高分子化学(第五版)第2章课件 PPT

合集下载

高分子课件第二章 逐步聚合反应

高分子课件第二章  逐步聚合反应

五、线型缩聚机理
许多缩聚物都是通过逐步聚合的机理聚合得到的。
单体(一聚体)
二聚体
三聚体
......
低聚体 + 低聚体
高聚体
低聚体 + 高聚体
高聚体
大多数缩聚反应都是可逆平衡反应
OH +
k1 COOH k-1
OCO
+ H2O
平衡常数
K
k1 k1
OCO H2O OH COOH
酯化反应的K=4。在实际生产中,为使反应尽量 向生成高聚物的方向移动,通常要采取措施将副产 物小分子尽量排除。如:通入惰性气体或抽真空。
a
a
AA
n
+n
A
如: a
b
b
BB
B b
AA A
B B BA A
A
B B BA
B AB B
A
B BB
3、按照热力学特征分 ⑴ 平衡缩聚
具有可逆变化特性的缩聚反应
如:
nHOROH + nHOOCR'COOH
H
OROOCR'CO n OH + (2n-1)H 2O
⑵ 不平衡缩聚反应
在缩聚反应的条件下不发生逆反应的缩聚反应
NH2(CH2)3COOH
成环—单分子反应 缩聚—双分子反应
O
( 内
C
CH3 CH
O
交 酯
/
O
H2C H2C
CH CH3

C

O
酯 )(
CH2

C O +H2O 酰
N

H

故增加单体浓度,有利于缩聚反应

高分子化学第五版chapter-2+缩聚和逐步聚合

高分子化学第五版chapter-2+缩聚和逐步聚合
9
反应程度与平均聚合度的关系: 聚合度 是指高分子中含有的结构单元的数目
可见随着反应程度的增加 , 聚合度逐步增加,并且反应程 度越高时,聚合度随反应程度 的增长速率越快。
10
(2) 可逆平衡
大部分线型缩聚反应是可逆反应,但可逆程度有差别,可逆 程度可由平衡常数(K)来衡量,如聚酯化反应:
OH + COOH
以(Xn)2对 t 作图,直线的斜率可求得常数k。
22
3. 可逆平衡线形缩聚动力学
聚酯化反应在小分子副产物不能及时排出时,逆反应不能忽 视,令羟基和羧基等物质的量,起始浓度为1,t时浓度为c: O k1 COOH + HO + H2O C O
起始 1 1
k -1
0
0
t 时水未排出 c 水部分排出
c
讨 论
Xn与反应时间 t 呈线性关系,由斜率可求得 k’ 工业生产总是以外加酸作催化剂来加速反应
20
(2) 自催化聚酯化动力学
无外加酸,二元酸单体作催化剂,[HA] = [COOH], 羧基与羟 基浓度相等,以c表示,将式中的所有常数及[A-]合并成 k:
d [COOH ] k 1k 3[COOH ][OH ][HA] - dt k 2 K [ A-]
n HORCOOH H ORCO nOH + (n-1) H2O
4

2-3、2-4官能度体系 如:苯酐和甘油反应 苯酐和季戊四醇反应
体形缩聚物
2. 缩聚反应分类 (1) 线形缩聚:参与反应的单体只含两个官能度(即双 官能度单体),聚合产物分子链只会向两个方向增长, 生成线形高分子。 (2) 体形缩聚:聚合产物分子链形态不是线形的,而是 支化或交联型的。聚合体系中必须含有带两个以上官能 团的单体,反应中形成的大分子向三个或三个以上方向 增长,得到体形结构的聚合物。

高分子化学第二章-缩聚及逐步聚合

高分子化学第二章-缩聚及逐步聚合
2.2.2 缩聚反应分类
l 按反应热力学的特征分类 平衡缩聚反应 指平衡常数小于 103 的缩聚反应 不平衡缩聚反应 平衡常数大于 103
l按生成聚合物的结构分类 线型缩聚 体型缩聚
2.2.3 特点
缩聚反应是缩合聚合反应的简称,是缩合反应多 次重复结果形成缩聚物的过程。 1、典型缩合反应——形成低分子化合物
3 、反应程度与数均聚合度的关系
数均聚合度是指高分子中含有的结构单元的数目。
Xn

起始单体数目

达到平衡时同系物数目(大分子数)
N0 N
代入反应程度关系式
P = N0-N = 1- N
N0
N0
P = 1- 1 Xn

1 Xn = 1-P
一般 Xn 100~200 P提高到
0.99~0.995
300 250 200
a. 密闭体系中,nw=P
Xn

1 P
K=
1 nw
K
当M n 104 , P 1, X n
K nw
平衡缩聚中数均聚合度与平衡常数
及小分子副产物浓度三者关系
Xn只与温度有关,与其他无关。(因为nw平衡时为定值)
b. 敞开体系,水排出,则 nw为体系中剩余的。
说明:X
的影响因素
n
密闭体系,只与T有关 敞开体系,与排出的水有关
3、缩聚中的副反应 副反应
消去反应 化学降解 链交换反应
消去反应
HOOC(CH2)nCOOH
HOOC(CH2)nH + CO2
二元酸脱羧温度(℃)
己二酸 300~320 庚二酸 290~310 辛二酸 340~360 壬二酸 320~340 癸二酸 350~370

第二章 高分子化学2

第二章  高分子化学2
产物的分子量与单体浓度成正比,与引 发剂浓度成反比。 通过计算准确投料单体与引发剂的量, 可得到需要的聚合度和产量的高分子。 此外阴离子型聚合反应产物的分子量分 布非常窄,其原因是阴离子型聚合中引 发反应很快,每个活性链有相同的机会 分享全部单体。
4.影响阴离子型聚合反应的因素
1.溶剂:对链增长活性中心离子对解离 状态有影响。 2.温度:机理比较复杂,影响比较大, 一般来说,升高温度聚合速率下降。
逐步反应
它反映大分子形成过程中的逐步性。反应初期 单体很快消失,形成二聚体、三聚体、四聚体 等低聚物,然后这些低聚物之间进行反应,分 子量随反应时间逐步增加。绝大多数缩聚反应 属于逐步反应。
第一节 聚合反应
一、自由基聚合反应
本反应突出特点是反应开始时必须首先 产生自由基活性中心。
(一)自由基的产生与活性
聚合反应:由低分子单体合成高分子化合物的化 学反应。 加聚反应:聚乙烯、聚氯乙烯 聚合反应: 缩聚反应:酚醛树脂
第二章 高分子化学
链锁聚合 聚合反应: 逐步聚合 (聚合机理的不同)
链锁聚合
链锁聚合:由链引发,链增长,链终止等反应组 成,其特征是瞬间形成高分子聚合物,分子量随 反应时间的变化不大,反应需要活性中心。 链锁聚合根据反应中心的不同分为:自由基聚合, 阳离子聚合和阴离子聚合,它们的反应活性中心 分别为自由基、阳离子和阴离子。一些烯类单体 的加聚反应大多数属于链锁聚合反应。
(1)链引发反应
A、碱金属引发反应: 金属钠引发苯乙烯。
+ + +
2Na +2CH2=CH 2NaCH CH2 NaCHCH2 CH2CHNa C6H5 C6H5 C6H5 C6H5 B、金属烷基化合物引发反应:丁基锂引发苯乙烯。 H C4H9Li + CH2=CH C4H9CH2 C Li C6H5 C6H5

第五版高分子化学学习ppt课件

第五版高分子化学学习ppt课件

聚氯乙稀这样的聚合物,括号内的化 学结构称为结构单元。
5、重复单元(repeating unit) 聚氯乙稀分子链可以看作结构单元多次 重复构成,因此括号内的化学结构也可称 为重复单元或链节(chain element)。
6、聚合度(degree of polymerigation)
重复单元的数目,表征聚合物分子量大 小的一个物理参数。
2、大分子具有链状结构---- 大分子由 基本链节(结构相同的、简单的结构单 元)通过共价键或配位键重复连接而成。
例如:
3、具有多分散性 分子量有大小,即分子量的多分散性 %&& 结构也有差异,称结构多分散性
4、多种运动单元 链段运动 基团振动 大分子运动(蠕动)
聚乙烯大分子空间结构 示意图
蛋白质大分子空间结构 示意图
三、高分子科学的发展概况与趋势
1、高分子科学的发展概况
19世纪中叶以前 天然高分子的利用与加工
19世纪中叶~20世纪30年代
天然高分子的改性 • 1855年 英国 Parks 由硝纤维素和樟脑 制得赛璐塑料 • 1883年 法国 de Chardoniret 发明了人 造丝

20世纪20年代
还有一类聚合物是由两种单体聚合生 成高分子,如由己二胺和己二酸缩聚生成 的聚己二酰己二胺(尼龙66)
这类聚合物的结构单元和重复单元含义 不一样,也不存在单体单元。
三、分子量及分子量分布
分子量是聚合物的重要结构指标, 只有分子量很高的聚合物才具有高 的机械强度。
随着分子量增加(AB段),机械强度 增加,但过了B点后,再提高分子量,强 度上升很慢,C点为强度的饱和点。
二、高分子科学研究的内容
Chemistry

高分子化学 第五版 课件 PT

高分子化学 第五版 课件 PT

2-2或2体系:线形缩聚 单体含有两个官能团,形成的大分子向两个方向增
长,得到线形缩聚物的反应。如涤纶聚酯、尼龙等 2-3、2-4等多官能度体系:体形缩聚 至少有一单体含两个以上官能团,形成大分子向三
个方向增长,得到体形结构缩聚物的反应。如酚醛树脂、 环氧树脂
14
2.3 线形缩聚反应的机理
1)线形缩聚单体 条件:
聚酰胺等本身都可以进行链交换反应。
24
自由基聚合与线形缩聚特征的比较
自由基聚合
线形缩聚
有链引发、增长、终止等基元 反应,其速率常数和活化能不 同。引发最慢,控制总速率。
活性中心迅速和单体加成,使 链增长。单体间或与聚合物均 不反应。
从单体自由基增长到高聚物时 间极短,无中等聚合度阶段。
聚合过程中单体逐渐减少,转 化率提高。延长聚合时间,主 要是提高转化率,对分子量影 响较少。
在及时脱水的条件下,k4=0;k1、k2、k5都比k3大,聚 酯化速率或羧基消失速率由第三步反应来控制。
27
K
HA
=
[
H+ ][ A HA
]
HA的电离平衡
HA
H+
_ +A
− d[COOH ] = k1k3[COOH ][OH ][H+ ]
dt
k2 K HA
上式中氢离子可来自羧酸本身,进行自催化,但因为 酯化反应为慢反应,一般采用外加无机酸催化加速。
( C N R N C OR'O ) n
OH
HO
聚氨基甲酸酯,简称聚氨酯
4
含活泼氢的功能基:-NH2, -OH, -COOH等
亲电不饱和功能基:主要为连二双键和三键,如:C=C=O, -N=C=O,-N=C=S,-C≡C,-C≡N等

高分子化学与物理第二章

高分子化学与物理第二章

逐步聚合反应的分类:
逐步聚合反应
缩合聚合 逐步加成 开环聚合 氧化偶合 Diels-Alder加成聚合
✓ 缩聚:
✓聚加成:形式上是加成,机理是逐步的。
聚氨基酸酯,简称聚氨酯
✓开环反应:部分为逐步反应。 ✓氧化偶合:单体与氧气的缩合反应。
✓ Diels-Alder加成聚合:单体含一对共轭双键,如:
2.3.2 线形缩聚机理特征:逐步的、可逆平衡 1、逐步性:以二元酸和二元醇为例:
通式为:
缩聚反应的单体转化率、产物聚 合度与反应时间关系示意图
反应程度p: 参加反应的基团数占起始基团数的分率。 N0:起始的基团数
N:反应到 t 时体系中残留的基团数
以等摩尔的二元酸和二元醇缩聚为例: N0:体系中的羧基数或羟基数,等于二元酸与二元醇的分子总数, 也等于反应时间 t 时的二元酸和二元醇的结构单元总数。 N:反应到 t 时体系中残留的羧基数或羟基数 ,等于聚酯的分子数, 因为一个聚酯分子平均带有一个端羧基和1个端羟基。
1)不可逆的缩聚动力学
在及时脱水的条件下,k4=0;k1、k2、k5都比k3大,聚酯化速率 或羧基消失速率由第三步反应控制。
质子化种的浓度[C+(OH)2]难以测定, 引入平衡常数K’消去
考虑到HA的离解平衡
上式中氢离子[H+]可来自羧酸本身,进行自催化,但因为酯 化反应为慢反应,一般采用外加无机酸催化加速。
1-2官能度体系 例:辛醇与邻苯二甲酸酐(官能度为2)反应形成邻苯 二甲酸二辛酯(DOP)。
二元反应体系中若有一原料的官能度为1,则缩合后只能 得到低分子化合物,称为缩合反应。
2-2官能度体系
2官能度体系 2-2或2官能度体系的单体进行缩聚,形成线形缩聚物。

功能高分子05第2章吸附性高分子材料PPT

功能高分子05第2章吸附性高分子材料PPT
特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。

高分子化学第二章2

高分子化学第二章2
则平均聚合度
13500- 146 Xn = = 118 113
8
高分子化学
2 .2 线型缩聚反应
当反应程度P =0.994时,求r 值:
求r(配 料比) 求 q( 过 量分率)
q+2 1 +r 根据 Xn = = r 1 + -2rP q+2( 1 -P ) 1 +r 118= 1 + r- 2 ×0.994 r
13
高分子化学
2.3 体型缩聚 说明:
1. 预聚物制备阶段和交联固化阶段,凝胶点的预测和控制都很 重要。凝胶点是体型缩聚中的重要指标。预聚阶段,反应程 度如果超过凝胶点,将使预聚物固化在聚合釜内而报废。预 聚物应用阶段,则须掌握适当的固化时间,即到达凝胶点的 时间。例如对热固性泡沫材料,要求其固化快,否则泡沫就 要破灭。又如用热固性树脂制造层压板时,固化过快,将使 材料强度降低。 2. 实验测定时通常以聚合混合物中的气泡不能上升时的反应程 度为凝胶点。凝胶点也可以从理论上进行预测。
上述例子的凝胶点为
注意
凝胶点数值一 定小于或等于1; 一般应保留三 位有效数字
Carothers方程
2 Pc = = 0.833 实测 Pc < 0.833 2.4 产生误差所原因: 实际上,凝胶时Xn并非无穷大,仅为几十,此例为24 这是Carothers理论的缺点.
17
高分子化学
2.3 体型缩聚
预聚物制备阶段:先制成预聚物(prepolymer) (分子量500~
5000)线型或支链型,液体或固体,可溶可熔
交联固化阶段:预聚物的固化成型 。 在加热加压条件下进行。
10
高分子化学
2.3 体型缩聚
无规预聚体
预聚体结构的分类
根据预聚物性质与结构不同分为:无规预聚体和结构预聚体。 早期热固性聚合物一般由二官能度单体与另一官能度大于2的单 体聚合而成。反应第一阶段使反应程度低于凝胶点(P < Pc ), 冷却,停止反应,即成预聚体。这类预聚体中未反应的官能团无 规排布,经加热,可进一步反应,无规交联起来。第二阶段受热 成型时,预聚体进一步完成聚合反应。

第2章缩聚及其他逐步聚合反应

第2章缩聚及其他逐步聚合反应

高分子化学
第2章 缩聚及其他逐步聚合反应
2.1-2.3
2.2.1.2 缩聚反应的类型 按参加反应的单体种类分类 (1)均缩聚:只有一种单体参加的缩聚反应,其重复单元 只含有一种结构单元。单体本身含有能发生缩合反应的两种 官能团。 如由氨基酸单体合成聚酰胺:
(2)混缩聚:由两种单体参与、但所得聚合物只有一种重 复结构单元的缩聚反应,其起始单体通常为对称性双功能基 单体,如aRa和bR ′ b,聚合反应通过X和Y功能基的相互反 应进行。
2.1-2.3
(1)实验依据d: (2)理论分析: 官能团的活性取决于官能团的碰撞频率,而不是大分子的扩散 速率。 碰撞频率:单位时间内一个官能团与其他官能团碰撞的次数。 大分子的整体扩散速率很低,大分子链末端的官能团的活动性 要比整个大分子大很多。
(3)“等活性”理论需满足的条件
缩聚反应体系必须是真溶液、均相体系。 官能团所处的环境——邻近基团效应和空间阻碍在反应过程中 不变。 聚合物的相对分子质量不能太高,反应速率不能太大,体系粘 度不能太高。 第2章 缩聚及其他逐步聚合反应 2.1-2.3 高分子化学
第2章 缩聚及其他逐步聚合反应
2.1 聚合反应类型及特点
在高分子工业中具有重要地位:
1.大多数杂链聚合物都是由逐步聚合而成:聚酯、聚酰胺、聚 氨酯、酚醛树脂、环氧树脂等。
2.许多带芳环的耐高温聚合物如聚酰亚胺由逐步聚合而成。
3.逐步聚合可以合成很多功能高分子,如离子交换树脂。
4.许多天然生物高分子通过逐步聚合而得:蛋白质,多糖等。
n HOOC-R-COOH + n HO-R'-OH
高分子化学
O O HO ( C R C OR'O ) H + (2n-1) H2O n

高分子化学-2(自由基聚合)

高分子化学-2(自由基聚合)

.
( 1)
水溶性氧化还原引发体系
常用的氧化剂:过氧化氢、过硫酸盐、氢过氧化物、Cu2+,Ag+, Fe3+ 无机还原剂:Fe2+,HSO3-,SO32常用的还原剂 有机还原剂:醇、胺、草酸、葡萄糖 如:无机-无机氧化还原引发体系
HO-OH + Fe2+
RO-OH + Fe2+
-.
Fe3+ +
Fe3+ +
温度升高,H-H连接形式的结构增加
怎样来合成H-H结构的聚合物?
-(CH2-CH=CH-CH2)- Cl2
n
Cl Cl -(CH2-CH-CH-CH2)n
H-H结构PVC
H2 -(CH2-C=C-CH2)n
-(CH2-CH-CH-CH2)n
H-H结构PS
(3) 链转移 ( Chain transfer) 在自由基聚合反应中,链自由基可能从单体、溶剂、 引发剂等低分子或大分子上夺取一个原子而终止,并使这 些失去原子的分子成为自由基,继续新链的增长,使聚合 反应继续下去,这一反应称链转移反应 可分为三种情况 a. 向单体的链转移
单体 转化率 聚合物
时间
(5) 少量阻聚剂(0.01-0.1%)足以使自由基聚合反应 终止
四、 链引发反应
1、引发剂和引发作用
(一)怎样的物质才能被选用作引发剂 分子结构上有弱键,易分解成自由基化合物
在聚合温度下(40-100º C),键离解能100-170KJ/mol,仅具有O-O, S-S,N-O键的一些化合物具备这一要求。 热分解型引发剂 引发剂类型 氧化还原型引发剂 低温游离基型引发剂:有机过氧化物和烷基金属 化物组合

高分子化学课件;第二章自由基聚合

高分子化学课件;第二章自由基聚合
• 动力学链长(ν):每个活性种从引发阶段 到终止阶段所消耗的单体分子数。
• 无链转移时,ν= Rp/ Ri 因为稳态时Rt =Ri
n 得到 = kp[Байду номын сангаас]/2(fktkd[I])1/2
对比
• 速率方程 R p = kp[M] (fkd/kt)1/2[I]1/2 • 动力学链长 n = kp[M]/2(fktkd[I])1/2
CM CI CS分别表示向单体,向引发剂,向溶剂的链转移常数。
其中,转化率= [M]0 /[M]
PS:凝胶效应的动力学解释
• 自动加速作用:随着反应进行,kt下降明显; Kp不变,Kd不变,因此(kp/kt1/2)显著增大, 聚合反应速率不降反升。
• 影响:1.使聚合反应速率显著上升外 2.聚合产物分子量显著增加
• 减缓自动加速作用:提高温度,使用良溶剂
动力学链长(ν)和聚合度
速率方程
根据假设 3、稳态,有Ri = Rt 代入链增长速率方程得
Rp = kp[M] (fkd/kt)1/2[I]1/2
“平方根定则”:聚合反应速率与引发剂浓 度[I]的平方根成正比,与单体浓度[M]一次 方成正比,可作为自由基聚合的判据。
聚合总速率
上式积分得: ln [M]0 /[M] =kp (fkd/kt)1/2[I]1/2 t
• 无链转移反应时, ν=平均每条增长链所含 的单体单元数
• 当发生歧化终止时, Xn = n • 当发生偶合终止时, Xn = 2n

兼有两种方式终止时,
n
Xn C D
2
链转移反应对聚合度的影响
得到:
1
[I]
[S]
= CM + CI + CS +

高分子化学导论第2章线性缩聚和逐步聚合

高分子化学导论第2章线性缩聚和逐步聚合
尽可能提高反应程度 温度控制、催化剂、后期减压排除小分子、惰 性气体保护、反应足够时间
2.7 体形缩聚和凝胶化作用
一. 体形缩聚 1. 定义
在缩聚反应中,参加反应的单体只要有一种单体具有 两个以上官能团( f >2),缩聚反应将向三个方向发展, 生成支化或交联结构的体形大分子,称为体形缩聚。 体形缩聚的最终产物称为体形缩聚物。
r
=
Na
Na+2Nc
2表示1个分子Cb中的1个基 团b相当于一个过量的bBb 分子双官能团的作用
q=
Nc Na
=
2Nc Na
2
推导过程同上
r
=
1
q+1
1+r
q+2
Xn = 1+r-2rP = q+2( 1-P )
和前一种情况相同,只是 r 和 q 表达式不同
3)aRb 加少量单官能团物质Cb(分子数为Nc) 基团数比和分子过量分率如下:
Polymer Chemistry
高分子化学
缩聚和逐步聚合
2.1 发展历史
按聚合机理或动力学分类:
• 逐步聚合(stepwise polymerization) 无活性中心,单体官能团间相互反应而逐步增长
• 连锁聚合(chain polymerization) 活性中心(active center)引发单体,迅速连锁增长
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
若q很小

演示文稿高分子化学第五版

演示文稿高分子化学第五版
本例特点: 因两种单体参与聚合,故两种结构单元构成了一个重复
结构单元。
重复单元(链节) 结构单元
因聚合反应为官能团间的缩合反应,单体分子进入大分
子后失去了一些元素,故结构单元不能称单体单元。
11
第11页,共70页。
H--NH(CH2)6NH--CO(CH2)4CO--OH
n
5)聚合度(Degree of Polymerization):聚合物分子量大
反应的影响因素 反应的实施方法
5
第5页,共70页。
什么是高分子?
由原子或原子团(结构单元)以共价键形式连结而成的 大分子量同系混合物
结构单元
共价键连结
大分子量(通常>104) 同系混合物(具有分子量的多分散性)
注:“分子量”一词国内有关标准规定称“相对分子质量”。但对 于高分子,国际上绝大多数专业书刊都称Molecular Weight, 且考虑到以后还将引入“平均分子量”、“分子量分布”等高分子 专有的概念,故我们仍坚持称“分子量”。
聚苯乙烯 PS
Polystyrene
聚甲基丙烯酯甲 PMMA Polymethylmetha

crylate
聚氯乙烯 PVC Polyvinyl Chloride 聚醋酸乙烯
PVAc Polyvinyl Acetate
聚四氟乙烯 PTFE 聚丙烯酸 PAA
Polytetrafluoroethylene
表示二元酸的碳原子数,只附一个数字表示内酰胺或氨基
酸的碳原子数。
23
第23页,共70页。
尼龙-66 己二胺(Hexanediamine)和己二酸(Adipic Acid)
合成的产物,学名聚己二酰己二胺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
2-2官能度体系
如二元酸和二元醇,生成线形缩聚物。通式如下:
naAa + nbBb a[ AB]n b + (2n 1)ab
2官能度体系 单体有能相互反应的官能团A、B(如氨基酸、羟基酸 等),可经自身缩聚形成类似的线形缩聚物。通式如下:
naRb a[ R ]n b + ( n 1) ab
从单体自由基增长到高聚物时 间极短,无中等聚合度阶段。
聚合过程中单体逐渐减少,转 化率提高。延长聚合时间,主 要是提高转化率,对分子量影 响较少。 反应混合物仅由单体、高聚物 及微量活性中心组成。
单体、低聚物、高聚物间都能反应,使分 子量逐步增加,反应可停留在中等聚合度 阶段。
聚合初期,单体几乎全部缩聚成低聚物, 以后再由低聚物转变成高聚物,转化率变 化甚微,反应程度逐步增加。延长缩聚时 间主要是 提高分子量,而转化率变化较少。 任何阶段 ,都由聚合度不等的同系物组成。
26
羧酸和醇的酯化为可逆平衡反应,如及时排除 副产物水,符合不可逆条件,且属于酸催化反应
O || _ ~~C- OH + H + A OH | ~~C- OH + ~~OH
+
以聚酯反 应为例
k1 k2
OH | ~~C+ - OH + A-
k3 k4
OH | ~~C- OH | ~~OH
+
k5
O || ~~ C- O~~ + H 2O + H +
14
2.3 线形缩聚反应的机理
1)线形缩聚单体
条件:
必须是2-2、2官能度体系; 反应单体不易成环; 少副反应。 参与反应的单体只含两个功能基团,大分子链只会 向两个方向增长,分子量逐步增大,体系的粘度逐渐上 升,获得的是可溶可熔的线形高分子。
15
2)平衡线形缩聚 指缩聚过程中生成的产物可被反应中伴生的小分子降 解,单体分子与聚合物分子之间存在可逆平衡的逐步聚合 反应。 如聚酯化反应:
环生成尼龙-6
NH(CH2)5CO _
H+
−[NH(CH2)5CO ]n
氧化偶合:单体与氧气的缩合反应。
如2,6-二甲基苯酚和氧气形成聚苯撑氧,也称聚苯醚(PPO)
CH3 OH CH3 CH3 O CH3
6
+O2
n
ቤተ መጻሕፍቲ ባይዱ
Diels-Alder 反应:
共轭双烯烃与另一烯类发生1,4加成,制得梯形聚合
物,即多烯烃的环化聚合。 O
25
2.4 线形缩聚动力学
官能团等活性概念
“官能团等活性”假定:任何反应阶段,不论单体、低
聚体、多聚体或高聚物,其两端官能团的反应能力不随分 子链的增长而变化,每一步反应的平衡常数K相同。
线形缩聚动力学
1)不可逆的缩聚动力学 若将体系中的低分子副产物不断排出,则反应不可逆 地向正方向进行。如聚酯反应采用减压脱水使平衡向产物 方向移动,可视为不可逆。
N
N = N 0 (1 p)
C = C0 (1 p)
1 = 2C 02 kt + 1 (1 p) 2
自催化作用下的聚酯化反应,1/(1-p)2 与 t 成线性关系
30
引入聚合度与反应程度的关系式
1 Xn = 1 p
1 = 2C02 kt + 1 2 (1 p)
( X n ) 2 = 2kC02 t + 1
K很大:可看作不可逆反应。如聚砜、聚碳酸酯等
反应(K>1000)。
19
4)聚合度与反应程度p的关系
以等当量的二元酸和二元 醇或羟基酸的缩聚为例。
N0:体系中起始的官能团数(羧基数或羟基数),等 于二元酸与二元醇的分子总数,也等于反应时间 t 时所有
大分子的结构单元数
N:反应到 t 时体系中残留的官能团数(羧基数或羟基 数) ,等于大分子数。 ∴平均聚合度:大分子链的平均总单体数(或结构单 元数)。
在及时脱水的条件下,k4=0;k1、k2、k5都比k3大,聚 酯化速率或羧基消失速率由第三步反应来控制。
27
[ H ][ A ] K HA = HA
+

HA的电离平衡
HA
H
+
_ + A
d[COOH ] k1k3[COOH ][OH ][H ] − = dt k2 K HA
上式中氢离子可来自羧酸本身,进行自催化,但因为 酯化反应为慢反应,一般采用外加无机酸催化加速。
28
+
自催化缩聚
当醇和酸为等摩尔,且浓度 为C 时,并认为羧酸不电离
[ H +] [COOH ] = [OH ] = C
d[COOH] = k[COOH][OH ][COOH]
dt
dC =kC 3 dt
三级反应
29
1
2
1
0
引入反应程度p,并用羧基浓度C0 、 C代替羧基数N0、N
p=1− N0
HOOC R COOH + nHO R, OH
聚合 水解
O (OC R CO O R, O )n H + (2n 1) H 2O
16
aAa + bBb aABb + ab
机理特征: 逐步、可逆
aABb + aAa (bBb ) aABAa (bBABb ) + ab
a ( AB )b + a ( AB )b a ( ABAB )b + ab
n 聚体 + m 聚体 (n + m) 聚体 + 水
缩聚是官能团间的逐步反应,且每一步都是可逆的。
∴ 逐步的可逆平衡反应
17
3)缩聚反应的平衡常数(Equilibrium Constant,K) 多数缩聚反应属可逆平衡反应: aAa + bBb aABb + ab
k 1 k1
平衡常数: K = k1 / k 1
如聚酯化反应是可逆反应,可用下式表示:
-OH + -COOH
k1 k-1
-OCO- + H2O
[ OCO ][H 2O] k 1 K= = OH ][ COOH ] k 1 [
18
根据平衡常数K值大小,线形缩聚大致分三类: K较小:反应可逆。如聚酯化反应(K≈4),低分 子副产物的存在对分子量影响较大。 K中等:如聚酰胺反应(K≈300~500),低分子 副产物对分子量有所影响。
2
逐步聚合反应的种类
缩聚:官能团间的缩合聚合反应,同时有小分子产生。
如二元酸与二元醇的聚酯化反应,二元胺与二元酸的 聚酰胺化反应
naAa + nbBb a[ AB]n b + (2n 1)ab
聚酯化反应:二元醇与二元羧酸、二元酯、二元酰氯等反应: n HO-R-OH + n HOOC-R’-COOH H-(ORO-OCR’CO)n-OH + (2n-1) H2O
国家级精品课程──高分子化学
第二章
缩聚和逐步聚合
Polycondensation and Stepwise Polymerization
1
2.1 引言
按聚合机理或动力学分类: 连锁聚合(Chain Polymerization) 活性中心(Active Center)引发单体,迅速连锁增长 自由基聚合 活性中心不同 阳离子聚合 阴离子聚合 逐步聚合(Stepwise Polymerization) 无活性中心,单体中不同官能团间相互反应而逐步增长 大部分缩聚属逐步机理,大多数烯类加聚属连锁机理
3
聚加成:形式上是加成,机理是逐步的。 含活泼氢功能基的亲核化合物与含亲电不饱和功能 基的亲电化合物之间的聚合。如: n O=C=N-R-N=C=O + n HO-R’-OH
( C N R N C OR'O ) n O H H O
聚氨基甲酸酯,简称聚氨酯
4
含活泼氢的功能基:-NH2, -OH, -COOH等
0.5 p=1 =0 .75 2
2 1 =4 Xn= = 0.75 0.5 1
22
1 Xn= 1 p
符合此式须满足官能团 数等当量的条件;聚合度将
500
400
300
200
DegreeofPolymerization
100
随反应程度而增加 p=0.9
p=0.995
X n = 10 X n = 200
24
自由基聚合与线形缩聚特征的比较 自由基聚合 线形缩聚
有链引发、增长、终止等基元 反应,其速率常数和活化能不 同。引发最慢,控制总速率。
活性中心迅速和单体加成,使 链增长。单体间或与聚合物均 不反应。
无链引发、增长、终止。各步反应速率常 数和活化能基本相同。
任何单体和聚合物间均能缩合使链增长, 无活性中心
结构单元数 N0 = Xn= 大分子数 N
20
反应程度p:参加反应的官能团数占起始官能团数的分率
p=
N N 0 N =1− N0 N0
1 Xn = 1 p
结构单元数 = N0 Xn= N 大分子数
21
Example
1mol二元酸与1mol二元醇反应: 体系中的羟基数或羧基数N0为:1x2=2mol 反应 t 时间后体系中所有分子中的结构单元数:1+1=2mol (也为N0 )( 注意:二元酸或二元醇,虽均有两个官能团, 但结构单元只有一个) 若反应 t 时间后体系中残存的羧基数N为 0.5mol,则大分 子数:0.5mol(有一个羧基,就有一条大分子,也即N)∴
缩合反应(Condensation)
线形缩聚(Linear Polycondensation) 体形缩聚(Tridimensional Polycondensation)
相关文档
最新文档