八年级上册全等三角形单元综合测试(Word版 含答案)

合集下载

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。

八年级数学上册《全等三角形》单元测试卷(含答案解析)

八年级数学上册《全等三角形》单元测试卷(含答案解析)

八年级数学上册《全等三角形》单元测试卷(含答案解析)一.选择题1.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规3.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去6.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°7.如图,AB=CD,∠ABC=∠DCB,AC与BD交于点E,在图中全等三角形有()A.2对B.3对C.4对D.5对8.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形9.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为()个.A.1 B.2 C.3 D.4二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.14.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A=°,B′C′=,AD=.15.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.17.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).18.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD =CE,∠DCE=55°,则∠APB的度数为.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.20.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.三.解答题21.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.22.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C =70°.(1)求线段AE的长.(2)求∠DBC的度数.23.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.24.已知:如图,AB∥DE,AC∥DF,AB=DE,AC=DF.求证:BC=EF.25.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.26.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与解析一.选择题1.解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.2.解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.3.解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.5.解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.6.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.7.解:①△ABC≌△DCB;∵AB=CD,∠ABC=∠DCB,∵BC=CB,∴△ABC≌△DCB;②△ABE≌△DCE,∵△ABC≌△DCB,∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△CDE;③△ABD≌△DCA,∵∠BAC=∠CDB,∠AEB=∠DEC,∴∠ABD=∠DCA,∵AB=CD,BD=AC,∴△ABD≌△DCA;故选:B.8.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.9.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,故②正确∴∠EAB=∠FAC=40°,故①正确,∴∠C=∠AFC=∠AFE=70°,∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,∵AE=AB,∠EAB=40°,∴∠AEB=∠ABE=70°,若∠EBC=110°,则∠ABC=40°=∠EAB,∴∠EAB=∠ABC,∴AE∥BC,显然与题目条件不符,故③错误,若AD=AC,则∠ADF=∠AFD=70°,∴∠DAF=40°,这个显然与条件不符,故④错误.故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.14.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.15.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.16.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.17.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).18.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.19.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.20.解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.三.解答题21.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).22.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.23.证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).24.证明:如图,∵AB∥DE,AC∥DF,∴四边形AMDN是平行四边形,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.25.解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=226.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。

人教版八年级数学上册单元检测卷:第十二章 全等三角形(word版,含答案)

人教版八年级数学上册单元检测卷:第十二章   全等三角形(word版,含答案)

第十二章检测卷一、填空题(本大题共4小题,每小题5分,满分20分)1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.2.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.3.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是________.4.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F.若BC恰好平分∠ABF,AE =2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是________(填序号).二、选择题(本大题共10小题,每小题4分,满分40分)5.下列各组的两个图形属于全等图形的是()6.如图,已知△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD的度数为()A.85°B.65°C.40°D.30°7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.CE=BFC.∠A=∠D D.AB=BC8.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD 与CD 的大小关系是()A.BD >CD B.BD <CDC.BD =CD D.不能确定9.如图,AB ∥CD ,AP 、CP 分别平分∠BAC 、∠ACD ,PE ⊥AC 于点E ,PN ⊥DC 于点N ,交AB 于点M .若PE =3,则MN 的长为()A.3B.6C.9D.无法确定10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90°B.150°C.180°D.210°11.如图,已知EA ⊥AB ,BC ∥EA ,ED =AC ,AD =BC ,则下列式子不一定成立的是()A.∠EAF =∠ADF B.DE ⊥ACC.AE =AB D.EF =FC12.如图,在方格纸中以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有()A.1个B.2个C.3个D.4个13.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E .若BC =7,则AE 的长为()A.4B.5C.6D.714.如图,在△ABC 和△DEB 中,点C 在边BD 上,AC 交BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于()A.∠EDB B.∠BEDC.12∠AFB D.2∠ABF三、(本大题共2小题,每小题8分,满分16分)15.如图,已知△ABE ≌△ACD .(1)如果BE =6,DE =2,求BC 的长;(2)如果∠BAC =75°,∠BAD =30°,求∠DAE 的度数.16.如图,已知CE ⊥AB ,DF ⊥AB ,AC =BD ,CE =DF .求证:AC ∥BD .四、(本大题共2小题,每小题8分,满分16分)17.如图,两车从路段AB的两端同时出发,沿平行路线以相同的速度行驶,相同时间后分别到达C、D两地,CE⊥AB,DF⊥AB,C、D两地到路段AB的距离相等吗?为什么?18.如图,已知∠DAB=∠CBE=90°,点E是线段AB的中点,CE平分∠DCB且与DA的延长线相交于点F,连接DE.求证:DE平分∠FDC.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=12,过点O作OD⊥BC于点D,且OD=2,求△ABC的面积.20.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)试猜想BD与AC的位置关系,并说明理由.六、(本题满分12分)21.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”,可以判定Rt△ABC≌Rt△DEF;第二种情况:当∠B是锐角时,如图②,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,则△ABC和△DEF的关系是________;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图③,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线,交AB的延长线于点M,过点F作DE边的垂线,交DE的延长线于点N,根据“AAS”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.七、(本题满分12分)22.如图,在△ABC中,∠B=∠C,AB=8,BC=6,点D为AB的中点,点P在线段BC上以每秒2个单位长度的速度由点B向点C运动,同时点Q在线段CA上以每秒a个单位长度的速度由点C向点A运动.设运动时间为t 秒(0≤t≤3).(1)用含t的代数式表示线段PC的长;(2)若点P、Q的运动速度相等,当t=1时,△BPD与△CQP是否全等?请说明理由.(3)若点P、Q的运动速度不相等,则当△BPD与△CQP全等时,求a的值.八、(本题满分14分)23.(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系;(2)小聪延长CD至点G,使DG=BE,连接AG,得到△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论;(3)如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足______________关系时,仍有EF=BE+FD,说明理由.参考答案1.4 2.82° 3.50°4.①②③④5-14:.D .D .A .C .B .C .D .C .D .C 15.解:(1)∵△ABE ≌△ACD ,∴BE =CD ,∠BAE =∠CAD .又∵BE =6,DE =2,∴EC =DC -DE =BE -DE =4,∴BC =BE +EC =10.(4分)(2)∵∠CAD =∠BAC -∠BAD =75°-30°=45°,∴∠BAE =∠CAD =45°,∴∠DAE =∠BAE -∠BAD =45°-30°=15°.(8分)16.证明:∵CE ⊥AB ,DF ⊥AB ,∴∠AEC =∠BFD =90°.(2分)在Rt△ACE 和Rt△BDF 中,=BD ,=DF ,∴Rt△ACE ≌Rt△BDF (HL),(5分)∴∠A =∠B ,∴AC ∥BD .(8分)17.解:C 、D 两地到路段AB 的距离相等.(2分)理由如下:由题意可知AC =BD .∵CE ⊥AB ,DF ⊥AB ,∴∠AEC=∠BFD =90°.∵AC ∥BD ,∴∠A =∠B .(5分)在△AEC 和△BFD AEC =∠BFD ,A =∠B ,=BD ,∴△AEC ≌△BFD (AAS),∴CE=DF ,∴C 、D 两地到路段AB 的距离相等.(8分)18.证明:过点E 作EH ⊥CD .(2分)∵CE 平分∠DCB ,∠CBE =90°,∴BE =EH .∵点E 是线段AB 的中点,∴AE =BE ,∴AE =EH .(5分)又∵∠DAB =90°,∴DE 平分∠FDC .(8分)19.解:如图,作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC 、∠ACB 的平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2,(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)20.(1)证明:由作图步骤可得AB =AD ,BC =DC .在△ABC 与△ADC =AD ,=DC ,=AC ,∴△ABC ≌△ADC (SSS).(4分)(2)解:BD ⊥AC .(5分)理由如下:由(1)知△ABC ≌△ADC ,∴∠BAC =∠DAC .(6分)在△ABE 与△ADE 中,=AD ,BAE =∠DAE ,=AE ,∴△ABE ≌△ADE (SAS),∴∠AEB =∠AED .(8分)又∵∠AEB +∠AED =180°,∴∠AEB =90°,∴BD ⊥AC .(10分)21.解:第二种情况:C(3分)解析:由题意可知满足条件的点D 有两个(如图②),所以△ABC 和△DEF 不一定全等.故选C.第三种情况:补全图形如图③所示.(6分)证明:∵∠ABC =∠DEF ,∴∠CBM =∠FEN .∵CM ⊥AB ,FN ⊥DE ,∴∠CMB =∠FNE =90°.在△CBM 和△FEN 中,CMB =∠FNE ,CBM =∠FEN ,=EF ,∴△CBM ≌△FEN (AAS),∴CM =FN .在Rt△AMC 和Rt△DNF =FN ,=DF ,∴Rt△AMC ≌Rt△DNF (HL),∴∠A =∠D .在△ABC 和△DEF A =∠D ,ABC =∠DEF ,=EF ,∴△ABC ≌△DEF (AAS).(12分)22.解:(1)PC =BC -PB =6-2t .(3分)(2)△BPD 与△CQP 全等.(4分)理由如下:∵t =1,∴PB =CQ =2,∴PC =BC -PB =6-2=4.∵AB =8,点D 为AB 的中点,∴BD =AD =4,∴PC =BD .在△BPD 与△CQP =CQ ,B =∠C ,=CP ,∴△BPD ≌△CQP (SAS).(8分)(3)∵点P 、Q 的运动速度不相等,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC ,BD =CQ ,∴2t =6-2t ,at =4,解得t =32,a =83.(12分)23.(1)解:EF =BE +DF .(3分)(2)证明:∵四边形ABCD 为正方形,∴AB =AD ,∠B =∠ADC =∠BAD =90°,∴∠ADG =180°-∠ADC =90°=∠B .在△ABE 和△ADG =AD ,B =∠ADG ,=DG ,∴△ABE ≌△ADG ,∴∠BAE =∠DAG .∵∠EAF =45°,∴∠DAF +∠BAE =∠BAD -∠EAF =90°-45°=45°,∴∠DAF +∠DAG =45°,即∠GAF =45°,∴∠GAF =∠EAF .(6分)在△GAF 和△EAF =AE ,GAF =∠EAF ,=AF ,∴△AFG ≌△AFE (SAS),∴GF =EF .∵GF =DG +FD =BE +FD ,∴EF =BE +FD .(9分)(3)解:∠BAD =2∠EAF (11分)理由如下:如图,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM .在△ABM 和△ADF =AD ,ABM =∠D ,=DF ,∴△ABM ≌△ADF (SAS),∴AF =AM ,∠DAF =∠BAM .∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF ,∴∠BAE +∠BAM =∠EAM =∠EAF .在△FAE 和△MAE 中,=AE ,EAF =∠EAM ,=AM ,∴△FAE ≌△MAE (SAS),∴EF =EM .∵EM =BE +BM =BE +DF ,∴EF =BE +DF .(14分)。

八年级上册数学《全等三角形》单元综合测试卷含答案

八年级上册数学《全等三角形》单元综合测试卷含答案
【详解】过E作EF⊥AD于F,如图,
∵AB⊥BC,AE平分∠BAD,
∴Rt△AEF≌Rt△AEB,
∴BE=EF,AB=AF,∠AEF=∠AEB;
而点E是BC的中点,
∴EC=EF=BE,所以③错误;
∴Rt△EFD≌Rt△ECD,
∴DC=DF,∠FDE=∠CDE,所以②正确;
∴AD=AF+FD=AB+DC,所以④正确;
13.如图所示的方格中,∠1+∠2+∠3=_____度.
14.如图,已知 ,若 ,则 的值为______.
15.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;
16.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.
∴∠AED=∠AEF+∠FED= ∠BEC=90°,所以①正确.
A. B. C. D.
11.如图所示,已知 ,那么添加下列一个条件后,仍无法判定 ≌ 的是()
A. B.
C. D.
12.如图,在 格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重
合) 格点三角形(顶点在格点上的三角形)共有( )
A.5个B.6 个C.7个D.8 个
二、填空题(共6小题,总分18分)
10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是()
A. B. C. D.
【答案】A
【解析】
【分析】
过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED= ∠BEC=90°,即可判断出正确的结论.

八年级数学上册《全等三角形》单元测试题(含答案解析)

八年级数学上册《全等三角形》单元测试题(含答案解析)

八年级数学上册《全等三角形》单元测试题(含答案解析)一、选择题(每题4分,共40分)1. 在三角形ABC中,AB=AC,点D是边BC上的一个点,且BD=DC。

以下结论正确的是()A. AD平分∠BACB. AD垂直平分BCC. AD平分∠BD. AD平分∠C【答案】B【解析】因为AB=AC,所以三角形ABC是等腰三角形,∠B=∠C。

又因为BD=DC,所以AD垂直平分BC。

2. 如果两个三角形的两边和它们夹角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】B【解析】根据SAS全等定理,如果两个三角形的两边和它们夹角分别相等,那么这两个三角形全等。

3. 在全等三角形ABC和DEF中,如果∠A=40°,∠B=50°,那么∠E的度数是()A. 40°B. 50°C. 60°D. 90°【答案】C【解析】因为三角形ABC和DEF全等,所以∠A=∠D,∠B=∠E。

所以∠E=∠B=50°。

又因为三角形内角和为180°,所以∠E=180°-∠A-∠D=60°。

4. 如果两个三角形的两边及其中一边的对角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】这种情况不能确定两个三角形全等,因为可能存在两种情况:一种是两个三角形全等,另一种是两个三角形不全等但相似。

5. 在全等三角形ABC和DEF中,如果AB=5cm,BC=8cm,AC=10cm,那么DE的长度是()A. 5cmB. 8cmC. 10cmD. 13cm【答案】C【解析】因为三角形ABC和DEF全等,所以对应边相等,即AB=DE,所以DE=5cm。

6. 如果两个三角形的三个角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】如果两个三角形的三个角分别相等,那么这两个三角形不一定全等,但一定相似。

八年级全等三角形单元综合测试(Word版 含答案)

八年级全等三角形单元综合测试(Word版 含答案)

八年级全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.5.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△A CI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.17.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P ″的坐标是(8,4);假设0P=PD ,则由P 点向0D 边作垂线,交点为Q 则有PQ 2十QD 2=PD 2,∵0P=PD=5=0D ,∴此时的△0PD 为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B .20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x=,∴点P的坐标为(2,0);∵A(1,2),B(3,2),∴AB//x轴,∵AN⊥x轴,∴AB⊥x轴,在Rt△ABC中,AB=2,AN=4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.。

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。

人教版八年级上册数学 全等三角形单元试卷(word版含答案)

人教版八年级上册数学 全等三角形单元试卷(word版含答案)

一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.3.如图,在ABC∆中,ACB∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29 BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.6.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.7.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,即可证得AH =BC ,此时AD =12BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因此BE 2+CF 2=EF 2,若图2中△ABC 也进行这样的折叠(如图4),此时线段BE 、CF 、EF 还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF 绕着点D 旋转(如图5),射线DE 、DF 分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点,且AE CD=,BD与EC交于点F,则BFE∠的度数是___________度;②如图②,D,E分别是边AC,BA延长线上的点,且AE CD=,BD与EC的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒EAC DCBα180=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.9.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。

八年级上册数学《全等三角形》单元综合检测(含答案)

八年级上册数学《全等三角形》单元综合检测(含答案)
考点:(1)、全等三角形的判定;(2)、等腰三角形的性质.
10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()
A.AD+BC=ABB.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×16−3×4−6×3=50.
故选A.
【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.
9.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()
①②④为条件,根据SSS,可判定 ;可得结论③;
①③④为条件,SSA不能证明 ,
②③④为条件,SSA不能证明 ,
最多可以构成正确结论2个,故选B.
【点睛】本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.
6.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()
A.60°B.55°C.50°D. 无法计算
【答案】B
【解析】
试题解析:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
B. 两个角是β,它们的夹边为4

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)
选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;
选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.
故选C.
考点:全等三角形的判定.
4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()
A 8B. 9C. 10D. 11
【答案】C
人教版数学八年级上学期
《全等三角形》单元测试
时间:90分钟总分:100
一.选择题(本大题共8小题,共24.0分)
1.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为( )
A.1个B.2个C.3个D.4个
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据周角 定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【详解】根据题意, ,
∴∠A=∠2,故B正确;
∴∠A+∠D=90°,故A正确;
在△ABC和△CED中,

∴△ABC≌△CED(AAS),故C正确;
故选D.
【点睛】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( )

(完整)人教版八年级数学上册全等三角形单元测试题精选附答案.docx

(完整)人教版八年级数学上册全等三角形单元测试题精选附答案.docx

(完整)人教版八年级数学上册全等三角形单元测试题精选附答案.docx八年级数学第十二章《全等三角形》练习试题姓名成绩一、选择题。

(每小题3 分,共30 分)细心择一择,你一定很准!1、如图,AD 是△ ABC 的中线, E、F 分别是 AD 和 AD 延长线上的点,且DE=DF ,连接BF,CE ,下列说法:①CE=BF ;②△ ABD 和△ ACD 的面积相等;③BF∥CE;④△ BDF ≌△ CDE 。

其中正确的有()A. 20 °B. 30°C. 40°D. 45°二、填空题。

(每小题 3 分,共 24 分)仔细审题,认真填写哟!11、如图, AB ,CD 相交于点O,AD=CB ,请你补充一个条件,使得△ AOD ≌△ COB ,补充的条件是。

12 、如图 , OP 平分∠ MON, PE⊥OM于E, PF⊥ ON于F, OA=OB. 则图中有对全等三角形。

A. 1 个B. 2 个C. 3 个D. 4 个13、如图,在△ ABC 中,∠ C=90°, AD 平分∠ BAC ,AB =15,2、如图,已知 AD =AE ,BD = CE,∠ ADB =∠ AEC =100 °,CD = 4,则△ ABD 的面积是。

∠ BAE =70°,则下列结论错误的是()14、如图,在Rt△ ABC 中,∠C=90°,AC=10 ,BC=5 ,线段 PQ=AB ,A. △ ABE ≌△ DCAB. △ABD ≌△ ACEP, Q 两点分别在 AC 和过点 A 且垂直于 AC 的射线 AO 上运动,C. ∠ DAE =40°D. ∠C=30°当 AP=时,△ ABC 和△ PQA 全等。

3、如图,平行四边形ABCD中, E, F 是对角线 BD 上的两点,如果添加一个条件使△ ABE ≌△ CDF ,则添加的条件不能是()15、△ ABC 中,∠ C=90°, BC=4 cm,∠ BAC 的平分线交 BCA. BE=DFB. BF=DEC. AE=CFD. ∠1=∠ 2于 D 且 BD:DC = 5:3,则 D 点到 AB 的距离为cm。

八年级上全等三角形单元测试含答案.doc

八年级上全等三角形单元测试含答案.doc

八年级上全等三角形单元测试含答案一、选择题(共7小题,每小题3分,满分21分)如图,已知△ ABC^ADAE,BC二2, DE 二5,则 CE 的长为(A. 2B. 2.5C. 3D. 3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小 形状完全一样的玻璃,你认为应带( )A.①B.②C.③D.①和②4.如图,RtAABC, ZC=90° , AD 平分ZCAB, DE 丄AB 于E,则下列结论中不正确的是( )A. BD+ED 二BCB. DE 平分ZADBC. AD 平分ZEDCD. ED+AOAD5.如图,已知△ABC^AEDF,点F, A, D 在同一条直线上,AD 是ZBAC 的平分线,ZEDA=20° , Z F 二60° ,则ZDAC 的度数是( )A. ZA 二70° , ZACB 二60° ,则 ZE 的度数为( ) 70°B. 50°C. 60°D. 30°2.个动点,则线段DQ 长度的范围是(7.如图,在方格纸中,以AB 为一边作AABP,使之与AABC 全等,从P” P 2, P 3, P4四个点中找岀符合条件的点P,则点P 有( )二、填空题(共6小题,每小题3分,满分18分)8.如图:在ZXABC 和ZXFED 中,AD 二FC, AB 二FE,当添加条件 BC 二ED 或ZA 二ZF 或AB 〃EF 时,就 可得到△ ABC^AFED.(只需填写一个即可)9.如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 若测得AB二5米,则槽宽为5米.6.如图,射线0C 是ZAOB 的角平分线,P 是射线0A 上一点,DP10A, DP 二5,若点Q 是射线OB ±-C. DQ25D. DQW5D. 120°HIHIH 4<HIHIA. 1个B. 2个C. 3个D. 4个••10.在 RtAABC 中,ZC=90° , AD 平分ZBAC 交 BC 于 D,若 BC 二 15,且 BD : DC=3: 2,则 D 到边 AB12.如图,OP 平分ZMON, PE 丄OM 于E, PF 丄ON 于F, OA 二OB,则图中有」_对全等三角形.,AC 二12, BC 二6, —条线段PQ 二AB, P 、Q 两点分别在AC 和过点A且垂直于AC 的射线AX 上运动,要使AABC 和ZXQPA 全等,则AP 二6或12三、解答题(共5小题,满分0分)ZE=ZF=90° , ZCMD=70° ,则 Z2二 20 度.Q的距离是6 .14.如图,点B、C、E、F在同一直线上,BC二EF, AC丄BC于点C, DF丄EF于点F, AC二DF.求证:(1) AABC^ADEF;15.如图,已知BD为ZABC的平分线,AB二BC,点P在BD上,PM丄AD于M, PN丄CD于N,求证:PM二PN.16.如图,0为码头,A、B两个灯塔与码头0的距离相等,OA, 0B为海岸线,一轮船P离开码头, 计划沿ZAOB的平分线航行.(1)用尺规作出轮船的预定航线0C;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线? 请说明理由.17.已知:如图,在Z\ABC、AADE 中,ZBAC=ZDAE=90° , AB二AC, AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1) ABAD^ACAE;(2)试猜想BD、CE有何特殊位置关系,并证明.C18.如图,ZAOB二90° , 0M平分ZA0B,将直角三角板的顶点P在射线0M上移动,两直角边分别与0A、0B相交于点C、D,问PC与PD相等吗?试说明理由.《第12章全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)ZA 二70° , ZACB 二60° ,则 ZE 的度数为(【考点】全等三角形的性质.【分析】根据三角形内角和定理求出ZB 的度数,根据全等三角形的性质得到答案.【解答】解:VZA=70° , ZACB 二60° ,AZB=50° ,VAABC^ADEC, •••ZE 二ZB 二50。

人教版八年级上册数学《全等三角形》单元综合测试卷(含答案)

人教版八年级上册数学《全等三角形》单元综合测试卷(含答案)

人教版数学八年级上学期《全等三角形》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是( )A. B. C. D.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )学*科*网...A. 3B. -3C. 2D. -23. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是( )A. 5B. 8C. 10D. 154. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?( )A. ①B. ②C. ③D. ④5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是( )A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边6. 已知图7中的两个三角形全等,则∠α的度数为( )A. 105°B. 75°C. 60°D. 45°7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是( )A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是( )A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是( )A. 5B. 4C. 3D. 2第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB=________.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE=12 cm,则DE的长为________cm.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.参考答案一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是()A. B. C. D.【答案】B【解析】【分析】根据全等图形的定义:能够完全重合的两个图形是全等图形.【详解】根据全等图形的定义可得:B选项中图形能够与已知图形完全重合,故选B.【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...A. 3B. -3C. 2D. -2【答案】A【解析】【分析】过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得: DE=OD=3, 即点D到AB的距离是3.【详解】如图,∵点D的坐标是(0,-3),∴OD=3,过点D作DE⊥AB于E,∵AD是∠OAB的平分线,∴DE=OD=3,即点D到AB的距离是3,故选A.【点睛】本题主要考查角平分线的性质,解决本题的关键是要熟练掌握角平分线的性质.3. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A. 5B. 8C. 10D. 15【答案】A【解析】分析:由全等三角形对应边相等可得AC=EF,所以AC-EC=EF-EC,即CF=AE=15-10.详解:因为,△ABC≌△EDF,DF=BC,AB=ED,所以,AC=EF,所以,AC-EC=EF-EC,所以,CF=AE=15-10=5.故选:A点睛:本题考核知识点:全等三角形性质. 解题关键点:熟练掌握全等三角形性质并运用.4. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?()A. ①B. ②C. ③D. ④【答案】D【解析】试题分析:根据两角和一边可以确定唯一的一个三角形.考点:三角形的确定5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是()A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边【答案】B【解析】【分析】在两个直角三角形中,斜边和任意一条直角边分别对应相等,两直角三角形全等,即HL定理.【详解】需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),故选B【点睛】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理.6. 已知图7中的两个三角形全等,则∠α的度数为()A. 105°B. 75°C. 60°D. 45°【答案】B【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为两个三角形全等,所以∠α=180°-45°-60°=75°,故选B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD【答案】C【解析】利用三角形的全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.解:A、增加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、增加∠A=∠DEF,AE=ED可利用ASA判定△ABC≌△EFD,故此选项不合题意;C、增加AE=ED,AB=EF,不能判定△ABC≌△EFD,故此选项合题意;D、增加∠ABC=∠EFD,BC=FD,可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选C.8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是()A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误【答案】A【解析】试题分析:AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是直角边长是b.故小惠正确,小雷错误.故选A.考点:作图—复杂作图.10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A. 5B. 4C. 3D. 2【答案】B【解析】考点:全等三角形的判定.分析:根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.解答:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个.共3+0+1=4个,故选D.点评:本题考查了全等三角形的判定的应用,找出符合条件的所有三角形是解此题的关键.第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB =________.【答案】70【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为△ABC≌△ADE,∴∠ACB=∠E=180°-24°-54°=102°,∴∠ACF=180°-102°=78°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即24°+∠DGB=16°+78°,解得∠DGB=70°.故答案为:70°.【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.【答案】125【解析】【分析】由于在Rt△ABC中,∠C=90°,∠B=20°,先根据三角形内角和可计算出∠CAB=70,再根据角平分线的定义可得∠CAD=∠BAD=35°,最后根据三角形内角和可计算出∠ADB=180°-20°-35°=125°.【详解】由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°,故答案为:125°.【点睛】本题主要考查三角形的内角和和角平分线的定义,解决本题的关键是要熟练掌握三角形的内角和和角平分线的定义.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE =12 cm,则DE的长为________cm.【答案】12【解析】连接BE,∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB =CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.【答案】①②③【解析】试题解析:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.【答案】7【解析】【分析】先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据,可得,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得==7.【详解】如图,过点P作PF⊥AB于G,因为∠ABC和∠ACB的外角平分线BP,CP交于P,所以PF=PG=PE=2,因为,所以,解得BC=2,因为△ABC的周长为11,所以AC+AB=11-2=9,所以,=,=7故答案为:7.【点睛】本题主要考查角平分线上的点到角两边的距离相等,解决本题的关键是要熟练掌握角平分线的性质.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当时,四边形FBCD周长最小为5+6+5=16三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)【答案】见解析【解析】【分析】根据平行的判定,直接过点A作一个角等于角B,即角所在直线即为所求直线.【详解】解:如图所示,作∠MAB=∠B,则直线MN即为所求.【点睛】本题主要考查过已知一点作已知线段的平行线,解决本题的关键是要熟练掌握作平行线的方法.18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.【答案】AD⊥BC,理由见解析【解析】【分析】由于△ABC≌△ADE,∠D=50°,根据全等三角形对应角相等可得∠B=∠D=50°,再根据三角形内角和定理可得:∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,即可求证.【详解】解:AD⊥BC.理由如下:∵△ABC≌△ADE,∠D=50°,∴∠B=∠D=50°.在△AOB中,∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,∴AD⊥BC.【点睛】本题主要考查全等三角形的性质和三角形内角和定理,解决本题的关键是要熟练掌握全等三角形的性质和三角形内角和定理.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.【答案】5【解析】【分析】由于△ACF≌△ADE.根据全等三角形对应角相等可得AF=AE,,再根据线段的和差关系可得:DF=AD-AF =AD-AE=9-4=5.【详解】解:∵△ACF≌△ADE,∴AF=AE,∴DF=AD-AF=AD-AE=9-4=5.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.【答案】见解析【解析】【分析】先由C是AB的中点,可得AC=CB,在△ACD和△CBE中,由AC=CB,AD=CE,CD=BE,根据全等三角形的判定方法可证△ACD≌△CBE,根据全等三角形的性质可得∠A=∠ECB,根据平行线的判定方法可得AD∥CE,再根据平行线的性质可得∠A+∠ECA=180°.【详解】证明:∵C是AB的中点,∴AC=CB,在△ACD和△CBE中,AC=CB,AD=CE,CD=BE,∴△ACD≌△CBE(SSS),∴∠A=∠ECB,∴AD∥CE,∴∠A+∠ECA=180°.【点睛】本题主要考查全等三角形的判定定理和性质,平行线的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质,平行线的判定和性质.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?【答案】相等,理由见解析.【解析】【分析】设AD,BC相交于点O,由于∠CAD=∠CBD,∠COA=∠DOB, 得∠C=∠D.再根据∠CAB=∠DBA=90°,∠C=∠D, AB=BA,可判定△CAB≌△DBA,根据全等三角形的性质可得: CA=DB.【详解】解:相等.理由:设AD,BC相交于点O.∵∠CAD=∠CBD,∠COA=∠DOB,∴由三角形内角和定理,得∠C=∠D.由已知得∠CAB=∠DBA=90°.在△CAB和△DBA中,∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA(AAS),∴CA=DB,∴海岛C,D到观测点A,B所在海岸的距离相等.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.【答案】见解析【解析】【分析】过点C分别作CG⊥OA于点G,CF⊥OB于点F,在△MOE和△NOD中,根据OM=ON,∠MOE=∠NOD,OE=OD,可判定△MOE≌△NOD,根据全等三角形的性质可得:S△MOE=S△NOD,继而可得S△MOE-S四边形ODCE=S△NOD -S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.由于OM=ON,OD=OE,所以DM=EN,CG=CF.根据CG⊥OA,CF⊥OB,可证点C在∠AOB的平分线上.【详解】证明:过点C分别作CG⊥OA于点G,CF⊥OB于点F,如图.在△MOE和△NOD中,OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS),∴S△MOE=S△NOD,∴S△MOE-S四边形ODCE=S△NOD-S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.∵OM=ON,OD=OE,∴DM=EN,∴CG=CF.又∵CG⊥OA,CF⊥OB,∴点C在∠AOB的平分线上.【点睛】本题主要考查全等三角形的判定定理和角平分线的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理和角平分线的判定定理.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.【答案】(1)①见解析;②垂直,相等;(2)成立,理由见解析.【解析】【分析】(1)①如图所示.②根据CD⊥EF,可得∠DCF=90°.由于∠ACB=90°,可得∠ACB=∠DCF,∠ACD=∠BCF.根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FB C,继而可得∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.(2)根据CD⊥EF,可得∠DCF=90°,由于∠ACB=90°,可证∠DCF=∠ACB,所以∠DCF+∠BCD=∠ACB+∠BCD,继而可得∠BCF=∠ACD,根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FBC,所以∠ABF=∠ABC+∠FBC =∠ABC+∠BAC=90°,即BF⊥AD.【详解】解:(1)①如图所示.②∵CD⊥EF,∴∠DCF=90°.∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF.又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FB C,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直,相等.(2)成立.证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF=∠ACB,∴∠DCF+∠BCD=∠ACB+∠BCD,∴∠BCF=∠ACD,又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)现根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,继而可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.(2)先根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,可得AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.【详解】(1)因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.(2)(1)中结论成立,理由为:因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.。

八年级上册全等三角形单元综合测试(Word版 含答案)

八年级上册全等三角形单元综合测试(Word版 含答案)

八年级上册全等三角形单元综合测试(Word 版 含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).2.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.3.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 ______cm .【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.【详解】解:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.4.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.5.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.6.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,…若∠A=70°,则锐角∠A n的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..7.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相 交于点 D ,过点 D 分别作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD ,BD ,由∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF ≌Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==,∴Rt △CDF ≌Rt △BDE (HL ),∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=11,AC=5, ∴BE=12(11-5)=3. 故答案为:3.【点睛】 此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22-=22AD AE-=33,63∴EF+BF的最小值为33.9.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.10.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长.在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。

八年级上册数学 全等三角形单元综合测试(Word版 含答案)

八年级上册数学 全等三角形单元综合测试(Word版 含答案)

八年级上册数学全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE =23﹣6;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3. 故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).3.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.5.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBC BE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.6.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.7.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.8.在△ABC 中,∠ACB =90º,D 、E 分别在 AC 、AB 边上,把△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形, 则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC 的度数为x ,则∠B=90°-x ,∠EFB =135°-x ,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB =90º,△CFD 是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC 的度数为x ,∴∠B=90°-x ,∵△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x ,∴∠EFB=180°-45°-x=135°-x ,∵∠ADE=∠FDE ,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x ,∴∠DEF=∠AED=112.5°-x ,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x )-(112.5°-x )=2x-45°, ∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB 时,如图1,则∠BEF=∠B ,∴90-x=2x-45,解得:x=45;②当BF=BE 时,则∠EFB=∠BEF ,∴135-x=2x-45,解得:x=60,③当EB=EF 时,如图2,则∠B=∠EFB ,∴135-x=90-x ,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图 2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.9.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,3DE =BC =____________.【答案】33+【解析】【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.【详解】如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,∴△FDE 是等边三角形, ∵3BE =,3DE =33DM =-∵△BEM 是等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴13322NM DM ==, ∴33333BN BM NM -+=-=-= ∴233BC BN ==+【点睛】本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.10.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.如图,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分线分别交 AC,AD 于E,F,点M 为 EF 的中点,AM 的延长线交 BC 于N,连接 DM,NF,EN.下列结论:①△AFE为等腰三角形;②△BDF≌△ADN;③NF所在的直线垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥AE BNEC BC=.其中正确结论的个数是( )A.2个B.3个C.4个D.5个【答案】D【解析】【分析】①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,由题意可得BF>BD=AD,所以BF≠AF,所以点F不在线段AB的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°,可知A、B、D、M四点共圆,可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,即可求出DM平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB≌△CAN,继而可得AE=CN,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得BD BC A BC B ==由⑤可得AE EN EC EC ==所以⑥正确. 【详解】解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,∴∠BAD=∠CAD=∠C=45°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,∴△AEF 为等腰三角形,所以①正确;∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE= 12∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE ,AM ⊥BE ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中,∠FBD =∠DAN ,BD =AD ,∠BDF =∠ADN ,∴△FBD ≌△NAD ,所以②正确;因为BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,∴A 、B 、D 、M 四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM 平分∠BMN ,所以④正确;在△AFB 和△CNA 中,∠BAF =∠C =45°,AB =AC, ∠ABF =∠CAN =22.5°,∴△AFB ≌△CAN (ASA ),∴AF=CN ,∵AF=AE,∴AE=CN,∵AE=AF,FM=EM,∴AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC.∴△ENC是等腰直角三角形,∴AE=CN=EN,所以⑤正确;∵AF=FN,所以∠FAN =∠FNA,因为∠BAD =∠FND=45°,所以∠FAN+ ∠BAD =∠FNA+∠FND,所以∠BAN =∠BNA,所以AB=BN,所以2BDBCABCB==由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,∴22 AE ENEC EC==所以AE BNEC BC=,所以⑥正确,故选D.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.12.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D.点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.13.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.14.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED=2MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF=2MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.16.如图,在等腰△ABC中,AB=AC=6,∠BAC=120°,点P、Q分别是线段BC、射线BA上一点,则CQ+PQ的最小值为()A .6B .7.5C .9D .12【答案】C【解析】【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.【详解】解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.∵AB=AC=6,∠BAC=120°,∴∠ABC=30°,易得BC=63,在Rt △BHC 中,∠ABC=30°,∴HC=33,∠BCH=60°,∴163CC =,在1Rt △PCC 中,1PCC ∠=60°,∴19PC =∴CQ+PQ 的最小值为9,故选:C.【点睛】本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.17.如图,已知△ABC 与△CDE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC .其中正确结论的个数为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°【答案】D【解析】分析:由等腰三角形的一个角是40度,可以分为若40°的角是顶角与若40°的角是底角去分析求解,小心别漏解.详解:若40°的角是顶角,则底角为:(180°﹣40°)=70°,∴此时另外两个角的度数是70°,70°;若40°的角是底角,则另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,∴此时另外两个角的度数是100°,40°.∴另外两个角的度数是:70°、70°或40°、100°.故选:D .点睛:此题考查了等腰三角形的性质.解题的关键是注意分类讨论思想的应用,注意别漏解.20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。

八年级上册数学 全等三角形单元综合测试(Word版 含答案)

八年级上册数学 全等三角形单元综合测试(Word版 含答案)

八年级上册数学全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,BM CEMBD ECDBD CD⎧⎪∠∠⎨⎪⎩==,=∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,MD EDMDN EDNDN DN⎧⎪∠∠⎨⎪⎩==,=∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.3.如图,点P是AOB内任意一点,5OP cm=,点P与点C关于射线OA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当PEF的周长是5cm时,AOB∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】解:如图示:连接OC,OD,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.4.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】22.【解析】【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x , ∴2222AD BC x ==. 2. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°;③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论.【详解】 ①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;④∵在Rt △ACD中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC=12AC •BC =12AC •32AD =34AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.7.如图,∠AOB =45°,点M 、点C 在射线OA 上,点P 、点D 在射线OB 上,且OD =32,则CP +PM +DM 的最小值是_____.【答案】34.【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.8.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22-=22AD AE-=33,63∴EF+BF的最小值为33.9.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON =∠1=30°,∴OA 1=A 1B 1=a ,∴A 2B 1=a .∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2=16a ,以此类推:A 7B 7=64B 1A 2=64a .故答案为:64a .【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.10.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.【详解】∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩,∴AOP BOP≅∴APO BPO∠=∠,OA=OB,选项B,C正确;由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,选项D错误.故选:D.【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.12.如图,ABC,分别以AB、AC为边作等边三角形ABD与等边三角形ACE,连接BE、CD,BE的延长线与CD交于点F,连接AF,有以下四个结论:①BE CD=;②FA平分EFC∠;③FE FD=;④FE FC FA+=.其中一定正确的结论有()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C .【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC=.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】D【解析】【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得22BD BC A BC B ==,由⑤可得22AE EN EC EC ==所以⑥正确. 【详解】解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,∴∠BAD=∠CAD=∠C=45°,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°∴∠AEF=∠AFE,∴△AEF为等腰三角形,所以①正确;∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE= 12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中,∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,∴△FBD≌△NAD,所以②正确;因为BF>BD=AD,所以BF AF,所以点F不在线段AB的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN ,所以④正确;在△AFB和△CNA中,∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),∴AF=CN,∵AF=AE,∴AE=CN,∵AE=AF,FM=EM,∴AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC.∴△ENC是等腰直角三角形,∴AE=CN=EN,所以⑤正确;∵AF=FN,所以∠FAN =∠FNA,因为∠BAD =∠FND=45°,所以∠FAN+ ∠BAD =∠FNA+∠FND,所以∠BAN =∠BNA,所以AB=BN,所以22BDBCABCB==,由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,∴22 AE ENEC EC==,所以AE BNEC BC=,所以⑥正确,故选D.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.14.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC 36060290150∠=-⨯-= ,BP PC =,()PBC 180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD 是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC ,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC ⊥AB ,③正确,所以四个命题都正确,故选D .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.15.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.16.在一个33⨯的正方形网格中,A ,B 是如图所示的两个格点,如果C 也是格点,且ABC 是等腰三角形,则符合条件的C 点的个数是( )A .6B .7C .8D .9【答案】C【解析】【分析】 根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.17.如图,在四边形ABCD 中,AB AC =,60ABD ∠=,75ADB ∠=,30BDC ∠=,则DBC ∠=( )°A .15B .18C .20D .25【答案】A【解析】【分析】 延长BD 到M 使得DM =DC ,由△ADM ≌△ADC ,得AM =AC =AB ,得△AMB 是等边三角形,得∠ACD =∠M =60°,再求出∠BAO 即可解决问题.【详解】如图,延长BD到M使得DM=DC.∵∠ADB=75°,∴∠ADM=180°﹣∠ADB=105°.∵∠ADB=75°,∠BDC=30°,∴∠ADC=∠ADB+∠BDC=105°,∴∠ADM=∠ADC.在△ADM和△ADC中,∵AD ADADM ADCDM DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△ADC,∴AM=AC.∵AC=AB,∴AM=AC=AB,∠ABC=∠ACB.∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°.∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=30°.∵∠CAB+∠ABC+∠ACB=180°,∴30°+2(60°+∠CBD)=180°,∴∠CBD=15°.故选:A.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.18.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A .2B .3C .4D .5【答案】D【解析】【分析】 由题意易证:△ACE ≅△DCB ,进而可得AE =BD ;由△ACE ≅△DCB ,可得∠CAE=∠CDB ,从而△ACM ≅△DCN ,可得:CM =CN ;易证△MCN 是等边三角形,可得∠MNC=∠BCE , 即MN ∥AB ;由∠CAE=∠CDB ,∠AMC=∠DMO ,得∠ACM=∠DOM=60°,即∠AOB =120º;作CG ⊥AE ,CH ⊥BD ,易证CG =CH ,即:OC 平分∠AOB .【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,∴△ACE ≅△DCB(SAS)∴AE =BD ,∴①正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,在△ACM 和△DCN 中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO,即:∠ACM=∠DOM=60°,∴∠AOB=120º,∴④正确;作CG⊥AE,CH⊥BD,垂足分别为点G,点H,如图,在△ACG和△DCH中,∵90?AMC DHCCAE CDBAC DC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG≅△DCH(AAS),∴CG=CH,∴OC 平分∠AOB,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.19.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

八年级数学上册 全等三角形单元综合测试(Word版 含答案)

八年级数学上册 全等三角形单元综合测试(Word版 含答案)

八年级数学上册 全等三角形单元综合测试(Word 版 含答案)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.2.如图,已知△ABC和△ADE 都是正三角形,连接CE 、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.3.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.4.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.5.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.6.如图,在Rt ABC△中,AC BC=,D是线段AB上一个动点,把ACD沿直线CD折叠,点A落在同一平面内的A'处,当A D'平行于Rt ABC△的直角边时,ADC∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D'平行于Rt ABC△的直角边时,有两种情况,一是当A D BC'时,二是当A D AC'时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】如图1,当点D在线段AB上,且A D BC'时,45A DB B'∠=∠=︒,45180ADC A DC'∴∠+∠-=︒︒,解得112.5A DC ADC'∠=∠=︒.图1如图2,当A D AC'时,45A DB A'∠=∠=︒,45180ADC A DC'∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.7.如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M 在AB 下方且∠AMB=90°时,②当M 在AB 上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB =90°时,∵O 是AB 的中点,AB =8,∴OM =OB =4,又∵∠AOC =∠BOM =60°,∴△BOM 是等边三角形,∴BM =BO =4,∴Rt △ABM 中,AM 22AB BM -3如图2,当∠AMB =90°时,∵O 是AB 的中点,AB =8,∴OM =OA =4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.8.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

八年级数学上册 全等三角形单元综合测试(Word版 含答案)

八年级数学上册 全等三角形单元综合测试(Word版 含答案)

八年级数学上册全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.4.等腰三角形顶角为30°,腰长是4cm,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm2).故答案是:4.5.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM 为等边三角形,∴∠DMB=60°,∵AN ⊥BC ,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm ),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.6.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三角形.若123A A A △的三个顶点坐标为()()()1232,0,1,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________【答案】()8,0-【解析】【分析】根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A 19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA 19,写出坐标即可.【详解】解:设到第n 个三角形顶点的个数为y则y=2n+1,当2n+1=19时,n=9,∴A 19是第9个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为2,4,6....∴第9个等腰直角三角形的斜边长为2×9=18,由图可知,第奇数个三角形在x 轴下方,关于直线x=1对称,∴OA 19=9-1=8,∴19A 的坐标为()8,0-故答案是()8,0-【点睛】本题考查点的坐标变化规律,根据顶点个数与三角形的关系,判断出点A 19所在的三角形是解题关键7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】 本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当OM OP ==时P 点坐标为:()(,0,±± ,A 满足;当MO MP ==P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A B C .32 D .不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高线AH=332,因S△ABC=12BC•AH=12AB•PD+12BC•PE+12AC•PF,所以1 2×3×AH=12×3×PD+12×3×PE+12×3×PF,即可得PD+PE+PF=AH=332,即点P到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.13.在坐标平面上有一个轴对称图形,其中A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,﹣32)C.(﹣32,﹣9)D.(﹣2,﹣1)【答案】A【解析】【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.【详解】解:∵A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,∴点A与点B关于直线y=﹣4对称,∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).故选:A.【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.14.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是()A.①... B.①③... C.② ... D.①②③【答案】B【解析】【分析】连接DC,证ACD BCD DAC DBC∠∠≅=得出①,再证BED BCD≅,得出BED BCD30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC,∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵DB=DA,DC=DC,在△ACD与△BCD中,AB BCDB DADC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED≌△BCD (SAS),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC∥AD,∴∠DAC=∠ECA,∵∠DBE=∠DBC,∠DAC=∠DBC,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA,∴BE=BC,∴∠BCE=∠BEC=60°+∠1,在△BCE中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.15.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=B M+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.16.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A.15°B.40 C.15°或20°D.15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.17.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.18.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册全等三角形单元综合测试(Word 版 含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.2.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,12),且△ABP和△ABC的面积相等,则a=_____.【答案】-83.【解析】【分析】先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=132,故可得出a的值.【详解】∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,∴223+213AB==,∵△ABC是等腰直角三角形,∠BAC=90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP的面积与△ABC的面积相等,∴111•••222 ABP POA AOB BOPS S S S OA OE OB OA OB PE ++=﹣=﹣,111113332222222a⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a=﹣83.故答案为﹣83.【点睛】本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.3.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC=____.【答案】22.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD=2x,解直角三角形求出BC(用x表示)即可解决问题.【详解】解:作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH.设AD=2x,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=x , ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1=6,得出a 3=4a 1,a 4=8a 1,a 5=16a 1…进而得出答案.【详解】解: 如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=3,∴A 2B 1=3,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.5.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.6.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.7.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

连接EC,过点 E 作 EF⊥EC 交射线 BA 于点 F,EF、AC 交于点 G。

若 DE=3,△EGC 与△AFG 面积的差是 2,则 BD=_____.【答案】5【解析】【分析】在DC上取点M,使DM=DE,连接EM,通过证明∆FAE≅∆EMC,根据△EGC 与△AFG 面积的差是 2,推出△EAC 与△EMC 面积的差是 2,然后设MC=x,则AE=x,AD=x+3,利用面积差即可求出x,即可求出BD.【详解】解:在DC上取点M,使DM=DE,连接EM∵Rt △ABC ,AB=AC ,AD ⊥ BC∴BD=CD=AD ,∠EAF=135°同理∠EMC=135°∴AE=CM∠AEF+∠CED=∠ECM+∠CED=90°∴∠AEF=∠ECM∴∆FAE ≅∆EMC∵S △EGC -S △AFG =2∴S △EAC -S △FAE =2∴S △EAC -S △EMC =2设MC=x ,则AE=x ,AD=x+3∵S △EAC =()132x x ⋅⋅+ ,S △MEC =132x ⋅⋅ ∴()132x x ⋅⋅+-132x ⋅⋅=2 解得x=2(x>0,负值舍去),∴AD=2+3=5∴BD=AD=5故答案为:5.【点睛】本题主要考查了三角形全等的性质与判定,等腰直角三角形的性质以及三角形面积计算,熟练掌握各知识点,学会综合应用,正确添加辅助线是关键.8.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD交AC边于点E,根据BD⊥CD,CD平分∠ACB,得到三角形全等,由此求出AE 的∠=∠,求出BE 的长即可求得BD.长,再根据A ABD【详解】延长BD交AC于点E,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC-CE=8-5=3,∠=∠,∵A ABD∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm ,△ABD 的周长为 15cm , 则△ABC 的周长为______【答案】23cm .【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,则∆BCD 就是等腰三角形;②如图2,以A 为圆心,AC 长为半径画弧,交AB 于点E ,则∆ACE 就是等腰三角形; ③如图3,以C 为圆心,BC 长为半径画弧,交AB 于M ,交AC 于点F ,则∆BCM 、∆BCF 是等腰三角形;④如图4,作AC 的垂直平分线交AB 于点H ,则∆ACH 就是等腰三角形;⑤如图5,作AB 的垂直平分线交AC 于点G ,则∆AGB 就是等腰三角形;⑥如图6,作BC 的垂直平分线交AB 于I ,则∆BCI 就是等腰三角形.故选:B .【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.12.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.则其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.【详解】∵,DE AB DF AC ⊥⊥,∴∠DEA=∠DFA=90︒,∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;∵120BAC ︒∠=,∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,∴BH=AH ,AG=CG ,∴∠BAH=∠B ,∠GAC=∠C ,∴∠BAH+∠GAC=60︒,∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误;∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误;∵90B BHE ∠+∠=,30B ∠≠ ,∴ 60BHE ∠≠,∴60DHG ∠≠,∴DHG HDG ∠≠∠,∴GD GH ≠,故④错误,故选:A.【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.13.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC【答案】B试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.14.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【解析】【分析】①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩=== ∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.15.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.16.如图,已知等边△ABC 的边长为4,面积为43,点D 为AC 的中点,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为( )A .3B .2C .3D .3【答案】C【解析】【分析】 由题意可知点A 、点C 关于BD 对称,连接AE 交BD 于点P ,由对称的性质可得,PA=PC ,故PE+PC=AE ,由两点之间线段最短可知,AE 即为PE+PC 的最小值.【详解】解:∵△ABC 是等边三角形,点D 为AC 的中点,点E 为BC 的中点,∴BD ⊥AC ,EC =2,连接AE ,线段AE 的长即为PE+PC 最小值,∵点E 是边BC 的中点,∴AE ⊥BC ,∴PE+PC 22AC E C -224223-=故选C .【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.17.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=∠CDA,则∠BAC的大小是()A.100°B.90°C.80°D.120°【答案】A【解析】【分析】由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG是AE的中垂线,CF是AD的中垂线,∴AB=BE,ACECD∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+∠EAC=180°∴∠BAD+∠EAC=60°∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A【点睛】本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.18.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.19.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.3C.3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.。

相关文档
最新文档