数学七年级数学下册期末测试卷及答案
2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】
2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限 C.第三象限 D.第四象限8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5.因式分解:34a a -=_____________.6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、A6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、ab3、70.4、(3)m m -5、(2)(2)a a a +-6、十二.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=-32、(1)13x =-;(2)6m =或4m =,7m =或3m =3、(1)略;(2) 略.4、略.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
数学七年级下学期《期末测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。
七年级数学下册期末测试题及答案(共五套)
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
七年级数学下册期末检测题含答案
七年级数学下册期末检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列图形中可由其中的部分图形经过平移得到的是( A )2.已知二元一次方程3x -y =1,当x =2时,y 等于( A ) A .5 B .-3 C .-7 D .73.将不等式2(x +1)-1≥3x 的解集表示在数轴上,正确的是( D )4.如图,在铁路旁有一李庄O ,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在( A )A .A 点B .B 点C .C 点D .D 点,第4题图) ,第7题图),第9题图)5.代入法解方程组⎩⎪⎨⎪⎧7x -2y =3,①x -2y =-12②有以下步骤:(1)由①,得2y =7x -3③;(2)把③代入①,得7x -7x -3=3;(3)整理,得3=3;(4)∴x 可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是( B )A .第(1)步B .第(2)步C .第(3)步D .第(4)步6.在平面直角坐标系中,线段AB 两端点的坐标分别为A(1,0),B(3,2),将线段AB 平移后,点A ,B 的对应点的坐标可以是( B )A .(1,-1),(-1,-3)B .(1,1),(3,3)C .(-1,3),(3,1)D .(3,2),(1,4)7.如图,AB ∥CD ,∠C =70°,BE ⊥BC ,则∠ABE 等于( A ) A .20° B .30° C .35° D .60°8.不等式组⎩⎪⎨⎪⎧3x -1<2x ,14x ≤1的解集在数轴上表示正确的是( C )9.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( D )A .1+ 3B .2+ 3C .2 3-1D .2 3+110.小颖家离学校1 200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡的平均速度是3千米/时,下坡的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( B )A .⎩⎪⎨⎪⎧3x +5y =1 200x +y =16 B .⎩⎪⎨⎪⎧360x +560y =1.2x +y =16C .⎩⎪⎨⎪⎧3x +5y =1.2x +y =16D .⎩⎪⎨⎪⎧360x +560y =1 200x +y =16二、填空题(每小题3分,共24分)11.已知5x -2的立方根是-3,则x +69的算术平方根是__8__.12.如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD =12∠AOC ,则∠BOC =__120°__.13.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48__人.14.从学校七年级中抽取100名学生,调查学校七年级学生双休日用于完成数学作业的时间,调查中的总体是__某校七年级学生双休日用于完成数学作业的时间的全体__,个体是__某校七年级每位学生双休日用于完成数学作业的时间__,样本容量是__100__.15.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[10+1]的值为__4__.16.不等式组⎩⎪⎨⎪⎧x +12≤1,1-2x <4的整数解是__-1,0,1__.17.(2017·宜宾)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1,x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.18.在平面直角坐标系中,对于点P(x ,y),我们把点P′(-y +1,x +1)称为点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到点A 1,A 2,A 3,A 4……若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为__-1<a <1,0<b <2__.三、解答题(共66分)19.(8分)解方程组或不等式组:(1)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2; (2)⎩⎪⎨⎪⎧10-4(x -3)≥2(x -1),x -1>1-2x3.解:⎩⎪⎨⎪⎧x =2,y =3.解:45<x ≤4.20.(8分)在平面直角坐标系中,△ABC 的边AB 在x 轴上,且AB =3,顶点A 的坐标为(2,0),顶点C 的坐标为(-2,5).(1)画出所有符合条件的△ABC ,并写出点B 的坐标;(2)求△ABC 的面积.解:(1)如图所示,△ABC ,△AB ′C 即为所求,点B 坐标为(-1,0)或(5,0). (2)S △ABC =12×3×5=152.21.(8分)已知小明骑车和步行的速度分别为240米/分,80米/分,小红每次从家步行到学校所需时间相同.请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.解:设小明从家到学校的路程为x 米,小红从家步行到学校需y 分钟,则有⎩⎨⎧x80=y +2,x240=y -4,解得⎩⎪⎨⎪⎧x =720,y =7. 答:小明从家到学校的路程为720米,小红从家步行到学校所需的时间为7分钟.22.(8分)如图,若AB ∥CD ,∠1=∠2,∠3=∠4,AD 与BC 平行吗?为什么?解:AD∥BC.理由如下:∵∠4=∠AFD,∴∠3=∠AFD.∵在△ABC和△ADF中,∠B=180°-∠1-∠3,∠D=180°-∠2-∠AFD,∠1=∠2,∴∠B=∠D.∵AB∥CD,∴∠B=∠DCE,∴∠D=∠DCE,∴AD∥BC.23.(10分)(2017·台州)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是__③__.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如下图:①m=__20__,n=__6__;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.解:(2)②补全条形统计图略.③我认为该市市民家庭处理过期药品最常见的方式是B:直接丢弃.④180×10%=18(万户).答:估计大约有18万户家庭处理过期药品的方式是送回收点.24.(12分)(2017·攀枝花)攀枝花的芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B 品种芒果的数量不少于A 品种芒果数量的2倍,但不超过A 品种芒果数量的4倍.请你设计购买方案,并写出所需费用最低的购买方案.解:(1)设A 品种芒果为每箱x 元,B 品种芒果为每箱y 元,根据题意,得⎩⎨⎧2x +3y =450,x +2y =275,解得{x =75,y =100.答:A 品种芒果每箱75元,B 品种芒果每箱100元.(2)设购买A 品种芒果的数量为a 箱,则购买B 品种芒果的数量为()18-a 箱,总费用为w 元,根据题意,得⎩⎪⎨⎪⎧18-a ≥2a 18-a ≤4a,解得185≤a ≤6,即a 取4, 5, 6三个整数解.又∵w =75a +100×()18-a =1 800-25a ,∴当a =6时,w min =1 650元.即当买6箱A 品种芒果,12箱B 品种芒果时,所需费用最少,为1 650元.25.(12分)如图,已知射线CB ∥OA ,∠C =∠OAB =100°,点E ,F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF.(1)求∠EOB 的度数; (2)若向右平移AB ,其他条件都不变,那么∠OBC ∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.解:(1)∵CB ∥OA ,∴∠C +∠COA =180°.∵∠C =∠OAB =100°,∴∠COA =80°.∵OE 平分∠COF ,∴∠COE =∠EOF.∵∠COA =∠COE +∠EOF +∠FOB +∠AOB =2∠EOB ,∴∠EOB =40°.(2)这个比值不变,比值为1∶2.理由:∵CB ∥OA ,∴∠OBC =∠BOA ,∠OFC =∠FOA.∵∠FOB =∠BOA ,∴∠BOA =12∠FOA ,∴∠OBC =错误!∠OFC ,∴∠OBC ∶∠OFC =1∶2.。
人教七年级下册数学期末测试题(附答案)
人教七年级下册数学期末测试题(附答案) 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .9 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.下列算式,正确的是( )A .42±=±B .42±=C .382--=-D .()288-=- 7.如图,AB //CD ,∠EBF =2∠ABE ,∠ECF =3∠DCE ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是( )A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5九、填空题9.364--________.十、填空题10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______十一、填空题11.如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,∠BCE =40°,则∠ADB =_____.十二、填空题12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.十三、填空题13.如图,在△ABC 中,将∠B 、∠C 按如图所示的方式折叠,点B 、C 均落于边BC 上的点Q 处,MN 、EF 为折痕,若∠A=82°,则∠MQE= _________十四、填空题14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.十五、填空题15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________十六、填空题16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.十七、解答题17.计算:(1)3840.04--- (2)23(2)279-+-十八、解答题18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 十九、解答题19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF .分析:要证BE ∥DF ,只需证∠1=∠D .证明:∵AB ∥CD (已知)∴∠B +∠1=180°( )∵∠B +∠D =180°(已知)∴∠1=∠D ( )∴BE ∥DF ( )二十、解答题20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.二十一、解答题21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 二十二、解答题22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm ;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105∠=︒,BAFDCF∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转65动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.二十五、解答题AB CD,E、F是AB、CD上的两点,直线l与AB、CD分别交于点25.如图,直线//G、H,点P是直线l上的一个动点(不与点G、H重合),连接PE、PF.(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.【参考答案】一、选择题1.A解析:A【分析】 819=,再计算9的算术平方根即可.【详解】 819=,993=故选A【点睛】 819是解题的关键.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现象;C :将一张纸沿它的中线折叠,这是轴对称现象;D :电梯的上下移动这是平移现象.故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B .【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.6.A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案.【详解】A.42±=±,计算正确,故该选项符合题意,B.42±=±,故该选项计算错误,不符合题意,C.38(2)2--=--=,故该选项计算错误,不符合题意,D.()288-=,故该选项计算错误,不符合题意,故选:A.【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.7.A【分析】由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=13ECF∠.由∠BEC=∠M+∠DCE,可得∠M=∠BEC﹣∠DCE.根据AB//CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°.【详解】解:如图,分别延长BE、CD并交于点M.∵AB//CD,∴∠ABE=∠M.∵∠EBF=2∠ABE,∠ABE=α,∴∠EBF=2α.∵∠EBF+∠BEC+∠F+∠ECF=360°,∴∠ECF=360°﹣(2α+β+γ).又∵∠ECF =3∠DCE ,∴∠DCE =11(3602)33ECF a βγ︒∠=---. 又∵∠BEC =∠M +∠DCE ,∴∠M =∠BEC ﹣∠DCE =β﹣1(3602)3a βγ︒---. ∴β﹣1(3602)3a βγ︒---=α. ∴4β﹣α+γ=360°.故选:A .【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.8.C【分析】列出部分An 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.九、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.解析:2【分析】,再求出算术平方根即可.先求出【详解】,解:∵∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.十、填空题10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11.100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB解析:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是ABC的角平分线,∠BAC=60°.∠BAC=30°,∴∠BAD=∠CAD=12∵CE是ABC的高,∴∠CEA=90°.∵∠CEA+∠BAC+∠ACE=180°.∴∠ACE=30°.∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.∴∠ADB=40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.十二、填空题12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m 向上平移直线m 得到直线n ,∴m ∥n ,∴∠ACB =∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.十三、填空题13.【分析】根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.【详解】解:∵折叠,∴,,∵,∴,∴.故答案是:.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:82︒【分析】根据折叠的性质得到B MQN ∠=∠,C EQF ∠=∠,再根据A ∠的度数即可求出MQN EQF ∠+∠的度数,再根据()180MQE MQN EQF ∠=︒-∠+∠求解即可.【详解】解:∵折叠,∴B MQN ∠=∠,C EQF ∠=∠,∵82A ∠=︒,∴1808298MQN EQF B C ∠+∠=∠+∠=︒-︒=︒,∴()1801809882MQE MQN EQF ∠=︒-∠+∠=︒-︒=︒.故答案是:82︒.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质.十四、填空题14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 十六、填空题16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、解析:()2021,2【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,202145051÷=⋯,故点2021A 坐标是(2021,2).故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.十七、解答题17.(1);(2).直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.解析:(1) 4.2-;(2)2.【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1220.2=---4.2=-(2233=+-2=【点睛】此题主要考查了实数运算,正确化简各数是解题关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.二十一、解答题21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<, ∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2x•x=14,解得:7x ,2x=27>4,∴不存在长宽之比为2:1且面积为214cm的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.二十五、解答题25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.。
七年级下册数学期末试卷及答案
七年级下册数学期末试卷及答案一、选择题(此题共10小题,每题3分,共30分)1.(3分)以下各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有( )A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数的定义(无理数是指无限不循环小数)判断即可.解答:解:无理数有,0.101001…(中间0依次递增),﹣π,共3个,应选C.点评:考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)(xx?北京):如图AB∥CD,CE平分∠ACD,∠A=110°,那么∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平行线的性质;角平分线的定义.专题:计算题.分析:此题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进展做题.解答:解:∵AB∥CD,根据两直线平行,同旁内角互补.得:∴∠ACD=180°﹣∠A=70°.再根据角平分线的定义,得:∠ECD= ∠ACD=35°.应选D.点评:考查了平行线的性质以及角平分线的概念.3.(3分)以下调查中,适宜采用全面调查方式的是( )A. 了解我市的空气污染情况B. 了解电视节目《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某工厂生产的一批手表的防水性能考点:全面调查与抽样调查.分析:由普查得到的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比拟近似.解答:解:A、不能全面调查,只能抽查;B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;C、人数不多,容易调查,适合全面调查;D、数量较大,适合抽查.应选C.点评:此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进展普查、普查的意义或价值不大时,应选择抽样调查,对于准确度要求高的调查,事关重大的调查往往选用普查.4.(3分)一元一次不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表示为:应选B.点评:此题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原那么是解答此题的关键.5.(3分)二元一次方程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解二元一次方程.专题:计算题.分析:将x=1,2,3,…,代入方程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;那么方程的正整数解有3个.应选B点评:此题考查了解二元一次方程,注意x与y都为正整数.6.(3分)假设点P(x,y)满足xy<0,x<0,那么P点在( )A. 第二象限B. 第三象限C. 第四象限D. 第二、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进展判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第二象限.应选A.点评:此题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四局部,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,那么∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平行线的性质.分析:过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.应选B.点评:此题考查了平行线的性质,解答此题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.8.(3分) 是方程组的解,那么是以下哪个方程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:二元一次方程组的解;二元一次方程的解.。
新人教版七年级数学下册期末考试卷及答案【完整版】
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
七年级数学下学期期末测试卷(含答案)
七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。
七年级下册数学期末试卷及答案人教版
七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。
A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。
七年级下册数学期末试卷试卷(word版含答案)
七年级下册数学期末试卷试卷(word 版含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.4的算术平方根是_____.10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a +b 的值为____.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.(133181254(2)3|12427+(32(22)3(21)-18.已知m +n =2,mn =-15,求下列各式的值. (1)223m mn n ++; (2)2()m n -.19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD =180°,(_______) ∴AB ∥_______,(___________) ∴∠BAP =________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2,∴∠3=________,(等式的性质) ∴AE ∥PF ,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.21212请解答下列问题:(110的整数部分是,小数部分是.(25a13b,求a+b5(3)已知103x+y,其中x是整数,且0<y<1,求x-y的相反数.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改解析:D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.C 【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数. 【详解】∵AB ∥CD ,∠BAD=35°, ∴∠ADC =∠BAD =35°, ∵AD ⊥AC ,∴∠ADC+∠ACD =90°, ∴∠ACD =90°﹣35°=55°, 故选:C . 【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵3a =-,b =()22c ==--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.B 【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解. 【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒, 180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B . 【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.A 【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A 【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-, 567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-, 20211011x =,12320211x x x x ∴+++⋯+=,故选:A . 【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题 9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2. 考点:算术平方根.10.【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点关于轴的对称点的坐标是, 故答案为:. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不 解析:(4,3)-【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-, 故答案为:(4,3)-. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠B解析:①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠BFD =∠BCF +∠CBF =45°,可判定②;根据同角的余角性质可得∠GCE =∠ABC ,由角的和差∠GCD =∠ABC +∠ACD =∠ADC ,可判定③;由∠GCE +∠ACB =90°,可得∠GCE 与∠ACB 互余,可得CA 平分∠BCG 不正确,可判定④. 【详解】解:∵EG ∥BC ,且CG ⊥EG 于G , ∴∠BCG +∠G =180°, ∵∠G =90°,∴∠BCG =180°﹣∠G =90°, ∵GE ∥BC , ∴∠GEC =∠BCA , ∵CD 平分∠BCA , ∴∠GEC =∠BCA =2∠DCB , ∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n ﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,即2n﹣1=11,n=6.∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.故答案为:139.【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n - =2()4m n mn +-=()22415-⨯-=464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE ∥PF .(内错角相等两直线平行),∴∠E =∠F .(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a13b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,52a∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE +∠DCE =∠BEC =90°,∴∠ABE =90°﹣β,∴∠GBE =∠ABE ﹣∠ABF ﹣∠FBG =90°﹣β﹣2γ﹣2γ,∵BE 平分∠ABC ,∴∠CBE =∠ABE =90°﹣β,∴∠CBG =∠CBE +∠GBE ,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
2022—2023年人教版七年级数学下册期末测试卷(及参考答案)
2022—2023年人教版七年级数学下册期末测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .10099 2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+2 7.把1a- )A .a -B .a --C .aD .a -8.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或59.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或010.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.分解因式:23m m -=________.5.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =________cm .6.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)1311 48x x---=2.已知关于x、y的二元一次方程组352{2718 x y a x y a-=+=-(1)若x,y的值互为相反数,求a的值;(2)若2x+y+35=0,解这个方程组.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 856.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?>个足球,请用含a的式子分别表(2)若城区四校联合购买100套队服和a(a10)示出到甲商场和乙商场购买装备所花的费用;=,假如你是本次购买任务的负责人,你认为到(3)在(2)的条件下,若a60甲、乙哪家商场购买比较合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、D7、B8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、垂线段最短.3、30°4、(3)m m-5、146、2三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、(1)a的值是8;(2)这个方程组的解是17 {1xy=-=-.3、(1) 65°;(2) 25°.4、(1)证明略(2)等腰三角形,略5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1) 每套队服150元,每个足球100元;(2) 到甲商场购买所花的费用为:100a+14000,到乙商场购买所花的费用为: 80a+15000;(3)购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.。
七年级下册数学期末试卷及答案
一、细心填一填〔每题2分,共计20〕1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方法,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,假设∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农〞问题时说,202X 年中央财政用于“三农〞的支出将到达33970000万元,这个数据用科学记数法可表示为 万元. 5. 一只蝴蝶在空中飞行,然后随意落在如下图的某一方格中〔每个方格除颜色外完全相同〕,则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .8.现在规定两种新的运算“﹡〞和“◎〞:a ﹡b=22b a +;a ◎b=2ab,如〔2﹡3〕〔2◎3〕= 〔22+32〕〔2×2×3〕=156,则[2﹡〔-1〕][2◎〔-1〕]= .9.某物体运动的路程s 〔千米〕与运动的时间t 〔小时〕关系如下图,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕11.以下图形中不是..正方体的展开图的是〔 〕A B C D 12. 以下运算正确的选项是......〔 〕 A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 以下结论中,正确的选项是......〔 〕 A .假设22b a ,b a ≠≠则 B .假设22b a , b a >>则 C .假设b a ,b a 22±==则 D .假设b1a 1,b a >>则第5题 32 1cb a 第3题 E D C B A第7题t 〔小时〕 2 O 30 S 〔千米〕 第9题 第14题E DCB A14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,假设△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万〔 〕A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为〔 〕A .2〔n -1〕B .2n -1C .2〔n +1〕D .2n +1 17.以下关系式中,正确的选项是......〔 〕 A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5的关系,则对这种产品来说,该厂〔 〕 A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3 持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 19.以下图形中,不肯定...是轴对称图形的是〔 〕 A .等腰三角形 B .线段 C .钝角 D .直角三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成〔首尾连结〕三角形的个数为〔 〕A .1B .2C . 3D .4三、精心算一算〔21题3分,22题5分,共计8分〕21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数替代x ,并求原代数式的值.四、认真画一画〔23题4分,24题4分,共计8分〕23.如图,某村庄方案把河中的水引到水池M 中,怎样开的渠最短,为什么?〔保存作图痕迹,不写作法和证明〕理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如下图中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形〔所画三角形可与原三角形有重叠的局部〕,你最多可以设计出几种?〔至少设计四种〕25.在“五·在只有一个名额.小丽想出了一个方法,她将一个转盘〔均质的〕均分成6份,如下图.游戏规定:随意转动转盘,假设指针指到3,则小丽去;假设指针指到2,则小芳去.假设你是小芳,会同意这个方法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场202X ~202X 年的养鸡统计图:〔1〕从图中你能得到什么信息.〔2〕各年养鸡多少万只?〔3〕所得〔2〕的数据都是精确数吗? 〔4〕这张图与条形统计图比拟,有什么优点?28.某种产品的商标如下图,O 是线段AC 、BD 的交点,并且AC图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29.如下图,要想推断AB 是否与CD说明理由.30.乘法公式的探究及应用.〔1〕如左图,可以求出阴影局部的面积是〔写成两数平方差的形式〕;〔2〕如右图,假设将阴影局部裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 〔写成多项式乘法的形式〕〔3〕比拟左、右两图的阴影局部面积,可以得到乘法公式 〔用式子表达〕. 〔4〕运用你所得到的公式,计算以下各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题〔6分〕31.一农民朋友带了假设干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y 〔含备用零钱〕的关系如下图,结合图像答复以下问题: 〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱〔含备用的钱〕是26元,问他一共带了多少千克的土豆?一、细心填一填〔每题2分,共计20〕1. 5x ;2a .2.±×1075.83 6.26或22㎝7. AC=AE 〔或BC=DE ,∠E=∠C ,∠B=∠D 〕 8.-20 9. 45 10.B6395二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- (3)分当x=0时,原式四、认真画一画〔23题4分,24题423.解:理由是: 垂线段最短. ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!〔第25题小4分,第26小题6分,共计10分〕25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:依据小王的设计可以设宽为x 米,长为〔x +5〕米,依据题意得2x +〔x +5〕=35 解得x=10.因此小王设计的长为x +际的. ……2分依据小赵的设计可以设宽为x 米,长为〔x +2〕米,依据题意得2x +〔x +2〕=35 解得x=11.因此小王设计的长为x +2=11+2=13〔米〕,而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143〔平方米〕. ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:〔1〕202X 年该养鸡场养了2万只鸡.〔答案不唯一〕〔2〕202X 年养了2万只;202X 年养了3万只;202X 年养了4万只;202X 年养了3万只;202X 年养了4万只;202X 年养了6万只.〔3〕近似数.〔4〕比条形统计图更形象、生动.〔能符合即可〕 ………〔每题1分〕 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C 〔或∠A=∠D 、或符合即可〕…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分〔答案不唯一〕 七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29. 〔1〕∠EAB=∠C ;同位角相等,两直线平行.〔2〕∠BAD=∠D ;内错角相等,两直线平行〔3〕∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.〔1〕22b a -.〔2〕()b a -,()b a + ,()()b a b a -+ . 〔3〕()()b a b a -+=22b a -.〔4〕: 评分标准:每空1分,〔4〕小题各1分八、信息阅读题〔6分〕31.〔1〕解:由图象可以看出农民自带的零钱为5元;〔2〕()元5.030520=- 〔3〕()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第〔1〕问和答各1分,〔2〕、〔3〕各2分.。
七年级数学下册期末考试卷(带答案解析)
七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。
七年级数学下册期末试卷测试卷 (word版,含解析)
七年级数学下册期末试卷测试卷 (word 版,含解析)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160° 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x.(1)x2-81=0(2)(x﹣1)3=819.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE∥BC.理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(),∴∠2=∠4().∴∥().∴∠3=().∵∠3=∠B(),∴=().∴DE∥BC().20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=12×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.【详解】解:DE∥BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩(考试时间:120分钟 )第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数3.14,),之间依次增加一个两个,,,,26...(262262226.4-0,57.1,9-722-π其中无理数的个数是( ) A .2B .3C .4D .52.9的平方根是( )A .3B .3±C .3D .3±3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )A 、300名学生是总体B 、每名学生是个体C 、50名学生是所抽取的一个样本D 、这个样本容量是504.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A .53°B .63°C .73°D .27°5.若a <b ,则下列不等式中成立的是( )A .a +5>b +5B .﹣5a >﹣5bC .3a >3bD .6.若方程()133a 2=++-y xa 是关于x ,y 的二元一次方程,则a 的值为( )A.-3B.2±C.3±D.3 7.点P(-3,4)到x 轴的距离是( )A 、-3B 、3C 、4D 、5. 8.若点P (a,a -3)在第四象限,则a 的取值范围是( )A.0a 3<<-B.3a 0<<C.3a >D.0a <9.已知⎩⎨⎧=-=12y x 是方程52=+y kx 的一个解,则k 的值为( )23.-A 23.B 32.-C 32.D 10.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A.6折B.7折C.8折D.9折11.如图,a//b,M,N 分别在a,b 上,P 为两平行线间一点,那么=∠+∠+∠321( )︒180.A ︒270.B ︒360.C ︒540.D12.若不等式组⎩⎨⎧->-≥-2210x x x a 有解,则a 的取值范围是( )A.1a ->B.1a -≥C.1a ≤D.1a <第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y 轴的距离是___________.15.已知二元一次方程2x -3y=6,用关于x 的代数式表示y ,则y=______.16.已知:如图,AB ∥CD ,EF ∥CD,且∠ABC =20°,∠CFE =30°,则∠BCF 的度数是___________.17.若y 同时满足y +1>0与y -2<0,则y 的取值范围是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
七年级下学期期末数学试卷(含答案)
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级数学下册期末测试卷及答案一、选择题1.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 2.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 3.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b 6.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .72 7.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 8.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 9.若x 2+kx +16是完全平方式,则k 的值为( ) A .4B .±4C .8D .±8 10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2二、填空题11.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.12.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .13.已知22a b -=,则24a b ÷的值是____.14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.17.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 18.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.19.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.解二元一次方程组:(1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩22.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩. 23.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚. 24.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.25.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.26.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?27.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.28.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.2.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D.【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.3.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.A解析:A【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值.【详解】解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ),∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab ,∴﹣k =b ﹣a ,k =a ﹣b ,故选:A .【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.6.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.9.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,∴8k =±,故选:D .【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.10.B解析:B【解析】【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案.【详解】延长EP 交CD 于点M ,∵∠EPF 是△FPM 的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD ,∴∠BEP=∠FMP ,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP ,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题11.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m-1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2, ∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.12.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.13.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.14.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=-故答案为1.3-【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 17.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,∴-⨯⨯=k2481∴=⨯,k∴=±k18.±故答案为:18.【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.18.20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.19.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解:三边的中线AD、BE、CF的公共点为G,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①②①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.22.(1)12x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②, 把①代入②得:3x +2x ﹣4=1,解得:x =1,把x =1代入①得:y =﹣2,则方程组的解为12x y =⎧⎨=-⎩; (2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩方程组整理得:211213x y x y +=⎧⎨+=⎩①②, ①×2﹣②得:3y =9,解得:y =3,把y =3代入②得:x =5,则方程组的解为53x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.23.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.24.(1)8×10+1=81;(2)2n (2n +1)+1=(2n +1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n 个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.25.(1)31y a =-+;(2)12a =-. 【分析】 (1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a+=-⎧⎨-=-⎩ , 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.26.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩.答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.27.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵, ∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.28.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.。