§1.2 概率的定义与古典概型

合集下载

概率的定义及其确定方法

概率的定义及其确定方法

概率的定义及其确定⽅法1.2 概率的定义及其确定⽅法本节包括概率的公理化定义、排列与组合公式、确定概率的频率⽅法、古典⽅法、⼏何⽅法及主观⽅法。

主要介绍概率的定义,在排列、组合公式的基础上,利⽤频率⽅法、古典⽅法、⼏何⽅法及主观⽅法计算事件的概率。

概率是对随机事件发⽣可能性⼤⼩的数值度量。

1.随机事件的发⽣是带有偶然性的,但随机事件的发⽣的可能性是有⼤⼩之分的;2. 随机事件的发⽣的可能性是可以度量的,犹如长度和⾯积⼀样;3.在⽇常⽣活中往往⽤百分⽐来表⽰。

这⾥也是如此在概率论的发展史上,曾经有过概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义。

1933年,前苏联数学家柯尔莫哥洛夫⾸次提出了概率的公⾥化定义。

⼀、概率的公理化定义1.定义设Ω为⼀样本空间, F 为Ω上的某些⼦集组成的⼀个事件域,如果对任意事件A ∈F ,定义在F 上的⼀个实值函数P (A )满⾜:(1)⾮负性公理:()0;P A ≥(2)正则性公理:()1;P A =(3)可列可加性公理:若12,,,n A A A 两两互不相容,有11()();n n n n P A P A +∞+∞===∑则称P (A )为事件A 的概率,称三元素(,,)P ΩF 为概率空间。

1.并没有告诉我们应如何确定概率。

但概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义都是在⼀定的场合下确定概率的⽅法。

由于计算概率要⽤到排列与组合的公式。

2.概率是关于事件的函数。

⼆、排列与组合公式1.两⼤计数原理(1)乘法原理:如果某件事需要经过k 步才能完成,做完第⼀步有1m 种⽅法,做完第⼆步有2m 种⽅法,…,做完第k 步有k m 种⽅法,那么完成这件事共有12n m m m 种⽅法。

如某班共有45位同学,他们⽣⽇完全不相同的情况有365×364×363×…×321种。

(2)加法原理:如果某件事可由k 类不同的办法之⼀去完成,在第⼀类办法中有1m 种完成⽅法,在第⼆类办法中有2m 种⽅法,…,在第k 类办法中有k m种⽅法,那么完成这件事共有12n m m m +++ 种⽅法。

概率统计1-2

概率统计1-2

古典(等可能)概型
概率的 设 随机试验E 具有下列特点: 古典定义 1.基本事件的个数有限 2.每个基本事件等可能性发生 则称 E 为 古典(等可能)概型 古典概型中概率的计算: 记 则
n 中包含的基本事件总数
k 组成 A的基本事件个数
P( A) k / n
例2 袋中有a 只白球,b 只红球,依次从袋中
m k k m
k
mA2 C ( N 1)
mA3 ( N 1)
C ( N 1) P( A2 ) k Nk
m k
k! P( A1 ) k n N
m A1
k m
mA4 C k!
k N
( N 1) P( A3 ) k N
mA5 N C k!
k k N
N C N k! P( A5 ) 1 P( A4 ) Nk
kA P P P( A) nΩ P
1 k 1 a a b 1 k a b
a(a b 1)(a b 2)(a b k 1) (a b)(a b 1)(a b 2) (a b k 1)
a ab
例2 袋中有a 只白球,b 只红球,依次从袋中
则称实数P(A)为事件A发生的概率
概率的性质
n
1
P() 0
2 有限可加性: 设 A1 , A2 , An 两两互斥
3
4
P( A) 1 P( A) P( A) 1 P( A) P( A) 1 若 A B P( B A) P( B) P( A) AB P( A) P( B)
时间
地点
级别 死亡
1976.07.28 1978.09.16 1995.01.17 1999.08.17 2003.12.26 2004.12.26 2008.05.12 2009.09.30 2010.01.12 2010.02.28

第1章 概率论的基本概念

第1章 概率论的基本概念

试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )


交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。

1-2(概率的定义、古典概率)

1-2(概率的定义、古典概率)

P( AB) P( A) P( B) P( A B)
P( A) P( B) 1 0.3 —— 最小值
最小值在 P( A B) 1 时取得
P( AB) P( A) 0.6
—— 最大值
最大值在 P( A B) P( B) 时取得
三.几何概率
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法.
P( AB ) P( A) P( AB) 0.7 0.1 0.6 (2) P( A B) P( A) P( B) P( AB) 0.8
(1)
(3) P( A B) P( A B) 0.2
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在 何条件下, P(AB) 取得最大(小)值?最大(小) 值是多少? 解 P( A B) P( A) P( B) P( AB)
P ( Ai ) P ( Ai )
i 1 i 1 n n 1 i j n
P( A A )
i j
1 i j k n
P( A A A )
i j k
„ ( 1)
n1
P ( A1 A2 „ An )
例1 小王参加“智力大冲浪”游戏, 他能 答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题”

概率论 2概率的统计定义、古典概型

概率论 2概率的统计定义、古典概型

个。
• 例8 从1~100的一百个整数中任取一数,试求取到的整数能被 6或8整除的概率。
几何概率( Geometric Probability)
将古典概率中的有限性推广到无限性,而保留等可
能性,就得到几何概率。
特点
有一个可度量的几何图形S 试验E看成在S中随机地投掷一点
事件A就是所投掷的点落在S中的可度量图形A中
投掷两颗骰子,试计算两颗骰子的点数之 和在4和10之间的概率. 解:设A表示点数之和在4和10之间
1 2 5 P( A) 1 2 2 36 36 6

P A B, P A B, P A B
设 P A 0.4,
P AB P A B P A AB 0.2
A B 0.4 0.7 0.2 0.9
0.4 0.3 0.2 0.5
古典概率 (Classical Probability)
考察如下几个试验:
抛两枚均匀的硬币,观察它们出现的正反面的情况。 掷骰子一颗,观察其点数。 掷一颗骰子并抛一枚硬币,观察骰子的点数和硬币的 正反面情况。
(2) 事件A,B有包含关系
解 (1) 由于 AB , 因此 A B A, B A B P( A B) P( A) 0.3 P( B A) P( B) 0.6
(2) 由已知条件和性质3,推得必定有
A B
P( A B) P() 0
P( B A) P( B) P( A) 0.3
它们都具备如下特点: (1)每次试验中,所有可能的结果只有有限多个。 (2)每次试验中,每一种可能的结果发生的可能性相同。 满足这些条件的数学模型称作古典概率。

2、概率的几种定义(古典概型).

2、概率的几种定义(古典概型).

性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率

概率与数理统计

概率与数理统计
2020/9/13
3、几何概率的求法
(P14) 随机试验的样本空间的测度为() ,区域G( )的测度为(G) ,用A表示 “在区域内任取一点,而该点落入区域G中 ”这一事件,则事件A的概率定义为
P(A)=
(G (
) )
2020/9/13
例1 49路公共汽车每隔6分钟来一辆,现有某人在 等车,问他等车不超过4分钟的概率。
样本点总数
a+b
注 本例中的“球”可用其它东西代替,“颜色”也可以用
其它性质代替。比如“球”被“产品”代替,“颜色”被“合
格”或“不合格”代替等。
2020/9/13
(2)袋中有a个白球,b个黑球,从中接连任意取出m (1≤ m≤a+b)个球,取出的球不放回,求第m次取出的球是
白球的概率。 解:设A——“第m次取到白球” 方法1:把a+b个球全部取出看作一个样本点,共有(a+b)!
C2 C1 C1 13 13 13
(1)2张红桃,1张方块,1张黑桃的概率
C4
C4 52
48
C (2)没有A的概率 4
C 52
1
13
(3)4张大小相同的概率 C 4 52
2o 一批产品100个,一、二、三、次品各为20、30、 40、10个,求
(1)任取5个均为一等品的概率
(2) 任取3个其中2个一等品,1个三等品的概率
例1 ( P13例4)两封信随机地向标号为Ⅰ、Ⅱ、Ⅲ、 Ⅳ的4个邮筒投寄。求:(1)前两个邮筒各投入1封 信的概率(2)第Ⅱ个邮筒恰好投入1封信的概率
(3)两封信投入不同邮筒的概率 解 设A——前两个邮筒各投入1封信
B——第Ⅱ个邮筒恰好投入1封信 C——两封信投入不同邮筒 而 样本空间包含的基本事件总数n=42=16 事件A中包含的基本事件个数mA=2!=2 事件B中包含的基本事件个数mB=C21C31=6 事件C中包含的基本事件个数mC=P42=12 则 P(A)= 2/16 P(B)= 6/16 P(C) =12/16

概率的定义及其确定方法(最新整理)

概率的定义及其确定方法(最新整理)

§1.2 概率的定义及其确定方法在本节,我们要给出概率的定义,这是概率论中最基本的概念。

本节中我们还将介绍几种确定概率的方法。

随机事件的发生有偶然性,但我们常常会觉察到随机事件发生的可能性是有大小之分的。

例如,购买彩票后可能中大奖,可能不中奖,但中大奖的可能性远比不中奖的可能性小。

既然各种事件发生的可能性有大有小,自然使人们想到用一个数字表示事件发生的可能性大小。

这个数字就称为事件的概率。

然而,对于给定的事件,该用哪个数字作为它的概率呢?这决定于所研究的A 随机现象或随机试验以及事件的特殊性,不能一概而论。

在概率论的发展历史A 上,人们针对特定的随机试验提出过不同的概率的定义和确定概率的方法:古典定义、几何定义和频率定义。

这些概率的定义和确定方法虽然有其合理性,但也只适合于特定的随机现象,有很大的局限性。

那么如何给出适合于一切随机现象的概率的最一般的定义呢? 1900年数学家希尔伯特提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.1933年数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这一公理化体系迅速得到举世公认,有了这个定义后,概率论才被正式承认为一个数学分支,并得到迅猛发展.1.概率的公理化定义定义1.2.1 设为样本空间,为的某些子集组成的事件域.ΩF Ω))((F A A P ∈是定义在事件域上的实值集函数,如果它满足:F (1)非负性公理 对于任一,有;F A ∈0)(≥A P (2)正则性公理 ;1)(=ΩP (3)可列可加性公理 若……两两互不相容,则,,21A A ,,n A 则称)(A P 为事件A 的概率,称三元总体为概率空间.),,(P F Ω 概率的公理化定义刻画了概率的本质,概率是集合(事件)的实值函数,若在事件域上给出一个函数,只要这个函数满足上述三条公理就称为概率。

这个定义只涉及样本空间和事件域及概率的最本质的性质而与具体的随机现象无关。

2、概率的几种定义(古典概型)

2、概率的几种定义(古典概型)

5
② 从 个元素中取出 个元素,而 不考虑其顺序,称为组合,其组合 的总数为:
6
三、举 例
例1 有一号码锁上有6个拨盘,每个 拨盘有 才能将锁打开。 十个数字,给定 一个6位数字暗码,只有拨对号码时,
问:“一次就能打开”的概率是多
少?
7
解:样本空间中样本点总数为 设 A=“一次就把锁打开” A所含样本点数
1.2
随机事件的概率
对于一个随机事件来说,在一
次试验中可能发生,也可能不发生, 我们希望有一个能刻划随机事件发 生的可能性大小的数量指标,即概 率,以 表示事件A的概率 。
1
一、概率的古典定义 定义2.1 满足以下两个特征的随 机试验称为古典概型。 (1)有限性:试验E的样本空间 中只有有限个样本点 如: (2)等可能性:每个基本事件出现 的可能 性相同,即:
49
推广到n个事件:
50
例:若A与B同时发生时事件C必发生,

证:
结论成立
53
例:设 1) 若
, ,求
A
解:
S
A B
54
例:设 2)若 解:
P A
1 3
,PB
1 2
,求
S
A B
A
55
例:设 3)若
P A
1 3
,PB ,求
1 2
解:
S
A B
A
56
例 已知 求事件A,B,C全不发生的概率。
本点数,我们先取m个球放入指 定盒中,共有 种取法,然 后再把剩下的(n-m)个球任意 放入其余(N-1)个盒中,放法有 种,
16
根据乘法原理可得C的样本点数为:

第一章第二节概率的定义及其确定方法

第一章第二节概率的定义及其确定方法

设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数 事件A由其中的m个基本事件组成
P( A) = A所含的基本事件个数 基本事件总数
= A 所含样本点的数目 样本空间的样本点总数
m n
古典概率的计算:抛掷骰子
抛掷一颗匀质骰子,观察出现的点数 , 求“出现的 点数是不小于3的偶数”的概率.
所求概率为 P(1) 1 , P(2) 2
5
9
所以 P( A) 11 , P(B) 5 .
36
36
4、包括甲,乙在内的10个人随机地排成一行,求甲与 乙相邻的概率。若这10个人随机地排成一圈,又如何呢?
解: 总的基本事件数为 10!
排成行时,事件“甲乙相邻”的基本事件数为 P88C91C21
排成圈时,事件“甲乙相邻”的基本事件数为 P88C91C21 P88C21
0xT,0yT。
(1)则样本空间是由点(x,y)构成的边长为T正 方形。
(2)依题意,收音机受到干扰的充分必要条件是
|x-y|t .
T 由等可能性知,所求
概率为
t
A
P(A) S A S
Ot
T
x
阴影部分面积 正方形面积
T 2 (T t)2 T2
1 1 t T
2
一楼房共15层,假设电梯在一楼启动时有10名乘 客,且乘客在各层下电梯是等可能的。试求下列事件 的概率:A1={10个人在同一层下};A2={10人在不同 的楼层下};A3={10人都在第15层下};A4={10人恰有 4人在第8层下}。 解:
P( A)
A 的度量 S的度量
( A) (S)

古典概型、几何概型与概率的区别与联系

古典概型、几何概型与概率的区别与联系

古典概型、⼏何概型与概率的区别与联系课本上没有讲古典概型与概率的联系,这⾥补充⼀下。

古典概型:有限个事件,等可能发⽣。

放宽条件后得到⼏何概型:⽆限个事件,等可能发⽣;再放宽条件得到概率:⽆限个事件,不⼀定等可能发⽣。

古典概率古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发⽣的可能性是相同的。

若事件A包含m个基本事件,则定义事件A发⽣的概率为p(A)=m/n,也就是事件A发⽣的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。

历史上古典概率是由研究诸如掷骰⼦⼀类赌博游戏中的问题引起的。

计算古典概率,可以⽤穷举法列出所有基本事件,再数清⼀个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。

⼏何概率若随机试验中的基本事件有⽆穷多个,且每个基本事件发⽣是等可能的,这时就不能使⽤古典概率,于是产⽣了⼏何概率。

⼏何概率的基本思想是把事件与⼏何区域对应,利⽤⼏何区域的度量来计算事件发⽣的概率,布丰投针问题是应⽤⼏何概率的⼀个典型例⼦。

概率的频率定义随着⼈们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同⼀事件,可以从不同的等可能性⾓度算出不同的概率,从⽽产⽣了种种悖论。

另⼀⽅⾯,随着经验的积累,⼈们逐渐认识到,在做⼤量重复试验时,随着试验次数的增加,⼀个事件出现的频率,总在⼀个固定数的附近摆动,显⽰⼀定的稳定性。

R.von⽶泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。

从理论上讲,概率的频率定义是不够严谨的。

A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

概率论第一章 概率论的基本概念 PPT

概率论第一章 概率论的基本概念 PPT

试验者
n
nA
fn (A)
德.摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
K.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有
放回地进行重复抽球,观察抽出红色球的次数。
基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。
事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间0,1上任取一点,记录它的坐标。
1.1.3 随机事件与样本空间
v样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. v样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 Ek 所对应的样本空间

第二讲(古典概型与概率的定义)

第二讲(古典概型与概率的定义)


(1 x )
m n
m n
(1 x ) (1 x )
m
n
运用二项式展开 有
m n j j x j 0 m j1 n n j2 j x j x j1 0 1 j2 0 2
每个盒子容球数无限, 求下列事件的概率:
(1)某指定的 k 个盒子中各有一球;
(2)某指定的一个盒子恰有 m 个球( m k ) (3)某指定的一个盒子没有球; (4)恰有 k 个盒子中各有一球; (5)至少有两个球在同一盒子中; (6)每个盒子至多有一个球.
解 nN 设 (1) ~ (6)的各事件分别为
P ( A) A中的样本点数 S中的样本点数
4
古典概率的性质
1 0 P( A) 1 、
非负性
规范性
A , A2 , , An 1
2、P ( ) 1
3、对于互不相容的事件
n

P( A k ) P( A k )
k 1 k 1
n
有限可加性
这样就把求概率问题转化为计数问题 . 排列组合是计算古典概率的重要工具 . 这里我们先简要复习一下计算古典概率 所用到的 基本计数原理 1. 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 第二种方式有n2种方法, …; 第m种方式有nm种方法, 则完成这件事总共 有n1 + n2 + … + nm 种方法 .
的每个基本事件出现一定要是等可能的。
上述古典概型的计算,只适用具有等可能性的 有限样本空间。若试验结果无限,则它显然已经不 适合。为了克服有限的局限性,利用几何方法,可 将古典概型的计算加以推广。

第1.2节 概率的定义及其确定方法

第1.2节 概率的定义及其确定方法
r
例1 掷两枚硬币, 求出现一个正面一个反面的概率。 提示:{(二正),(二反),(一正一反)}不具有等概性。 思考? 掷两枚骰子,莱布尼兹认为其出现的点数之和的可能
数值为2,3,…,12,因此掷出11和12点的可能性相等, 都是 1 . 因为只有一种情况可掷出12点,即一个骰子是 11 6点,另一个骰子也是6点;同样也只有一种情况可掷出11
演示实验
考虑用一个天平称物时的误差,这个试验的结果就有
无限多个,而且这些结果也不具有前述几何概率定义中的 “等可能性”. 如何知道误差落在某个范围内的概率呢?
一射手向一目标射击,“中靶” 与“脱靶”一般不
是等可能的,那么,又如何知道他中靶的概率呢?
3.概率的频率方法---统计定义
确定概率的频率方法是一种最常用的方法,其基本思想: (1)大量重复 (2)在n次重复实验中记n(A)为随机事件A出现的次数,称 n( A) f n ( A) 为事件A出现的频率。 n (3)长期经验表明:随着实验重复次数n的增加,频率 f n ( A) 会稳定在某一常数a附近,这个常数为频率的稳定值,即可作 为我们所说的概率。
注意: (1) 在应用古典概型时必须注意“等可能性”的条件. “等可能性”是一种假设,在实际应用中,我们需要 根据实际情况去判断是否可以认为各基本事件或样本点是 等可能的. 在许多场合,由对称性和均衡性,我们就可以认为基 本事件是等可能的并在此基础上计算事件的概率.
(2) 在用排列组合公式计算古典概率时, 必须注意不要重 复计数,也不要遗漏. 例如:从5双不同的鞋子中任取4只,这4只鞋子中“至少有 两只配成一双”(事件A)的概率是多少?
从甲地到乙地共有多少种方法? 甲地 回答是 4 + 2 种方法 乙地
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设有k 个不同的球, 每个球等可能地落入N 个盒子中(), 设每个盒子容球数无限, 求下列事件的概率:N k ≤(1)某指定的k 个盒子中各有一球;(4)恰有k 个盒子中各有一球;(3)某指定的一个盒子没有球;k m ≤(2)某指定的一个盒子恰有m 个球( )(5)至少有两个球在同一盒子中;(6)每个盒子至多有一个球.
例2(分房模型)
例7两船欲停靠同一个码头, 设两船到达码头的时间各不相干,而且到达码头的时间在一昼夜内是等可能的. 如果两船到达码头后需在码头停留的时间分别是1 小时与2 小时,试求在一昼夜内,任一船到达时,需要等待空出码头的概率.
解设船1 到达码头的时刻为x,0 ≤x < 24船2 到达码头的时刻为y,0 ≤y < 24设事件A表示任一船到达码头时需要等待空出码头
设Ω是随机试验E 的样本空间,若能找到一个法则,使得对于E 的每一事件A 赋于一个实数,记为P ( A ), 称之为事件A 的概率,这种赋值满足下面的三个条件:
非负性:0
)(,≥⊂∀A P A Ω 规范性:1
)(=ΩP ∑∞
=∞
==
⎟⎠
⎞⎜⎝⎛
1
1)
(i i i i A P A P U 可列可加性:L ,,21A A 其中为两两互斥事件,
概率的公理化理论由前苏联数学家柯尔莫哥洛夫(A.H.Колмогоров)1933年建立.三、概率的公理化定义
6、加法公式:对任意两个事件A, B, 有
)
(
)
(
)
(
)
(AB
P
B
P
A
P
B
A
P−
+
=

)
(
)
(
)
(B
P
A
P
B
A
P+


推广:
) (
)
(
)
(
) (
)
( )
(
)
(
)
(
ABC P
BC
P AC
P
AB P
C
P B
P
A
P
C
B
A
P
+
−−

+ +
=


)
()
1()()
()()(211
111
1
n n n
n
k j i k j i n
j i j i n
i i n
i i A A A P A A A P A A P A P A P L L U −≤<<≤≤<≤==−+++
+

=∑∑∑一般:
右端共有项.
12−n
例9 中小王他能答出第一类问题的概率为0.7, 答出第二类问题的概率为0.2, 两类问题都能答出的概率为0.1. 为什么不是?
2.07.0×若是的话, 则应有)()()(2121A P A P A A P =而现在题中并未给出这一条件.
在§1.4中将告诉我们上述等式成立的条件是:事件相互独立.
21,A A
例10设A , B 满足P ( A ) = 0.6, P ( B ) = 0.7,
在何条件下,P (AB ) 取得最大(小)值?最大(小)值是多少?解
)
()()()(AB P B P A P B A P −+=∪)
()()()(B A P B P A P AB P ∪−+=3.01)()(=−+≥B P A P 1)(=∪B A P 最小值在时取得
6
.0)()(=≤A P AB P ——最小值
——最大值
)()(B P B A P =∪最大值在时取得。

相关文档
最新文档