初二上第十一章三角形单元测试及答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)
第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A. 3cmB. 4cmC. 9cmD. 10cm2.如图,点D在线段BC的延长线上,则△ABC的外角是()A.∠AB.∠BC.∠ACBD.∠ACD3.如图,以BC为边的三角形有()个.A. 3个B. 4个C. 5个D. 6个4.如图,已知点D是△ABC中BC边上的一点,线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条()A.角平分线B.中线C.高线D.边的垂直平分线5.在△ABC中,∠C是锐角,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图所示,△ABC中,∠B=∠C,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°7.在△ABC中,若∠A-∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定8.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80°B.85°C.100°D.110°9.下列角度中不是多边形内角和的只有()A.540°B.720°C.960°D.1080°10.锐角三角形中任意两个锐角的和必大于()A.120°B.110°C.100°D.90°11.从一个n边形中除去一个角后,其余(n-1)个内角和是2580°,则原多边形的边数是()A. 15B. 17C. 19D. 1312.在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°二、填空题13.下列图形中具有稳定性有(填序号)14.如图所示,则∠α= .15.若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.16.在△ABC中,∠BAC=90°,AD是BC边上的高,∠B=35°,则∠CAD=________°.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为 .三、解答题18.在直角三角形中,一个锐角比另一个锐角的3倍还多10°,求这两个锐角的度数.19.如图所示,已知∠A=20°,∠B=30°,AC⊥DE,求∠BED和∠D的度数.20.如图,已知在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.21.如图,已知∠CDF=∠OEF=90°,CE与OA相交于点F,若∠C=20°,求∠O的大小.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:△EPF为直角三角形.23.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?答案解析1.【答案】C【解析】7﹣3=4,7+3=10,因而4<第三根木棒<10,只有C中的9满足.故选C.2.【答案】D【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中∠ACD符合三角形外角的定义,所以正确的选项是D.3.【答案】B【解析】以BC为边的三角形有△BCN,△BCO,△BMC,△ABC.4.【答案】B【解析】由题意知,当线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条中线.5.【答案】D【解析】三角形中最少有两个角是锐角,因此有一个角是锐角时,三角形的形状不能确定.在△ABC中,∠C是锐角,那么△ABC可能是直角三角形,也可能是锐角三角形或钝角三角形,故选D.6.【答案】C【解析】∵DE⊥AC,∠BDE=140°,∴∠A=50°,又∵∠B=∠C,∴∠C==65°,∵EF⊥BC,∴∠DEF=∠C=65°.故选C.7.【答案】B【解析】∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选B.8.【答案】C【解析】∵∠B=30°,∠DAE=55°,∴∠D=∠DAE-∠B=55°-30°=25°,∴∠ACD=180°-∠D-∠CAD=180°-25°-55°=100°.故选C.9.【答案】C【解析】A、540÷180=3,则是多边形的内角和;B、720÷180=4,则是多边形的内角和;C、960÷180=5,则不是多边形的内角和;D、1080÷180=6,则是多边形的内角和.故选C.10.【答案】D【解析】根据三角形的内角和是180度和锐角三角形的定义可知:锐角三角形中任意两个锐角的和必大于90°.11.【答案】B【解析】2580°÷180°=14…60°,∵除去了一个内角,∴边数是15+2=17.故选B.12.【答案】C【解析】∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=×90°=45°,∵CE⊥AD,∴∠ACE=90°-45°=45°,又∵∠CAB=90°,∠ABC=72°,∴∠ACB=90°-72°=18°,∴∠ECD=∠ACE-∠ACB=45°-18°=27°.故选C.13.【答案】(2),(4)【解析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性14.【答案】105°【解析】如图,∠1=70°,由三角形的外角性质得,∠α=35°+70°=105°.故答案为:105°.15.【答案】1<c<5【解析】由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.16.【答案】35【解析】∵AD是BC边上的高,∠B=35°,∴∠BAD=90°-∠B=90°-35°=55°,∵∠BAC=90°,∴∠CAD=90°-55°=35°.故答案为:35.17.【答案】120°【解析】∵α=20°,∴β=2α=40°,∴最大内角的度数=180°-20°-40°=120°.故答案为:120°.18.【答案】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°.【解析】设另一个锐角为x°,表示出一个锐角,然后根据直角三角形两锐角互余列方程求解即可.19.【答案】解:∵AC⊥DE,∴∠APE=90°,∴∠BED=∠A+∠APE=20°+90°=110°;在△BDE 中,∠D=180°-∠B-∠BED=180°-20°-110°=50°.【解析】根据垂直的定义可得∠APE=90°,然后利用三角形的一个外角等于与它不相邻的两个内角的和可得∠BED=∠A+∠APE,然后利用三角形的内角和定理列式计算即可求出∠D. 20.【答案】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2A E=2×2=4,∵△ABC的周长为15,∴BC=15-6-4=5.【解析】根据三角形中线的定义求出AB、AC,再利用三角形的周长的定义列式计算可得. 21.【答案】解:∵∠CDF=∠OEF=90°,∴∠C+∠AFD=90°,∠O+∠OFE=90°,∵∠OFE=∠CFD (对顶角相等),∴∠O=∠C=20°.【解析】根据直角三角形两锐角互余列方程求出∠O=∠C,从而得解.22.【答案】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°-(∠PEF+∠EFP)=180°-90°=90°,∴△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.23.【答案】解:(1)如图.(2)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BD E=×S△ABC=S△ABC,∵△ABC的面积为40,∴S△BDE=×40=10,∵BD=5,∴×5•EF=10,解得EF=4.【解析】(1)根据三角形高线的定义,过点E作BD边上的垂线段即可;(2)根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形,求出△BDE的面积为10,再根据三角形的面积公式列式计算即可得解.。
八年级数学上册第十一章《三角形》单元测试题附答案
八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。
人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
(完整版)第十一章《三角形》单元测试题及答案
精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。
人教版八年级数学上册《第11章三角形》单元测试题含答案
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
人教八年级上册第11章《三角形》单元检测及答案
人教八年级上册第11章《三角形》单元检测及答案一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个4. n 边形所有对角线的条数有( ) A.()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( ) A. 1种 B. 2种 C. 3种 D. 4种 6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( )A. 2个B. 3个C. 4个D. 5个 二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8c m ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)
第11章三角形单元测试卷一、选择题(共10小题).1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有条对角线.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为.15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=°.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=(用含a的式子表示).19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.参考答案一、选择题(每小题3分,共30分)1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选:B.2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选:D.3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°解:(n+1)边形的内角和:180°×(n+1﹣2)=180°(n﹣1),n边形的内角和180°×(n﹣2),(n+1)边形的内角和比n边形的内角和大180°(n﹣1)﹣180°×(n﹣2)=180°,故选:A.4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.解:A、B、C均不是高线.故选:D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线解:当AC与BC重合时,折痕是∠C的角平分线;当点A与点B重合时,折叠是AB的中垂线,故选:A.7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形解:A、∵四边形的内角和等于它的外角和,∴选项A不符合题意;B∵三角形中,锐角最多有三个,∴选项B不符合题意;C、∵一个多边形中,锐角最多有三个,∴选项C符合题意;D、∵每一个外角都等于15°的多边形是二十四边形,∴选项D不符合题意;故选:C.8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1﹣∠2=80°.故选:B.9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个解:△ABC的高BD、CE相交于点H,(1)∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,故(1)正确;(2)四边形的一组对角互补,另一组对角互补,故(2)正确;(3)∠HDC=∠A+∠ABD,∠BHC=∠HDC+∠ACE,∴∠BCH=∠A+∠ABD+∠ACE,故(3)正确;(4)∵∠BHC+∠CHD=180°,∠ABD+∠ACE+∠BHC+∠CHD>180°,故(4)错误;故选:B.10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°解:如图,连接AE.∵△ABC是等边三角形,∴∠C=∠ABC=60°,∵∠ADB=m°,∠BDE=(180﹣2m)°,∴∠ADC=180°﹣m°,∠ADE=180°﹣m°,∴∠ADC=∠ADE,∵AD=AD,DC=DE,∴△ADC≌△ADE(SAS),∴∠C=∠AED=60°,∠DAC=∠DAE,∴∠DEA=∠DBA,∴A,D,E,B四点共圆,∴∠DBE=∠DAE=∠DAC=(m﹣60)°,故选:A.二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有405条对角线.解:设内角和为5040°的多边形的边数为n,由多边形内角和定理得:(n﹣2)•180°=5040°,解得:n=30,∴这个多边形所有对角线的条数为:n(n﹣3)=×30×(30﹣3)=405.故答案为:405.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=75°.解:∵∠A﹣∠C=25°,∠B﹣∠A=10°,∴∠B﹣∠C=35°①,∠A=25°+∠C,∵∠A+∠B+∠C=180°,∴25°+∠C+∠B+∠C=180°,即2∠C+∠B=155°②,②﹣①得,3∠C=120°,解得∠C=40°③,把③代入①得,∠B=75°.故答案为:75°.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是5<BC<16.解:∵在△ABC中,AB=7cm,AC=9cm,∴9﹣7<BC<9+7,即:5<BC<16,故答案为:5<BC<16.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为64°.解:∵∠A=52°,∴∠ABC+∠ACB=128°,∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°,故答案为:64°;15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=6.解:连接AP.∵AB=AC,∴S△APB=S△ABC+S△ACP=AC×BF+AC×PE=×AC×(BF+PE),∵S△APB=AB×PD=AC×PD,∴BF+PE=PD.∵PE=3,PD=9,∴BF=9﹣3=6.故答案为:6.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为80°或20°或50°或35°.解:有四种情况:①AD=AC,∵AD=BD,∴∠B=∠BAD=40°,∵AD=AC,∴∠C=∠ADC=∠B+∠BAD=80°,②AC=DC,∵AC=DC,∴∠DAC=∠ADC=∠B+∠BAD=80°,∴∠C=180°﹣∠ADC﹣∠DAC=20°,③AD=DC,∵AD=DC,∴∠C=∠DAC,∵∠ADC=80°,∴∠C=(180°﹣∠ADC)=50°,④AB=BD,AD=DC,∵∠B=40°,AB=BD,∴∠ADB=∠BAD=(180°﹣∠B)=70°,∵AD=DC,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB,∴∠C=∠CAD=70°=35°,故答案为:80°或20°或50°或35°.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=126°.解:正十边形的一个内角为(10﹣2)×180°÷10=144°,∠BAE=[(5﹣2)×180°﹣144°×3]÷2=54°,∠ABE=[(6﹣2)×180°﹣144°×4]÷2=72°,则∠AED=54°+72°=126°.故答案为:126.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=19a(用含a的式子表示).解:连接BC1,∵C1A=2CA,∴S△ABC1=2S△ABC,同理:S△A1BC1=2S△ABC1=4S△ABC,∴S△A1AC1=6S△ABC,同理:S△A1BB1=S△CB1C1=6S△ABC,∴S△A1B1C1=19S△ABC=19a,故答案为19a.19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是α=β+γ.解:∵三角内角和是个定值为180度,∴∠A+∠B+∠C=180°∴∠A越来越小,∠B、∠C越来越大时,∴∠A﹣α+∠B+β+∠C+γ=180°,∴α=β+γ.故答案为:α=β+γ.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为45°.解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°﹣∠ACB=90°﹣65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣55°﹣65°=60°,∵∠BEC=90°,∴∠4=90°﹣∠ABC=30°,∴∠5=∠BOC=180°﹣∠3﹣∠4=180°﹣25°﹣30°=125°.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?解:设新多边形是n边形,由多边形内角和公式得(n﹣2)×180°=1440°,解得n=10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.解:∵∠BAD+∠BAF=180,∠BAD:∠BAF=2:3,∴∠BAD=,∵∠C+(∠B+∠D)+∠BAD=360°,∴∠C=360°﹣(∠B+∠D)﹣∠BAD=360°﹣190°﹣72°=98°.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).【解答】证明:∵M是BC中点,∴CM=BM,∵AM+BM>AB,AM+CM>AC,∴2(AM+BM)>AB+AC,∴AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.解:(1)10;;(2)不存在(法一)当n=6时,三角形的个数为;当n=7时,三角形的个数为;所以不存在n使三角形的个数为25.(法二)由=25,得n(n+1)=50,而不存在两个连续整数的乘积为50,所以不存在n使三角形的个数为25.(3)S1+S3=2S2.∵点B是线段AC的中点,∴AB=BC,∴S△PAB=S△PBC,∴S1+S3=2S2.。
人教版八年级数学上册试题 第11章 三角形 单元测试(含解析)
第11章《三角形》单元测试一、单选题(本大题共10小题,每小题3分,共30分)1.小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了。
于是他想在木条交叉点处再加上若干个螺栓,使其稳定不再变形,他至少需要添加的螺栓数为( )A .1个B .2个C .3个D .4个2.如图,在△ABC 中,D 为AB 的中点,且∠B=2∠A ,则△BCD 是( )A .等腰三角形B .等边三角形C .直角三角形D .任意三角形3.如图,数轴上与6表示的点分别为,点B 为线段上一点,分别以为中心旋转,若旋转后两点可以重合成一点C (即构成),则点B 代表的数不可能的是( )A .1B .1.5C .2D .34.如果一个三角形的一个顶点是它的三条高的交点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为( )6,3--M A N 、、AN A B 、MA NB 、M N 、ABCA .2001B .2005C .2004D .20066.用边长相等的正三角形地砖和正方形地砖铺地面,围绕在一个顶点处正三角形地砖和正方形地砖的块数是( )A .2块正三角形地砖和2块正方形地砖B .2块正三角形地砖和3块正方形地砖C .3块正三角形地砖和2块正方形地砖D .3块正三角形地砖和3块正方形地砖7.如图,已知点P 是射线上一动点(不与点O 重合),,若为钝角三角形,则的取值范围是( )A .B .C .或D .或8.如图,和是分别沿着边翻折形成的,若,则的度数为( ).A .B .C .D .9.如图,在中,平分,于点D ,的角平分线所在直线与射线相交于点G ,若,且,则的度数为( )ON 30O ∠=︒AOP A ∠060A ︒<∠<︒90180A ︒<∠<︒030A ︒<∠<︒90130A ︒<∠<︒060A ︒<∠<︒90150A ︒<∠<︒ABE ∆ADC ∆ABC ∆AB AC 、180︒1:2:328:5:3∠∠∠=α∠80︒85︒90︒95︒ABC AE BAC ∠AD BC ⊥ABD ∠BF AE 3∠=∠ABC C 18G ∠=︒DFB ∠A .B .C .D .10.如图,小亮同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图的面积为75,则图中阴影部分的面积是( )A .25B .26C .30D .39二、填空题(本大题共8小题,每小题4分,共32分)11.已知一个三角形的两边长分别为和,且第三边长为整数,那么第三边长的最小值为 .12.如图,在中,是边上的中线,,与相交于点F ,四边形的面积是18,则的面积为13.如图所示,的两条角平分线相交于点,过点作EF BC ,交于点,交于点,若的周长为,则 cm .14.定义:一个三角形的三个角的度数分别为x ,y ,z ,若满足,则该三角形为“善美三角形”,度数为x 的角被称为善美角.若是“善美三角形”,且,则的善美角的度数为.40︒44︒50︒54︒ABC 37ABC AD BC 3CE AE =AD BE CDFE ABC ABC D D ∥AB E AC F AEF △30cm AB AC +=3x y =ABC 30ABC ∠=︒ABC15.如图,在中,平分交于点,于点,若,,则的度数是 .16.小明在求某个多边形的内角和时,由于看漏了一个角而求得的度数和为2035°,那么这个多边形的边数为 .17.如图,在中,点D ,点E 分别是AC 和AB 上的点,且满足,,过点A 的直线l 平行BC ,射线BD 交CE 于点O ,交直线l 于点若的面积为12,则四边形AEOD 的面积为 .18.如图,点为直线外一动点,,连接、,点、分别是、的中点,连接、交于点,当四边形的面积为时,线段的长度的最小值为 .三、解答题(本大题共6小题,共58分)19.(8分)19.仔细看图,活学活用.(1) 画出三角形的边上的高.ABC AD BAC ∠BC D CE AB ⊥E 50B ∠=︒20ACE ∠=︒ADC ∠ABC 2AE BE =3CD AD =F .CDF C AB 5AB =CA CB D E AB BC AE CD F BEFD 5AC ABC BC AD(2) 根据图中提供的信息,不用测量任何数据,画一个与三角形面积相等的三角形(3) 应用:在如图所示的梯形中,三角形与三角形的面积分别是4平方厘米和9平方厘米.梯形的面积是( ).20.(8分)已知中,,,为边延长线上一点,平分,为射线上一点.(1) 如图,连接,① 若,求的度数;② 若平分,求的度数.(2) 若直线垂直于的一边,请直接写出的度数.ABC PBCABO DOC ABC 70A ∠=︒30ACB ∠=︒D BC BM ABC ∠E BM 1CE CE AB ∥BEC ∠CE ACD ∠BEC ∠CE ABC BEC ∠21.(10分)综合与实践【知识生成】三角形的中线把三角形分成面积相等的两部分.已知:如图1,在中,点D 是边上的中点,连接.求证:证明:过点A 作于E点D 是边上的中点,(1)如图2,在中,点D 是边上的中点,若,则______;(2)如图3,在中,点D 是边上的点且,和存在怎样的数量关系?请模仿写出证明过程.【问题解决】(3)现在有一块四边形土地(如图4),熊大和熊二都想问老熊要这块地,老熊让他们平分,可他们谁都没法平分,请你来帮帮忙.ABC BC AD ABD ACDS S = AE BC ⊥ BC ∴BD CD= 12ABD S BD AE =⋅ 12ACD S CD AE =⋅ ∴ABD ACDS S = ABC BC 6ABC S = ABD S =△ABC BC 2CD BD =ABD S ABC S ABCD要求:用不超过三条的线段画出平分方法,并对作法进行描述.可利用带刻度的直尺.22.(10分)已知点在射线上,.(1) 如图1,若,求证:;(2) 如图2,若,垂足为,交于点,请探究与的数量关系,写出你的探究结论,并说明理由;(3) 如图3,在(2)的条件下,过点作交射线于点,当,时,求的度数.A CE C ADB ∠=∠AD BC ∥AC BD ∥BD BC ⊥B BD CE G DAE ∠C ∠D DF BC ∥CE F BAC BAD ∠=∠8DFE DAE ∠=∠BAD ∠23.(10分)(1)如图1,在四边形中,延长、交于点E ,延长、交于点F .当时,我们就称四边形是“完美四边形”.已知在完美四边形中,.①若,则______°;②若,则的取值范围是______.(2)在五边形中,延长任意不相邻的两边(如图2),在相交得到的角中,如果有四个角相等,我们就称这个五边形是“完美五边形”.如图3,在五边形中,,,该五边形是否为“完美五边形”?请说明你的理由.24.(12分)如图,AB ⊥ CD ,垂足为 O ,点 P 、Q 分别在射线 OC 、OA 上运动(点 P 、Q 都不与点 O 重合),QE 是∠AQP的平分线.ABCD BA CD AD BC E F α∠=∠=ABCD ABCD 80B ∠=︒30α=︒ADC ∠=1035α︒≤≤︒ADC ∠ABCDE 100BCD ∠=︒AB CD(1)如图 1,在点 P、Q 的运动过程中,若直线 QE 交∠DPQ 的平分线于点H.①当∠PQB=60°时,∠PHE=°;②随着点 P、Q 分别在 OC、OA 的运动,∠PHE 的大小是否是定值?如果是定值,请求出∠PHE 的度数;如果不是定值,请说明理由;(2)如图 2,若 QE 所在直线交∠QPC 的平分线于点 E 时,将△EFG 沿 FG 折叠,使点 E 落在四边形PFGQ 内点E′的位置,猜测∠PFE′与∠QGE′之间的数量关系,并说明理由.参考答案一、单选题1.A【分析】用木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,可用三角形的稳定性解释.【详解】如图:A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边.故选:A.2.D【详解】分AB边上的中线CD=AB与CD≠AB两种情况,利用三角形的一个外角等于与它不相邻的两个内角的和,表示出∠BDC,然后对△BCD的三个角的关系进行分析得解.解:∵D为AB的中点,∴BD=AD=AB,①CD=AB时,则BD=CD=AD,在△ACD中,∠BDC=∠A+∠ACD=2∠A,在△BCD中,∠BCD=∠B=2∠A,所以,∠B=∠BCD=∠BDC,所以,△BCD是等边三角形,②CD≠AB时,BD=AD≠CD,在△ACD中,∠BDC=∠A+∠ACD≠2∠A,在△BCD中,∠BCD≠∠B,∵∠B=2∠A,∴∠B 、∠BCD 、∠BDC 三个角没有确定关系,△BCD 的形状无法确定.综上所述,△BCD 是任意三角形.故选D .3.D【分析】设点B 代表的数为x ,则,、可以用x 表示出来,然后根据三角形三边关系求出x 取值范围即可求解.【详解】解:设点B 代表的数为x ,则由题意可得:,,,∴由三角形的三边关系可得:,解得:,故选:D .4.B【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】解:A 、锐角三角形,三条高线交点在三角形内,故错误;B 、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故正确;C 、钝角三角形,三条高线不会交于一个顶点,故错误;D 、等边三角形,三条高线交点在三角形内,故错误.故选B .5.C【分析】根据多边形一条边上的一点(不是顶点)出发,连接各顶点所得三角形数比多边形的边数少1即可求解.【详解】解:多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2003+1=2004.故选:C .6.B3AC =AB BC ==3AC AM ()=3=3AB x x --+==6BC BN x -363336x x x x+->+⎧⎨++>-⎩03x <<【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】解:根据平面镶嵌的条件,用公式 分别解出正三角形,正方形的内角分别为60°、90°.设用m 块正三角形,n 块正方形.则有,得当时,,不符合题意;当时,;当时,,不符合题意.故选:B .7.D【分析】根据“两角的和小于90°或一个角大于90°时三角形是一个钝角三角形”,据此求解即可.【详解】解:由三角形内角和可得:,∵,∴当与∠O 的和小于90°时,三角形为钝角三角形,则有;当大于90°时,此时三角形为钝角三角形,则有.故选:D .8.A【分析】先根据三角形的内角和定理易计算出,,,根据折叠的性质得到,,,可计算出,然后根据,即可得到.【详解】解:设,则,,,,解得,,,,360︒()2180n n -⋅︒÷6090360m n +=362m n=-2n =32m =3n =3m =4n =0m =180A O APO ∠+∠+∠=︒30O ∠=︒OAP ∠060A ︒<∠<︒OAP ∠90150A ︒<∠<︒1140∠=︒225∠=︒315∠=︒1140BAE ∠=∠=︒315E ∠=∠=︒15ACD E ∠=∠=︒EAC ∠E EAC ACD α∠+∠=∠+∠EAC α∠=∠33x ∠=128x ∠=25x ∠=123180∠+∠+∠=︒ 2853180x x x ∴++=︒5x =︒1140∴∠=︒225∠=︒315∠=︒是沿着边翻折形成的,,,,又是沿着边翻折形成的,,而,.故选:A .9.D【分析】由题意推出,设,设,用含x 和y 的代数式表示和即可解决.【详解】解:如图:∵平分,平分,∴,设,由外角的性质得:,,∴,解得:,∴,∵,∴,∴.ABE ∆ ABC ∆AB 180︒1140BAE ∴∠=∠=︒315E ∠=∠=︒36036014014080EAC BAE BAC ∴∠=︒-∠-∠=︒-︒-︒=︒ADC ∆ ABC ∆AC 180︒15ACD E ∴∠=∠=︒E EAC ACD α∠+∠=∠+∠80EAC α∴∠=∠=︒CAE BAE ABF DBF ∠=∠∠=∠,CAE BAE x ==∠∠3C y ABC y ∠=∠=,ABF ∠DBF ∠AE BAC ∠BF ABD ∠12CAE BAE ∠=∠∠=∠,3CAE BAE x C y ABC y ∠=∠=∠=∠=,,118BAE G x ∠=∠+∠=+︒()11122222ABD x y x y ∠=∠=++=1182x x y +=+36y =︒()()11121801801083622ABC ∠=∠=︒-∠=⨯︒-︒=︒AD DC ⊥90D Ð=°90254DFB ∠=︒-∠=︒故选:D .10.B【分析】正中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.【详解】如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,由图可得:正六边形有13个,可分成小正三角形个数为:(个);较大正三角形有26个,可分成小正三角形个数为:(个);平行四边形有5个,可分成小正三角形个数为:(个);小正三角形个数为13个;∴一共有小正三角形个数为:(个),∴图中阴影部分面积为:,故选:B .二、填空题11.【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最小值.【详解】解:设第三边为,根据三角形的三边关系,得:,即,为整数,ABC ∆ABC ∆13678⨯=264104⨯=5630⨯=781043013225+++=787526225⨯=5a 7337a -<<+410a <<a的最小值为.故答案为:.12.40【分析】连接,根据中线的性质和三角形的面积公式可得三角形之间面积的倍数关系,设,,可得,,再由四边形的面积是18,解得m 的值,代入计算即可.【详解】解:如图,连接,∵是边上的中线,,∴,,,∴,,设,,∴,,∵,∴,解得:,∴,∵四边形的面积是18,∴,解得∴故答案为:40.13.30【分析】利用平行线的性质和角平分线的定义得到,证出,同理,则的周长即为,可得出答案.【详解】解:,,a ∴55CF AEF S m = BFD S n = 6n m =20ABC S m = CDFE 20ABC S m = CF AD BC 3CE AE =ABD ACD S S = FBD FCD S S =△△3CBE ABE S S = ABF ACF S S = 3CEF AEF S S = AEF S m = BFD S n = 3CEF S m = CFD S n = 34ABF ACF AEF CEF S S S S m m m==+=+= 3CBE ABE S S = ()343m m m n n +=++6n m =438220ABC ABD ACD S S S m n m m n m n m =+=++++=+= CDFE 336918CEF CDF S S m n m m m +=+=+== 2m =2040ABC S m == EBD EDB ∠=∠ED EB =DF FC =AEF △+AB AC //EF BC EDB DBC ∴∠=∠平分,,同理:,即故答案为:.14.或或【分析】先设出善美角,再利用题中的定义分类讨论即可.【详解】解:设善美角的度数为,则,或,或,∴或或,故答案为或或.15.【分析】根据三角形内角和定理可得,从而得到,再由直角三角形两锐角互余,即可求解.【详解】解:∵,,∴,∴,∴.∵平分,∴.∴,故答案为.16.14【分析】根据多边形的内角和公式(n-2)•180°可知多边形的内角和是180°的倍数,所求出BD Q ABC ∠ABD DBC∴∠=∠EBD EDB ∴∠=∠ED EB∴=FD FC =30cmAE AF EF AE EB AF FC AB AC ∴++=+++=+=30cmAB AC +=30112.5︒90︒30︒3x 330180x x ++︒=︒3330x =⨯︒330x =︒3112.5x =︒90︒30︒112.5︒90︒30︒85︒18086BAC B C ∠=︒-∠-∠=︒1432DAE BAC ∠=∠=︒50B ∠=︒CE AB ⊥9040BCE B ∠∠=︒-=︒402060ACB BCE ACE ∠∠∠=+=︒+︒=︒18070BAC B ACB ∠=︒-∠-∠=︒AD BAC ∠1352DAC BAC ∠=∠=︒18085ADC DAC ACB ∠=︒-∠-∠=︒85︒的多边形的边数再加上1即可.【详解】解:设除去的内角为α,则(n-2)•180°=2035°+α,∵2035°÷180°=11…55°,∴n-2=11+1=12,解得n=14,所以,这个多边形的边数n 的值是14.故答案为:14.17.【分析】连接AO ,根据三角形边之间的关系得到面积之间的关系进行推理解答.【详解】如图,连接AO ,∵CD=3AD ,∴AD :CD=1:3,∴,,,∵,∴,,∵AF ∥BC ,∴,∴,∴,,∵AE=2BE ,∴BE :AE=1:2,∴,,∴,,∴,52513ADF CDF S S =△△13ADO CDO S S =△△3ABD CBD S S =△△12CDF S =△4A D F S =△16ACF S =△16ABF ACF S S ==△△12ABD S = 36CBD S =△48ABC S =△2AEC BEC S S =△△2AEO BEO S S =△△32AEC S =△16BEC S =△()2AOE AOD COD BOE BOC S S S S S ++=+△△△△△即,∴,即,∴,∵,∴,∴S 四边形AEOD .故答案为:.18.6【分析】如图所示,连接BF ,过点C 作CH 垂直于直线AB 于H ,根据三角形中线的性质只需要求出从而求出CH=6,即可利用点到直线的距离垂线段最短求解.【详解】解:如图所示,连接BF ,过点C 作CH 垂直于直线AB 于H ,∵D 、E 分别是AB 、BC 的中点,∴,,∴,,∴,∴,∴,∴,又∵点到直线的距离垂线段最短,∴,∴AC 的最小值为6,故答案为:6.22AOE AOD COD BOE BOC S S S S S ++=+△△△△△123COD COD BOC S S S +=△△△423COD BOC S S =△△:3:2COD BOC S S =△△36BCD BOC COD S S S =+=△△△1085COD S =△108523255AEC COD S S =-=-=△△52515ABC S =△1====2ABE ACE ABC ADC BDC S S S S S △△△△△==AFD BFD CEF BEF S S S S △△△△,=CEF CEF ACF BDFE S S S S ++△△△四边形==5AFD CEF BEF BFD BDFE S S S S S ++=△△△△四边形==5ACF BDFE S S △四边形=15ABC ACF AFD CEF BDFE S S S S S =+++△△△△四边形1152CH AB ⋅=6CH =6AC CH ≥=三、解答题19.(1)解:如图:(2)解:如图:(3)解:根据蝴蝶定理,梯形左、右两部分面积都是6平方厘米,梯形的面积=(平方厘米)20.(1)解: 中,,,,平分,∴,∵,∴;②∵,∴,平分,∴,∴.(2)解:当时,,496625+++=ABC ①70A ∠=︒30ACB ∠=︒80ABC ∴∠=︒BM ABC ∠1402ABE CBE ABC ∠=∠=∠=︒CE AB ∥40BEC ABE ∠=∠=︒30ACB ∠=︒150ACD ∠=︒CE ACD ∠1752DCE ACD ∠=∠=︒754035BEC DCE CBE ∠=∠-∠=︒-︒=︒①CE BC ⊥90DCE ∠=︒∴;当时,,∴;当时,延长交于点,如图所示:∵,∴;综上所述:的度数为、或.21.解:(1) ;(2);理由如下:过点A 作于E∵∴∴(3)方法一:如图,连接,取的中点,连接,,则四边形就是四边形的一半.由知,∴50BEC DCE CBE ∠=∠-∠=︒②CE AC ⊥90ACE ∠=︒18020BEC CBE ACB ACE ∠=︒-∠-∠-∠=︒③CE AB ⊥CE AB F 218050BEF ABE BFE ∠=︒-∠-∠=︒180130BEC BEF ∠=︒-∠=︒BEC ∠50︒20︒130︒116322ABD ABC S S ==⨯= 3ABC ABD S S ∆∆=AE BC ⊥2CD BD=3AC BD =12ABD S BD AE ∆=⋅ Δ12ABC S AC AE =⋅3ABC ABD S S ∆∆=BD BD AE BE ADEC ABCD BE DE =ABE ADE S S =△△BEC DEC S S = ABD CBD S S =方法二:如图,取的中点H 、取的中点F ,连接,,则四边形就是四边形的一半.∵H 点是的中点、点F 是的中点,∴,∴22.(1)证明:∵,∴,又∵,∴,∴;(2)解:理由如下:∵是的外角,∴,∵,∴,∴在中,,∴,又∵,∴;(3)设,则,∴,AD BC AF CH AFCH ABCD AD BC ABF ACF S S = ACH DCH S S =12AFCH ABF CDH ABCD S S S S =+= AD BC ∥DAE C ∠=∠C ADB ∠=∠DAE ADB ∠=∠AC BD ∥290DAE C ∠+∠=︒CGB ∠ADG △CGB ADB DAE ∠=∠+∠BD BC ⊥90CBD ∠=︒BCG 90CGB C ∠+∠=︒90ADB DAE C ∠+∠+∠=︒C ADB ∠=∠290DAE C ∠+∠=︒DAE α∠=8DFE α∠=1808AFD α∠︒=-∵,∴,又∵,∴,∴∴,∴,又∵,∴,∵,∴,∴在中,,∴的度数为.23.解:(1)①∵,,∴,,∴;故答案为:;②∵,,∴,,∴,∵,∴.故答案为:.(2)五边形不是“完美五边形”;理由如下:延长、交于点F ,延长、交于点G ,延长、交于点H ,延长、交于点DF BC ∥1808C AFD α∠=∠=︒-290DAE C ∠+∠=︒()2180890αα-+=︒︒18α=︒18081836C ∠=︒-⨯︒=︒36ADB C =∠=∠°BAC BAD ∠=∠180180ABC C BAC ADB BAD ABD ∠=︒-∠-∠=︒-∠-∠=∠90CBD ∠=︒1452ABC ABD CBD ∠=∠=∠=︒ABD △180453699BAD ∠=︒-︒-︒=︒BAD ∠99︒80B ∠=︒30E F ∠=∠==︒α18070BAF B F ∠=︒-∠-∠=︒18070BCE E B ∠=︒-∠-∠=︒360140ADC B BCE BAF ∠=︒-∠-∠-∠=︒14080B ∠=︒E F α∠=∠=180100BAF B F a ∠=︒-∠-∠=︒-180100BCE E B a ∠=︒-∠-∠=︒-360802ADC B BCE BAF ∠=︒-∠-∠-∠=︒+α1035α︒≤≤︒100115ADC ︒≤∠≤︒100115ADC ︒≤∠≤︒ABCDE CB EA BA DE CD AE BC EDK ,如图所示:∵,∴延长五边形任意不相邻的两边,只能得出4个角,∴假设五边形为“完美五边形”,∴,∴,∵,,∴,∴在∆FCH 中,在∆BGK 中,∴,这与矛盾,∴、、、不可能相等,假设不成立,∴五边形不是“完美五边形”.24.(1)解:①∵AB ⊥CD ,∴∠POQ=90°,∴∠PQO+∠QPO=90°,∵∠PQB=60°,∴∠QPO=30°,∠AQP=120°,∵EQ 平分∠AQP ,PH 平分∠QPO ,∴,,∴,故答案为:45;AB CD ∥ABCDE ABCDE F G H K ∠=∠=∠=∠F H G K ∠+∠=∠+∠100BCD ∠=︒AB CD ∥18080GBK BCD ∠=︒-∠=︒18010080F H ∠+∠=︒-︒=︒18080100G K ∠+∠=︒-︒=︒F H G K ∠+∠≠∠+∠F H G K ∠+∠=∠+∠F ∠H ∠G ∠K ∠ABCDE 1==602EQP AQP ︒∠∠1=152HPQ QPO =︒∠=45H EQP HPQ -=︒∠∠∠②∠PHE 是一个定值,∠PHE =45°,理由如下:∵AB ⊥CD ,∴∠POQ=90°,∴∠PQO+∠QPO=90°,∴∠QPO=90°-∠PQO ,∠AQP=180°-∠PQO ,∵EQ 平分∠AQP ,PH 平分∠QPO ,∴,,∴;(2)解:,理由如下:如图所示,连接,∵AB ⊥CD ,∴∠POQ=90°,∴∠PQO+∠QPO=90°,∵∠CPQ+∠QPO=180°,∠PQA+∠PQO=180°,∴180°-∠CPQ+180°-∠PQA=90°,∴∠CPQ+∠PQA=270°,∵QE ,PE 分别平分∠PQA ,∠CPQ ,∴,∴,∴∠PEQ=180°-∠EPQ-∠EQP=45°,由折叠的性质可知,∵,∴,∴,∵,∴.119022EQP AQP PQO ∠=∠=︒-∠11=4522HPQ QPO PQO =︒-∠∠=45H EQP HPQ -=︒∠∠∠90PFE QGE ''+=︒∠∠EE '11==22EPQ CPQ EQP PQA ∠∠,∠∠1113522EPQ EQP CPQ PQA ∠+∠=∠+∠=︒45GE F PEQ '∠=∠=︒180FEE EFE EE F GEE EGE EE G ''''''∠+∠+∠=︒=∠+∠+∠=360FEG FE G EFE EGE '''+++︒∠∠∠∠=270EFE EFE ''+︒∠∠=180=EFE PFE EGE QGE ''''+︒+∠∠∠∠360=90PFE QGE EFE EFE ''''+=︒--︒∠∠∠∠。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
【人教版】八年级上册数学:第11章三角形单元测试(含答案)
第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。
人教版数学八年级上册第十一章《三角形》单元测试题含答案解析
第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列长度的三条线段,能组成三角形的是()A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm2.等腰三角形的周长为16,其一边长为6,那么它的底边长为()A. 4或6B. 4C. 6D. 53.如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则线段AD是()A. 边BC上的中线B. 边BC上的高C. ∠BAC的平分线D. 以上都是4.已知三角形的三边的长依次为5,7,x,则x的取值范围是()A. 5<x<7B. 2<x<7C. 5<x<12D. 2<x<125.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A. 40°B. 45°C. 50°D. 55°6.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()7.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A. 45°B. 60°C. 70°D. 75°8.下列说法正确的是()A. 按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B. 按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C. 三角形的外角大于任何一个内角D. 一个三角形中至少有一个内角不大于60°9.下列选项中,有稳定性的图形是()A. B. C. D.10.已知一个多边形的内角和为1080°,则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形11.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( ).A,正三角形 B.正方形 C.正五边形 D.正六边形12.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为()A. 80°;B. 90°;C. 100°;D. 110°;二、填空题13.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.14.如图,在△ABC 中,∠A=60°,D 是AB 上一点,E 是AC 上一点,BE、CD 相交于O,且∠BOD=55°,∠ACD=30°,则∠ABE 的度数是__________.15.如图,在△ABC中,BD=DC,AE=EB,AD与CE交于点O,若DO=2,则AO=_____.16.已知a,b,c是ΔABC的三边长,a,b满足|a−7|+(b−1)2=0,c为奇数,则c=__________.17.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x=150°时,对应的和谐数对有一个,它为(10,20);当x=66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________.三、解答题18.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.如图,在△ABC中,CD平分∠ACB,DE∥AC,∠B=50°,∠EDC=30°.求∠ADC 的度数.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,则∠E= .21.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=15∠CDN,∠CBE=15∠CBM),则∠E= .参考答案1.B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.2.A【解析】分析:此题分为两种情况:6是等腰三角形的底边或6是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.详解:当腰为6时,则底边4,此时三边满足三角形三边关系;当底边为6时,则另两边长为5、5,此时三边满足三角形三边关系;故选A.点睛:本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是能够分类讨论,难度不大.3.D【解析】分析:根据折叠的性质即可得到结论.详解:∵把△ABC沿直线AD翻折180°,使点C 落在点B的位置,×180°=90°,∴AB=AC,BD=CD,∠BAD=∠CAD,∠ADB=∠ADC=12∴AD⊥BC,∴线段AD是边BC上的中线,也是边BC上的高,还是∠BAC的平分线,故选:D.点睛:本题考查了翻折变换(折叠问题),熟练掌握折叠的性质是解题的关键.4.D【解析】【分析】根据:三角形任意两边和大于第三边,任意两边之差小于第三边.【详解】第三边取值范围:7-5<x<5+7,即:2<x<12故选:D【点睛】本题考核知识点:三角形的边. 解题关键点:熟记三角形三边关系.5.C【解析】【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【详解】∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∠ACD=50°,∴∠ECD=12故选C.【点睛】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键.6.C【解析】分析:直接延长FE交DC于点N,利用平行线的性质得出∠DNF=∠BCD =95°,再利用三角形外角的性质得出答案.详解:延长FE交DC于点N,∵直线AB∥EF,∴∠DNF=∠BCD =95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.点睛:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.7.D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠α=∠DCE+∠B,∴∠α=45°+30°=75°.故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.8.D【解析】分析:根据三角形的分类、三角形的外角和内角的性质得出正确答案.详解:A、按角分类,三角形可以分为钝角三角形、锐角三角形和直角三角形,故错误;B、按边分类,三角形可分为等腰三角形、不等边三角形,故错误;C、三角形的外角大于任何一个与它不相邻的内角,故错误;D、一个三角形中至少有一个内角不大于60°,故正确,则本题选D.点睛:本题主要考查的是三角形的分类以及三角形内角和外角的性质,属于基础题型.理解三角形的性质是解决这个问题的关键.9.B【解析】分析:根据三角形的稳定性回答即可.详解:A项,四边形不具有稳定性。
八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。
八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。
人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上第十一章三角形单元测试及答案(人教版)
(时限:100分钟总分:100分)
一、选择题:将下列各题正确答案的代号的选项填在下表中。
(每小题2分,共24分。
)
1.如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()
A. 360°
B. 180°
C. 255°
D. 145°
2.若三条线段中a=3,b=5,c为奇数,
那么由a,b,c为边组成的三角形共有()
A. 1个
B. 3个
C. 无数多个
D. 无法确定
3.有四条线段,它们的长分别为1cm,2cm,3cm,4cm,
从中选三条构成三角形,其中正确的选法有()
A. 1种
B. 2种
C. 3种
D. 4种
4.能把一个三角形分成两个面积相等的三角形是三角形的()
A. 中线
B. 高线
C. 角平分线
D. 以上都不对
5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()
A. 锐角三角形
B. 钝角三角形
C. 直角三角形
D.不能确定
6.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()
7.下列图形中具有稳定性的是()
A. 直角三角形
B. 正方形
C. 长方形
D. 平行四边形
8.如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB、AC上的点,且DE∥BC,
则∠AED的度数是()
°°°°
9.已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是()
A. 130°
B. 60°
C. 130°或50°
D. 60°或120°
10.若从一多边形的一个顶点出发,最多可引10条对角线,
则它是()
A.十三边形
B.十二边形
C.十一边形
D.十边形
11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角
板的一条直角边重合,则∠1的度数为()
°°°°
12.用三个不同的正多边形能够铺满地面的是()
A. 正三角形、正方形、正五边形
B. 正三角形、正方形、正六边形
C. 正三角形、正方形、正七边形
D. 正三角形、正方形、正八边形
二、填空题:(本大题共8小题,每小题3分,共24分。
)
13.三角形的内角和是,n边形的外角和是 .
14.已知三角形三边分别为1,x,5,则整数x= .
15.一个三角形的周长为81cm,三边长的比为2︰3︰4,则最长边比最短边长 .
V中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上的16.如图,Rt ABC
A/处,折痕为CD,则∠A/DB=
17.在△ABC中,若∠A︰∠B︰∠C=1︰2︰3,
则∠A=,∠B=,∠C= .
18.从n(n>3)边形的一个顶点出发可引条对角线,
它们将n边形分为个三角形.
19.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数
是,这个外角的度数是 .
20.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:
⑴第四个图案中有白色地板砖块;
⑵第n个图案中有白色地板砖块.
三、解答题:(本大题共52分)
21.(本小题5分)若a,b,c分别为三角形的三边,化简:
.
22.(本小题5分)如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以
E为顶点的角.
23.(本小题5分)证明:三角形三个内角的和等于180°.
已知:△ABC(如图).
求证:∠A+∠B+∠C=180°.
24.(本小题8分)如图22(1)所示,称“对顶三角形”,其中,∠A+∠B=∠C+∠D,
利用这个结论,完成下列填空.
(1))如图22题(2),∠A+∠B+∠C+∠D+∠E= .
(2)如图22题(3),∠A+∠B+∠C+∠D+∠E= .
(3)如图22题(4),∠1+∠2+∠3+∠4+∠5+∠6= .
(4)如图22题(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7= .
25.(本小题5分)如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,
已知AB =6,AD =5,BC =4,求CE 的长.
26.(本小题6分)如图,四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC.
⑴.如果∠B +∠C =120°,则∠AED 的度数= .(直接写出结果) ⑵.根据⑴的结论,猜想∠B +∠C 与∠AED 之间的关系,并说明理由.
27.(本小题6分)如图所示,∠ACD 是△ABC 的外角,∠A =40°,BE 平分∠ABC ,
CE 平分∠ACD ,且BE 、CE 交于点E.求∠E 的度数.
28.(本小题6分)BD 、CD 分别是△ABC 的两个外角∠CBE 、∠BCF 的平分线, _ 25 _E
_D _C _B _A _ 27 ?? _E _D
_C
_B _ A
求证:∠BDC=90°-∠A.
29.(本小题6分)如图,在直角坐标系中,点A、B分别在射线OX、OY上移动,BE是∠
ABY的角平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化?如果保持不变,请给出证明.
参考答案:
一、;;;;;;;;;;11. ;;
二、°、360°;14. 5;15. 18cm;16. 10°;17. 30°、60°、90°;
18.(n-3)、(n-2);19. 15、60°;20. ①18、②4n+2;
三、21.-a+b+3c;
22. 图中有7个三角形三角形有:△ABC, △ADE, △BED,△ABE,△AEF,△ABF,△BFC
以E为顶点的角:∠BEA, ∠BEA∠BEF,∠DEA,∠DEF, ∠AEF
23. 证明:过点C作DE1)180°(补成三角形)(2)180°(补成三角形)(3)360°(补成四边形)(4)540°(补成五边形)
25. 解:同一个三角形的面积不变
∴×BC×AD=×AB×CE CE=;
26. 解(1)∵ABCD为四边形,内角和为360度
∴∠A+∠D=360°-120°=240°
∵AE平分∠BAD,DE平分∠ADC
∴∠EAD+∠EDA=1/2(∠A+∠D)=120°
∴∠AED=180°-120°=60°
(2) ∵∠B+∠C=360°-(∠A+∠D)
∠A+∠D=2(180°-∠AED)
∴∠B+∠C=360°-(∠A+∠D)=360°-2(180°-∠AED)=2∠AED
∴∠B+∠C=2∠AED
27. 解:
因为∠ACD是△ABC的外角,∠A=40°
所以∠ACD=40°+∠ABC
因为BE平分∠ABC,CE平分∠ACD
所以∠ABC=2∠EBC, ∠ACD=2∠ECD
所以∠ACD=40°+∠ABC=40°+2∠EBC
因为∠E=∠ECD-∠EBC,
所以∠E=∠ECD-∠EBC=1/2∠ACD-1/2∠ABC =1/2(40°+2∠EBC-2∠EBC)=20°
28. 证明:∠CBE、∠BCF为△ABC的外角
所以∠CBE=∠A+∠C ∠BCF=∠B+∠A
∠CBE+∠BCE=∠A+∠C+∠B+∠A=180°+∠A
因为BD、CD分别是△ABC 的两个外角∠CBE、∠BCF的平分线,
所以∠DBC+∠DCB=1/2(∠CBE+∠BCE)= (180°+∠A)=90°+∠A
在△BDC中
∠BDC=180°-(∠DBC+∠DCB)=180°-(90°+∠A)=90°-∠A.
29.解:∠C的大小保持不变
理由:
∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=?∠ABY=?(90°+∠OAB)=45°+?∠OAB,
即∠ABE=45°+∠CAB,
又∵∠ABE=∠C+∠CAB,
∴∠C=45°,
故∠ACB的大小不发生变化,且始终保持45°。