帮助他们进行定量分析,以便更合理地填报高考志愿。
问题的分析对于填报高考志愿这一事件,要想做出最优决策,需要考虑的因素很多,而在这些因素中有些可以定量化,有些只有定性关系。
为将半定性、半定量问题转化为定量问题,可以采用层次分析法。
这种方法可以将各种有关因素层次化,并逐层比较多种关联因素,为决策提供可比较的定量依据,所以针对填报高考志愿这一事件,我们将采取层次分析法。
关键词:层次分析法;权向量;一致性检验题目8: 高考志愿选择策略一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。
这个决策关系重大,请你建立一个书模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。
假设每个考生可填四个志愿。
现在北京甲,上海乙,成都丙,重庆丁四所大学。
考生一. 建立模型 (一)构造成对比较阵面临的决策问题是:要比较n 个因素x 1,x 2…,x n ,对目标A 的影响,我们要确定它们在A 中所占的比重,即这n 个因素对目标A 的相对重要性。
我们用两两比较的方法将各因素重要性的定性部分数量化。
设有因素x 1,x 2…,x n 每次取两个因素x i x j ,用正数a ij 表示x i 与x j 的重要性之比。
由全部比较结果得到矩阵A=(a ij ),称作成对比较阵A 。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nm n n n n a a a a a a a a a ,,,,,,,212,2221112,11 显然aij=1/aji,aij>=0,1<=I,j<=n.然后求出成对比较矩阵A 的最大特征值及其对应的特征向量Y=(y 1,y 2,…,y n )T, 定义标准化向量Tn i inn i in i i Y Y Y YY Y Y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∑∑∑===11211,,,' 。
数模选修课
模型建立: 模型建立:
dxi ( t ) = − µ ( t ) xi ( t ) − ui ( t ) x i ( t ), i = 1,2,3,4 dt
时间以年为单位,初始条件有: 时间以年为单位,初始条件有:
x i +1 ( k ) = xi ( k − 1), i = 1,2,3, k > 0整数 x i (0) = x i0
对四龄以上的鱼的处理有两种办法,一是全部死亡, 3. 对四龄以上的鱼的处理有两种办法,一是全部死亡,二是依 然按四龄鱼对待.我们按前一种情况处理. 然按四龄鱼对待.我们按前一种情况处理. 4. 采用固定努力量捕捞的速度正比于捕捞时各龄鱼群中鱼的 数量,比例系数称为捕捞强度. 数量,比例系数称为捕捞强度.
在12点到下午6点这个时间段内即取0时刻的酒精在人体的变化量为其中g0115188732在下午6点到凌晨2点这个时间段内14则从346794则两次喝酒的拟合曲线如图所示对驾车者的忠告世界卫生组织的事故调查显示大约5060的交通事故与酒后驾驶有关酒后驾驶已经被列为车祸致死的主要原因
数学建模选修课
一.停车场安排问题
分析与模型: --- 首先研究车位排列的角度问题
停车场内通道的宽度要依赖于车位的角度 汽车的最外端沿半径为 6.4 米的 圆周上行驶, 角度进入车位。 圆周上行驶,然后以 α 角度进入车位。 设通道宽度 R,可以通过公式计算 ,
R = r1 − ( r1 − w ) cos α
对任意角 α ,用 W, L 分别表示 停车空间的宽度和长度, 停车空间的宽度和长度,这两个量 依赖于 α: : W = w / sin α L = l sin α + w cos α
模式 1 2 3 4 5 6 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增加约束
9
xi 6,
i 1
以学分最多为目标求解。
最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。
案例11 选课策略
课号
1 2 3 4 5 6 7 8 9
课名
微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验
学分
5 4 4 3 4 3 2 2 3
所属类别
数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
i 1
1 2 / 3
最优解与1=0,2=1的结果相同——学分最多
1 3 / 4
最优解与1=1,2=0的结果相同——课程最少
决策变量
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
Min Z
9
xi
i 1
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
x1 x 2 x 3 x 4 x 5 2
x3 x5 x6 x8 x9 3
x4 x6 x7 x9 2
1 2 3
4 5 6 7 8 9
注意:最优解不唯一!
可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y 1 Z 2W 0 . 7 Z 0 . 3W
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件ቤተ መጻሕፍቲ ባይዱ
先修课程要求 x3=1必有x1 = x2 =1
x 3 x1 , x 3 x 2
2 x 3 x1 x 2 0
x4 x7
应用统计 微积分;线性代数
最优解: x1 = x2 = x3 = x4 = x5 = x6 = x7 = x9 =1, 其它为0;总学分28。
多目标规划
Min Y 1 Z 2W
讨论与思考
1 2 1,
0 1 , 2 1
Z
9
xi
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x6 2 x7 2 x8 3 x9
1 2 3
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程
x4 x7 0
2 x 5 x1 x 2 0
模型求解(LINDO) 最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门课程,总学分21
x6 x7 0
x8 x5 0
2 x 9 x1 x 2 0
讨论:选修课程最少,学分尽量多,应学习哪些课程?
课程最少
Min Z
学分最多
Max
9
xi
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x 6 2 x 7 2 x8 3 x9
i 1
两目标(多目标)规划
• 以课程最少为目标, 不管学分多少。 • 以学分最多为目标, 不管课程多少。
Min { Z , W }
多目标优化的处理方法:化成单目标优化。
最优解如上,6门课 程,总学分21 。 最优解显然是选修所 有9门课程 。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
Z
9
xi
i 1
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x6 2 x7 2 x8 3 x9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程
应用统计 微积分;线性代数
要求至少选两门数学课、三门运筹学课和两门计算机课 为了选修课程门数最少,应学习哪些课程 ? 选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机