分数和百分数解决问题的复习

合集下载

分数及百分数问题的基本问题的解决策略

分数及百分数问题的基本问题的解决策略

一基本类型及解决问题的方法1、求分率分率表示一个数是另一个数的几分之几,用前一个数除以另一个数。

在解决问题中,这种题目有两种情况。

一是求一个数是另一个数的几分之几,还有一种是一个数比另一个数多或少几分之几?解决问题时,首先要注意找准单位1,并确定是求谁所占的分率。

例1:四月份有电200度,比三月份节约25度。

四月份的用电量是三月份的百分之几?以三月份的电量作单位1,求的是四月份占的分率,用四月份的电量÷三月份电量。

已知四月份电量200,三月分电量未知,先求三月份电量,已知四月份比三月节约,说明三月的较多,应当是(200+25),因此,算式是200÷(200+25)例2:四月份有电200度,比三月份节约25度。

四月份的用电量比三月份节约百分之几?以三月份的电量作单位1,求的是四月份信息三月份节约的所占的分率,用四月份节约的电量÷三月份电量。

已知四月份比三月份节约电量25,三月分电量未知,先求三月份电量,已知四月份比三月节约,说明三月的较多,应当是(200+25),因此,算式是25÷(200+25)当然,也可以从另一个方面看,要求四月比三月少百分之几,把三月的看作单位1,要求比三月少百分之几,就要知道四月是三月的百分之几200÷(200+25),再用三月份的1一四月份所占的分率,得到四月比三月少百分之几?1-200÷(200+25)因此,在求分率的题目上,一定要注意看清是求哪个量所占的分率。

当有看见多、少,或超,减这样的字样的时候,一定要用他们的差距除以单位1.。

2、求数量在分数问题中,求的数量有两种情况,一个是在题目中充当单位1,一种是和单位1相关的量。

分析问题时,首先找出单位1,然后根据单位1已知或未知的情况,做判断。

一般情况下,这样分析:单位1已知,就要知道要求的数量占单位1的分率(问题对应的分率),用单位1数量×问题对应的分率=要求的数量,或是在分析时,根据信息的关系,确定可以求出的数量,然后再根据问题与已知数量间的关系,推导到问题。

《分数与百分数》概念整理

《分数与百分数》概念整理

分数与百分数的概念复习整理分数与百分数知识属于数与代数中数的认识这一内容,知识点以理解和掌握机及运用位主。

一、基本知识点:1、 分数的意义与性质包括7个小知识点:分数的意义、分数大小的比较、分数与除法的关系、真分数、假分数(带分数)、分数的基本性质、最简分数、约分与通分、分数和小数的互化。

2、 百分数包括4个小知识点:百分数的意义、成数、折扣、百分数和分数、小数的互化。

二、通过复习应该达到以下复习目标:理解分数的意义和性质;百分数的意义和特征。

掌握分数和百分数的读法、写法。

能运用对意义的理解解决相关问题。

掌握分数、小数、百分数互化的方法,能比较分数、小数、百分数的大小。

理解分数乘除法的意义,能正确解答分数、百分数的应用题。

掌握分数混合运算的顺序和方法,能根据运算定律、运算性质进行简便运算。

三、知识重点的疏理。

一)分数1、分数的意义①分数表示“把单位1平均分成若干份,表示这样一份或几份的数”。

“1”可以是一个物体、一个图形、一个计量单位或者一个整体……。

分数的分数单位区别于整数和小数是十进制,而要根据分母来确定分数单位。

学生应该能正确找到一个分数的分数单位及包含几个这样分数单位。

②正确区分分率和数量:2米的绳子平均截成5段。

每段长( ),每段是这根绳子的()()。

③能灵活运用分数的意义解决问题,这是学生学习的难点。

如:甲绳比乙绳长13 ,乙绳比甲绳少( )( )。

学生能够通过对13 的理解,即把乙绳看成“1”,平均分成3份,甲绳多了这样的1份,也就是甲绳有4份。

乙绳比甲绳少一份,以甲绳为“1”,也就是比甲绳少了14 。

当然老师还可以变换问题,如问,乙绳是甲绳的( )( ),甲绳是乙绳的( )( )等。

同样也可以替换信息,如甲绳是乙绳的43 ,乙绳是甲绳的34 等,与问题合理匹配,主要是让学生体会思考问题的步骤,抓住解决问题的关键。

在学生掌握了基本方法的基础上,教师还要给学生提供独立运用方法的机会,可以在提供信息的形式上继续变化,强化对思考步骤和方法的掌握。

六年级数学《百分数解决问题》整理与复习

六年级数学《百分数解决问题》整理与复习
1、工厂有男职工120人,女职工150人; A、男职工是女职工的百分之几? B、女职工是男职工的百分之几? C、男职工占全班的百分之几? D、女职工占全班的百分之几? E、男职工比女职工多百分之几?
F、女职工比男职工少百分之几?
对比练习二(只列式不计算):
1、挖一条长480米长的水渠,已经挖了60%, 挖了多少米?
百分数解决问题
整理与复习
主要知识点:
1、求一个数是另一个数的百分之几? 2、求一个数的百分之几是多少? 3、已知一个数的百分之几是多少,求这个数 4、生活中的应用 折扣 纳税
利息
(1)常见的百分率 出勤率、合格率、命中率、出油率、含盐率。。。 实质都是求部分数占总数的百分之几。 (2)求一个数比另一个数多(少)百分之几 可以转化为: 求多(少)的数量占标准量的百分之几? 相差量÷ 单位1=相差分率【A比B多(少)百分之几】
2、挖一条长480米长的水渠,已经挖了60%, 还剩下多少米? 3、挖一条水渠,已经挖了60%,还剩下120 米,这条水渠长多少米? 4、挖一条水渠,已经挖了60%,正好挖了 360米,这条水渠长多少米?
折扣
意义:商品按照原价的百分之几出售,叫折扣。
注意点:不要把折扣和降价百分之几混淆了
口答: 一种商品,原价100,现价90元。 (1)打了多少折? (2)现价比原价降低了百分之几?

பைடு நூலகம்
小明把500元钱存入银行,存期两年,年 利率为4.68%,小明能拿到多少钱?
500 ×4.68% × 2=46.8(元) 500 + 46.8 =546.8(元)
新乐小学六1班期末测试中,优秀(90—100)人数 是30个,良好(75—89)的是12个,及格(60—74) 的有4个,不及格(60以下)的有2个。 求及格率?

分数和百分数的应用问题解决

分数和百分数的应用问题解决

分数和百分数的应用问题解决分数和百分数是我们在日常生活中经常遇到的数学概念,也是应用广泛的数学工具。

本文将探讨分数和百分数的应用问题解决方法,帮助读者更好地理解和运用这些数学概念。

一、分数的应用问题解决1. 分数的加减乘除分数的加减乘除是我们解决分数应用问题的基础。

在进行分数的加减乘除时,我们可以先找到分母的最小公倍数,然后按照相同的分母进行计算。

最后,我们还需要对结果进行化简,将其写为最简形式。

例如,要计算 1/4 + 2/3,我们可以找到 4 和 3 的最小公倍数为 12,将两个分数的分母都改为 12,得到 3/12 + 8/12 = 11/12。

最后,我们发现结果已经是最简形式,即 11/12。

2. 分数的比较当我们需要比较两个分数的大小时,可以通过化简分数的方法来进行。

我们将两个分数都化简为相同的分母,然后比较它们的分子大小。

分子大的分数较大,分子相同的情况下,分母小的分数较大。

例如,要比较 2/5 和 3/8 的大小,我们可以将两个分数化简为相同的分母,得到 16/40 和 15/40。

由于分子相同,所以分母小的 15/40 较大。

二、百分数的应用问题解决1. 百分数的转化在解决百分数应用问题时,我们有时需要将百分数转化为分数或小数,或者将分数或小数转化为百分数。

这需要我们熟练掌握百分数和分数、小数之间的转换方法。

例如,将 75% 转化为分数,我们可以将百分数的百分数记为分子,分母为 100,得到 75/100。

然后,我们还可以将分数化简为最简形式,得到 3/4。

2. 百分数的应用百分数在实际生活中有着广泛的应用。

例如,在商业中,我们常常会遇到打折、涨价等问题,这些都是通过百分数来表示的。

在解决此类问题时,我们可以将折扣或涨价的百分数应用于原价,来计算最终的价钱。

另外,百分数也常用于表示比率、概率和统计数据。

我们可以通过计算百分数来了解某个事件发生的可能性,或者分析某个群体的特征等。

三、分数和百分数应用问题的解决方法1. 建立数学模型在解决分数和百分数应用问题时,我们可以将问题转化为数学模型,以便更好地理解和解决问题。

(完整版)分数百分数应用题典型解法的整理和复习(可编辑修改word版)

(完整版)分数百分数应用题典型解法的整理和复习(可编辑修改word版)

-- ) - - ) 分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。

分数应用题涉及的知识面广, 题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。

小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。

一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例 1 120 千克,还剩下 22 千克。

原】一桶油第一次用去 ,第二次比第一次多用去5来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1 1 1=20+225 5则这桶油的千克数为:(20+22)÷(1 1 1=70(千克)5 5【例 2】一堆煤,第一次用去这堆煤的 20%,第二次用去 290 千克,这时剩下的煤比原来这堆煤的一半还多 10 千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的 ,第二天卖出余下的 , 量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果 极佳。

)【例 3】缝纫机厂女职工占全厂职工人数的 720 工多少人?[分析与解],比男职工少 144 人,缝纫机厂共有职解题的关键是找到与具体数量 144 人的相对应的分率。

新人教版六上解决问题归类(1)精选期末复习(百分数分数)

新人教版六上解决问题归类(1)精选期末复习(百分数分数)

六上数学“解决问题”分类题型一、分数、百分数基本问题【三种模型】: 单位1 ×分率 =分率对应的量 (单位1已知)分率对应的量÷分率 =单位1 (单位1未知)分率对应的量÷单位1 =分率 (注意:是否对应)---------------------------------------------------------------------------------------(一)求一个数的几分之几是多少的问题的解题规律:单位1 ×分率 =分率对应的量 (注意:对应)(1)人民机床厂五月份制造机床108台,六月份比五月份多制造91,六月份生产多少台?(2)一套衣服裤子单价是125元,上衣的价钱比裤子贵54,这套衣服一共多少钱?(3)原计划每天生产210个零件,实际比计划少生产了27,也就是少生产了多少个?(4)工地运来水泥32吨,第一天用去全部的52,第二天比第一天多41,第二天用去多少吨?参考题(孟):2-5-2,3-6-1&3,4-6-1,5-3-2,10-6-1,11-4-2-2,13-5-1,14-6-1&2。

---------------------------------------------------------------------------------------(二)求一个数是另一个数的几分之几或百分之几的问题的解题规律:分率对应的量÷单位1 =分率 (注意:是否对应)延伸:求甲比乙多(少)几分之几或百分之几的问题解题规律:多(少)的部分÷单位1=分率 (甲-乙)÷乙 或 甲÷乙-1(甲-乙)÷乙 或 1-甲÷乙(1)工程队原计划一周修路24千米,实际修了28千米。

①实际修的占原计划的几分之几?②实际比原计划多修百分之几?③原计划比实际少修百分之几?(2)商店有一种衣服,原价40元,降价后每件只卖34元,便宜了百分之几?(3)某工厂,今年生产80台机器,比去年增加了30台,今年多生产了百分之几?参考题(孟):3-6-5,4-5-3,5-2-3-1,6-2-2,7-6-1,8-4-1,9-7-2,11-4-2-1,12-2-9。

六年级数学上册分数、百分数应用题复习题

六年级数学上册分数、百分数应用题复习题

六年级数学上册分数.百分数应用题复习题【知识要点】一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份.二、分数.百分数应用题的主要类型:(1)求一个数是另一个数的几(百)分之几:用“一个数÷另一个数”(2)求一个数的几(百)分之几是多少;(3)求比一个数多(少)几(百)分之几的数是多少:A. B.(4)求一个数比另一个数多(少)几(百)分之几(大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量”(5)已知一个数的几(百)分之几是多少,求这个数.A.或者B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解.三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间.已知条件和所求问题之间不再有直接的对应量率关系.解题时一定要找准标准量(单位“1’),找准“与量对应的率”.“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系.四、百分率问题:优秀率=优秀人数÷总人数×100%成活率=成活棵树÷总棵树×100%合格率=合格人数÷总人数×100%百分率=部分数÷总数×100%出粉率=面粉质量÷小面质量×100%花生出油率=花生油重量÷花生重量×100%现实生活中还有“及格率”.“出勤率”.“合格率”.“达标率”.“利息”.“成数”.“利润率”.“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题.五、按比例分配问题:按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做.六、工程问题.解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等.解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数.工程问题关系式是:工作总量÷工作效率=工作时间工作总量÷工作效率和=合作时间【基础练习】一.求一个数是另一个数的几(百)分之几.1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、学校的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的百分之几?3、学校的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?二、求一个数的几(百)分之几是多少.1、一个排球定价60元,篮球的价格是排球的150% .篮球的价格是多少元?2、一本书有200页,小丽第一天看了全书的25%,第二天看了第一天的80%,第二天看了多少页?3、一块长方形玻璃长56厘米,宽是长的50%,这块玻璃的面积是多少平方厘米?4、商场搞打折促销,其中服装类打5折,文具类打8折.小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?三、求比一个数多(少)几(百)分之几是多少1.一件衬衣原价125元,现在降价.现在售价是多少元?2、一件衬衣原价125元,现在涨价20%.现在售价是多少元?3、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?4、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?1、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?2、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多几分之几?3、光明小学去年有篮球24个,今年新买了6个.今年比去年增加了百分之几?4、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?五、已知一个数的几(百)分之几是多少,求这个数.1、一个儿童体内所含水分有28千克,占体重的75%.这个儿童的体重有多少千克?2、小红家买来一袋大米,吃了15%,还剩15千克.买来大米多少千克?3、水果店运一批水果.第一次运了50千克,第二次运了70 千克,两次正好运了这批水果的60%.这批水果有多少千克?4、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?5、一件衬衣降价20%后,售价为100元.这件衬衣原价是所少元?6、一件衬衣涨价20%后,售价为120元.这件衬衣原价是多少元?六.百分率问题.1.大米加工厂用200千克的稻谷加工成大米时,共碾出大米160千克,求大米的出米率.2、林场春季植树,成活了175棵,死了25棵,求成活率.3、用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.4、菜籽的出油率是28%,若榨油84千克,需要菜籽多少千克?七.按比例分配问题.1.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?2、一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是 .这条长裤售价是多少元?3、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?4、一种药水是用药物和水按3:400配制成的.(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?八.工程问题.1.一篇稿件,甲.乙两人合打.甲一个人完成要5小时,乙一个人完成要8小时,求两人合打几小时可以完成?2、一项工程,甲独立完成要12天,乙独立完成要15天,现两队合作,几天可以完成这项工程的?3、客车由甲城到乙城需行12小时,货车由乙城到甲城需行15小时,两车同时从两城相向开出,相遇时客车距离乙城还有360于米.两城相距多少千米?九.较复杂的分数.百分数应用题.1.一件衬衣售价为100元,一条长裤的价钱是这件衬衫的150%,这条长裤的价钱又是一双皮鞋的 .这双皮鞋售价是多少元?2.8月初鸡蛋价格比7月初上涨了10%,9月初又比8月初回落了15%.9月初鸡蛋价格比7月初涨了还是跌了?涨跌幅度是多少?3、长虹电视机进行促销活动,降价8%.在此基础上,商场又返还售价5%的现金.此时购买长虹牌电视机,相当于降价百分之多少?4、红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%.去年成活的树木数量是前年成活树木的百分之多少?5、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?6、有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?【综合练习一】1、地球上海洋面积是36000万平方千米,占地球总面积的 .地球总面积是多少万平方千米?2、三个同学跳绳.小明跳了120个,小强跳的是小明跳的,小亮跳的是小强跳的 .小亮跳了多少个?3、(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了 .六年级收集了多少个易拉罐?(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?4.(1)一个县迁建绿色蔬菜总产量720万千克,是去年绿色蔬菜总产量的 .去年全县绿色蔬菜总产量是多少万千克?(2)一个县迁建绿色蔬菜总产量720万千克,比去年少 .去年全县绿色蔬菜总产量是多少万千克?【综合练习二】1、一列火车的速度是180千米/时.一辆小汽车的速度是这列火车的,是一架喷气式飞机的 .这架喷气式飞机的速度是多少?2.(1)用84 长的铁丝围城一个长方形,这个长方形的长于宽的比是 .这个长方形的长与宽分别是多少?(2)用84 长得铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5,.三条边各是多少厘米?3、取小麦500克,烘干后,还有428克.计算这种小麦的烘干率和含水率.4、在北纬以上的地方,一年连续约有2个月的时间没有夜晚,没有夜晚的时间约占全年的百分之几?5.由于纬度比较高,瑞典首都斯德哥尔摩七月份的每天平均日照时间大约是一天的75%,约有多少小时?【综合练习三】1、人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的 2/5,在毛细血管中的流动速度只有静脉中的 1/40.血液在毛细血管中每秒流动多少厘米?2、海象的寿命大约是40年,海狮的寿命是海象的 2/3,海豹的寿命是海狮的3/4 .海豹的寿命大约是多少年?3.蜜蜂每秒能振动翅膀236次,蝗虫每秒振动翅膀次数比蜜蜂少 109/118.蝗虫每秒能振动多少次?4、鸡的孵化期是21天,鸭的孵化期比鸡长1/3 .鸭的孵化期是多少天?5.严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中25%的泥沙沉积在河道口,其余被带到入海口.有多少亿吨泥沙被带到入海口?6.一幢楼房共有15层,高约50米.小萍家住在7楼,小萍家的地板离地有多高?【综合练习四】1、一共有240千克水果糖,每袋装 1/4千克.已经装完了总量的3/4 ,已经装完了多少袋?2、我国幅员辽阔,东西相距5200km,东西距离是南北的52/55.南北相距多少千米?3、一杯250ml的鲜牛奶大约含有 3/10的钙质,占一个成年人一天所需钙质的 3/8.一个成年人一天大约需要多少钙质?4.一本课外读物,小芳读了35页,还剩下 2/7没有读.这本课外读物一共有多少页?5.体积相等的冰的质量比水的质量少 1/10,现有一块重9kg的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?6.一批大米运往灾区,运了4车才运走,平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?【综合练习五】1、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5.这个电视机厂去年上半年和下半年的产量分别是是多少?2、一套运动服共300元,裤子价钱是上衣的2/3.上衣和裤子的价钱分别是多少?3、中国农历中的“夏至”是一年中白昼最长.黑夜最短的一天.这一天,北京的黑夜时间是白天的3/5.白昼和黑夜分别是多少小时?4、挖一条水渠,王伯伯需要20天,李叔叔需要30天.两人合作,几天挖完这天水渠的一半?5、甲车从A城市到B城市要行驶12小时,乙车从B城市到A城市要行驶15小时.两车分别从A城市和B城市出发,几小时后相遇?6.甲乙两队合作种树,甲队单独种需要8天,乙队单独种需要10天.现在两队合作,5天能种完吗?【综合练习六】1、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50.上月新生男.女婴儿各有多少人?2、学校把栽70棵树的任务按人数比分配给六年级三个班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵?3、刘大爷家里的菜地共800 ,刘大爷准备用2/5种西红柿,剩下的按2:1的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?4、一种混凝土的水泥.沙子和石子的比是2:3:5.要搅拌20t这样的混凝土,需要水泥.沙子和石子各多少吨?。

【小升初】数学总复习之【分数、百分数、比和比例应用题】专项复习课件ppt

【小升初】数学总复习之【分数、百分数、比和比例应用题】专项复习课件ppt
率是 2.75%,本金是 5000 元,把以上的数据代入“本息=本金+ 本金×利率×时间”,列式解答即可。
【解】 5000+5000×2.75%×2 =5000+275 =5275(元)
答:到期后,王伯伯可取出 5275 元。
【例 4】 现有浓度为 10%的盐水 20 千克,再加入多
少千克浓度为 30%的盐水,可得到浓度为 22%的盐水? ☞思路点拨 本题考查生活中有关浓度的百分数问题,可以
1.几折、几成表示十分之几,也就是百分之几十。 2.存入银行的钱叫本金。取款时银行多支付的钱叫利息。利 息与本金的比值叫利率。以 1 个月为期的利率叫月利率,以 1 年 为期的利率叫年利率。
3.常用的基本公式 出勤人数
出勤率= 总人数 ×100% 发芽种子数
发芽率= 种子总数 ×100% 溶质质量
调来女职工人数: 38- 36= 2(名 ) 答:调来 2 名女职工。
课时训练
一、填空。(每空 2 分,共 24 分) 1.2015 年 7 月 31 日,2022 年冬奥会主办地结果揭晓,北京 最终以 44 票成功当选,哈萨克斯坦阿拉木图获得 40 票。北京的 得票数比阿拉木图多( 10 )%。 2.“经典诵读”兴趣小组有 25 人,昨天因事请假 2 人,今 天 全 部到 齐 ,昨 天的 出 勤率 是 ( 92% ), 今 天的 出勤 率 是 ( 100% )。 3.豆腐中蛋白质含量约占 40%,要想获得 8 克蛋白质需要进 食( 20 )克豆腐。
确定单位 “1”的量和 与单位 “1”的量相比较的量 。与单位 “1”相 比较的量 ÷单位 “1”的量=几分之几 (百分之几 )。
在 较复杂的 题中,如 果是求甲 量比乙量 多 (少 )几分之 几 (百分 之几 )。甲量与乙 量的差 ÷单位 “1”的量=甲 量比乙量 多(少)几分之 几 (百分之几 )。

《分数应用题复习》教案8篇

《分数应用题复习》教案8篇

《分数应用题复习》教案8篇《分数应用题复习》教案1教学目标1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。

2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。

3、通过运用知识解题,提高解决实际问题的能力。

教学重点综合运用知识解答有关应用题教学准备课件,作业纸教学过程一、导入谈谈学校的体育达标情况。

出示;体育达标率为99.7%从这个条件,你能知道什么?你还想到了什么?揭题:分数、百分数应用题二、教学新课(一)求分率1、出示学校体育达标情况:优秀650人,良好400人,合格250人。

2、根据这些条件,你可以提出那些不同的有关分数、百分数的问题?3、同桌合作,讨论完成。

4、反馈(1)一个数是另一个数的几(百)分之几?例如:优秀率?650(650+400+250)=50%(2)一个数比另一个数多(少)几(百)分之几?例如:优秀比良好人数多几分之几?(650-400)400=5/8(二)求单位1或求分率所对应的量1、把问题当成条件,根据条件编分数、百分数应用题优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。

2、小组合作完成3、反馈,并解答,想想有没有另外方法可以解答。

①在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?130050%=650(人)(说说你的揭题思路)②在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?65050%=1300(人)③在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?650(1+5/8)=400(人)(说说你的解题思路)④在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?400(1+5/8)=650人4、观察这些应用题,找找相同点与不同点①有共同的数量关系单位1分率=分率对应的量②单位1已知或未知5、你认为在解这类应用题是要注意什么?6、师小结:找准单位1的量,根据已知与未知判断方法。

教案-数学最新-小升初专题复习4-分数与百分数的应用 中

教案-数学最新-小升初专题复习4-分数与百分数的应用 中

知识点一:分数应用题1、分数应用题的基本类型(1)求一个数的几分之几是多少,用乘法计算。

如12的32是多少?列式为83212=⨯ (2)求一个数是另一个数的几分之几,用除法。

如8是12的几分之几?列式为32128=÷ (3)已知一个数的几分之几是多少,求这个数,用除法。

如一个数的32是8,求这个数。

列式为12328=÷2、百分数问题掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量 标准量=比较量÷百分数 一般有三种基本类型:(1) 求一个数是另一个数的百分之几; (2) 已知一个数,求它的百分之几是多少; (3) 已知一个数的百分之几是多少,求这个数。

知识点二:生活中百分数应用题一般的百分数应用题的解法和分数应用题的解法相同,包括求出勤率、发芽率、利息、折扣、浓度问题,因此我们必须掌握以下公式或概念: 常用的基本公式出勤率=(出勤人数÷总人数)×100%溶液的浓度=(溶质的质量÷溶液质量)×100% (溶液=溶剂+溶质 ) 利润率=(售价-进货价)÷进货价×100% 亏损率=(进货价-售价)÷进货价×100%典例定价=成本价×(1+期望利润率) 营业额×税率=纳税额 本金×时间×利率=利息 利息和=本金+利息分数、百分数应用题例题1、一本书,小红第一天看了40页,第二天比第一天多看41,第二天看了多少页?例题2、红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?例题3、仓库里有一批货物,第一次运出92,第二次运出61,还剩下66吨。

仓库里原来有货物多少吨?例题4、四位同学去种树,第一位同学种的树是其他同学总数的一半,第二位同学种的树是其他同学种树总数的31,第三位同学种的数是其他同学种树总数的41,而第四位同学刚好种了13课。

六年级解决问题总复习整理题型

六年级解决问题总复习整理题型

解决问题复习课时一(复合、分数、百分数)一般复合应用题1、一个修路队计划5天修路600米,实际每天比计划多修30米,实际几天修完?2、为了节约用水,某自来水公司规定:每人每月用水不超过3吨时,每吨2.6元;超过3吨的部分,按每吨3.5元收费。

照这样计算,陈明家5口人,上月供用水18吨,应交税费多少元?3、修一条路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,最后还剩下14米没修。

这条路长多少米?4、鸡和兔分数应用题乘法问题:还长297千米。

长江1、尼罗河全长6670千米,长江比尼罗河的910全长多少千米。

(普通分数乘法应用题),海豹的寿命是2、海象的寿命大约是40年,海狮的寿命是海象的34.海豹的寿命大约是多少年?(连需求一个数的几分之几是海狮的23多少问题)3、人心脏跳动的次数随年龄而变化。

青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多4。

婴儿每分钟心跳多少次。

(求5比一个数多或少几分之几是多少的问题)除法问题:1、修一条公路,第一天修了全长的12,第二天修了全长的25,还剩9千米没修,这条公路一共长多少千米?(已知一个数的几分之几,求这个数数多少。

)2、小明的体重是35千克,他的体重比爸爸的体重轻815,小明爸爸的体重是多少千克?(已知比一个数多或少几分之几,求这个数是多少。

)3、甲乙两个粮库共有粮食420吨。

乙粮库的粮食是甲粮库的34,两个粮库各有粮食多少吨?(求两个未知数的解决问题)4、杨树有24棵,比柳树少58。

槐树又比柳树多14。

槐树又多少棵?(连续求单位1和已知量)5、工程问题:百分数解决问题百分率:1、有1600千克的油菜籽,榨出672千克的菜籽油,求油菜籽的出油率?2、油菜籽的出油率是42%。

2100kg 油菜籽可以榨油多少千克?3、油菜籽的出油率是42%。

一个榨油厂榨出2100kg 菜籽油,用了多少千克油菜籽?求有一个数比另一个数多或少百分之几是多少?1、胜利林场原计划造林12公顷,实际造林15公顷,实际造林比原计划增加了百分之几?2、小飞家原来每月用水约10吨,更换了水龙头后每月用水约9吨,每月用水比原来节约了百分之几?求比一个数增加或减少百分之几的数是多少1、学校图书室原有图书1400册,今年图书册数增加了12%。

分数百分数知识点总结

分数百分数知识点总结

分数百分数知识点总结分数和百分数是我们在日常生活中经常会遇到的数学概念,它们在工作、生活中都有着重要的应用。

分数表示一个整体被分成了几等份,而百分数则是表示一个数占整体的百分比。

在学习分数和百分数的知识点时,我们需要掌握它们的基本概念、加减乘除的运算规则以及实际应用中的具体问题解决方法。

接下来,我将对分数和百分数的知识点进行总结和归纳。

一、分数的基本概念分数是指一个整体被分成了几等份,而每一份就是这个分数。

其中,分子表示被分成的份数,分母表示整体共分成的份数。

例如,3/4表示一个整体被分成了4份,其中的3份就是分数3/4。

分数分为真分数和假分数,当分子小于分母时为真分数,反之为假分数。

分数还可以化简,即寻找分子和分母的最大公约数,然后将分子和分母同时除以最大公约数即可。

例如,4/6可以化简为2/3。

二、分数的加减乘除1. 加法和减法:分数的加法和减法要先找到它们的公共分母,然后分别对分子进行加减操作,最后化简得到最简分数。

例如,1/3 + 2/3 = 3/3 = 1,1/2 - 1/4 = 2/4 - 1/4 = 1/4。

2. 乘法:分数的乘法只需将分子相乘得到新的分子,分母相乘得到新的分母,最后可以对新的分数进行化简。

例如,1/3 × 2/3 = 2/9。

3. 除法:分数的除法需要先将除数取倒数,然后将分数乘以倒数得到新的分数,最后可以对新的分数进行化简。

例如,1/3 ÷ 2/3 = 1/3 × 3/2 = 1/2。

三、百分数的基本概念百分数是指一个数占整体的百分比,通常用百分号“%”表示。

例如,50%表示一个数占整体的50%。

在实际应用中,我们需要掌握百分数的转化、计算和比较方法。

1. 百分数的转化:将分数转化为百分数时,只需将分数化为小数,然后乘以100即可得到百分数。

例如,3/4 = 0.75 × 100 = 75%。

2. 百分数的计算:百分数的计算可以直接利用百分之一的概念进行。

数学问题解决技巧小学六年级分数与百分数计算方法总结

数学问题解决技巧小学六年级分数与百分数计算方法总结

数学问题解决技巧小学六年级分数与百分数计算方法总结在小学六年级的学习中,数学是一个非常重要的科目。

分数和百分数是我们日常生活中经常遇到的,并且在各种数学问题的计算中起到至关重要的作用。

本篇文章将总结一些小学六年级学生在解决分数和百分数问题时可以使用的一些技巧和方法。

一、分数的加减法计算方法在小学六年级,我们开始学习分数的加减法。

当我们遇到分数相加减的问题时,可以采取以下步骤来解决。

1. 首先,要确保两个分数的分母相同。

如果分母不同,需要将其转化为相同的分母。

2. 将两个分数的分子相加或相减得到新的分子。

3. 最后,将新的分子与原来的分母保持不变,得到最终的答案。

举个例子:假设我们需要计算 1/3 + 2/5,我们需要将其转化为相同的分母。

可以发现,3 和 5 的最小公倍数是 15,因此我们需要将两个分数的分子和分母都乘以适当的数,使得分母都变为 15。

具体计算如下:1. (1/3) * (5/5) = 5/152. (2/5) * (3/3) = 6/15现在,我们可以将两个分数的分子相加,得到 5/15 + 6/15 = 11/15。

因此,1/3 + 2/5 = 11/15。

同样的方法也适用于分数的减法计算。

需要注意的是,如果分子减完后的结果为负数,我们可以通过将分子变为负数,并保持分母不变来得到最终的答案。

二、分数的乘法和除法计算方法除了加法和减法,小学六年级的学生也需要学会如何进行分数的乘法和除法计算。

以下是一些常用的技巧和方法。

1. 分数的乘法:分数的乘法相对简单,只需要将两个分数的分子相乘,分母相乘即可。

举个例子:假设我们需要计算2/3 * 4/5,我们可以直接将两个分数的分子相乘,分母相乘,得到 (2*4)/(3*5) = 8/15。

2. 分数的除法:分数的除法计算相对复杂一些,需要借助转化为乘法来实现。

可以通过将除法转化为乘法,将除号改为乘号,并将第二个分数的分子和分母互换位置,然后按照分数的乘法规则进行计算。

用分数(百分数)解决实际问题题型总结超全

用分数(百分数)解决实际问题题型总结超全
1、找单位"1":比后 2、分析单位"1":
1>已知: 乘法 : 单位"1"×对应分数=对应量 2>未知:①除法 : 对应量÷对应分数=单位"1"
② 方程 : 设单位"1"为x 单位"1"〔x×对应分数=对应量
三、求一个数是另一个数的几分之几〔百分之几
1、甲是5,乙4,求乙是甲的几分之几〔百分之几 2、甲是5,乙4,求甲是乙的几分之几〔百分之几 一个数÷另一个数=求一个数是另一个数的几分之几〔百分之几 一个数÷单位1的量=求一个数是另一个数的几分之几〔百分之几
汽车从甲到乙,行驶了 : 3 8
1行驶了60千米,这条路多少千米? 2离甲有60千米,这条路多少千米?
提示:认真 审题
3还剩60千米没有行驶,这条路多少千米? 4离乙有60千米,这条路多少千米?
5又行驶了余下的 1/3 ,两次一共行驶了60千米,这条路多少千米? 6又行驶了余下的 1/ ,还剩下60千米没有行驶,这条路多少千米?
3、原价100元,降低了1/5,现价是多少元3?整体为单位1
4、降价1/5后现价为100元,原价是多少元?
5、提价1/5后现价为100元,原价是多少元?
3、甲36,乙是甲的4/9,丙是乙的3/4,求丙
4、甲36,是乙的4/9,丙是乙的3/4,求丙
5、甲36,是乙的4/9,乙是丙的3/4,求丙
率前面对应的量是部
4、降价10元后的售价是40元,,降价几分之几〔百分之几 5、提价10元后的售价是100元,涨价几分之几〔百分之几
多的量÷单位1=多的几分之几〔百分之几
少的量÷单位1=少的几分之几〔百分之几
五、单位1不同的增减百分之几

六年级分数(百分数)应用题典型解法的整理和练习

六年级分数(百分数)应用题典型解法的整理和练习

1、分数应用题类型总结第一类、一个数的几分之几。

已知单位“1”,用乘法。

“是”“比”“占”后面是单位1,已知单位“1”,用乘法。

“是比占”相当于“=” “的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。

未知单位“1”,用除法。

“是”“比”“占”后面是单位1,未知单位“1”,用除法。

“是比占”相当于“=” “的”相当于“×”例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=251、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。

1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。

思路:a 、看问题求小利有图书多少本; B 、小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。

C 、小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数; D 、最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。

看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。

自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。

百分数和分数、小数互化和复习教案

百分数和分数、小数互化和复习教案

百分数、分数、小数互化整理和复习教案一、教学目标:1. 知识与技能:(1)理解百分数、分数、小数之间的关系及互化的方法。

(2)能够熟练地将百分数、分数、小数进行互化。

(3)掌握解决实际问题的能力。

2. 过程与方法:(1)通过自主学习、合作交流,培养学生归纳总结的能力。

(2)利用多媒体辅助教学,提高学生的学习兴趣和参与度。

(3)运用实例分析,培养学生解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心。

(2)培养学生勇于探究、合作交流的精神。

(3)培养学生运用数学知识解决实际问题的意识。

二、教学内容:1. 百分数、分数、小数之间的关系及互化方法。

2. 百分数与分数的互化。

3. 百分数与小数的互化。

4. 分数与小数的互化。

5. 应用实例分析。

三、教学重点与难点:1. 教学重点:(1)百分数、分数、小数之间的关系及互化方法。

(2)解决实际问题。

2. 教学难点:(1)百分数、分数、小数互化的灵活运用。

(2)解决实际问题中的算术表达式。

四、教学过程:1. 导入新课:(1)复习百分数、分数、小数的基本概念。

(2)引导学生思考百分数、分数、小数之间的关系。

2. 讲解与示范:(1)讲解百分数与分数的互化方法。

(2)讲解百分数与小数的互化方法。

(3)讲解分数与小数的互化方法。

3. 练习与互动:(1)学生自主练习互化题目。

(2)学生之间互相讨论、交流解题方法。

(3)教师解答学生疑问,并进行指导。

4. 应用实例分析:(1)给出实例,让学生运用百分数、分数、小数互化的知识解决实际问题。

(2)学生分组讨论,提出解决方案。

(3)全班交流,分享解题过程和答案。

5. 总结与反思:(1)学生总结百分数、分数、小数互化的方法和技巧。

(2)教师点评学生表现,给予鼓励和指导。

五、作业布置:1. 完成课后练习,巩固百分数、分数、小数互化的方法。

2. 选取一个实际问题,运用所学知识进行解决。

教学评价:1. 课后收集学生作业,评估掌握程度。

人教版数学六年级下册分数、百分数应用题复习(一)

人教版数学六年级下册分数、百分数应用题复习(一)

《分数、百分数的应用题复习(一)》教学设计【复习内容】分数、百分数应用题的两种类型:①求一个数是另一个数的几(百)分之几;②求一个具体的量是多少(求一个数的几(百)分之几是多少;已知一个数的几(百)分之几是多少,求这个数。

)【复习目标】知识目标:使学生系统掌握分(百)分数应用题的题型特点和数量关系,学会相关解题方法。

技能目标:在理解题意、分析数量关系的基础上正确解答百分数应用题,提高运用知识解决问题的能力。

情感目标:培养学生收集、处理信息的能力,使学生体会到数学的价值。

【复习重、难点】复习重点:分析分数、百分数应用题的题型,确定解题方法;复习难点:找准单位“1”,正确判断解题方法。

【复习准备】复习准备:多媒体课件、答题卡【复习过程】一、复习铺垫找出下面各题中的单位“1”。

(点名回答)(1)男生人数是全班人数的3/5(2)苹果重量比桔子的重量多5/7 。

(3)已修的长度占这条路的65%。

(4)一种电视机打九折出售。

揭题:同学们,这节课让我们一起对分数、百分数应用题进行整理和复习。

(板书课题)二、整理复习(一)出示6道题,学生进行小组讨论:哪些问题可以归为一类,用什么方法解决?1、六(1)班有学生40人,其中女生18人,女生人数占全班的几分之几?2、某食堂去年计划烧煤180吨,实际只烧了135吨,实际比计划节约了几分之几?3、六年级女生有20人,男生人数是女生的4/5,男生有多少人?4、六年级女生有20人,女生人数是男生的4/5,男生有多少人?5、学校举办的美术展览中,有40幅水彩画,蜡笔画比水彩画多3/5 。

蜡笔画有多少幅?6、学校举办的美术展览中,有40幅蜡笔画,素描画比水彩画少1/5。

素描画有多少幅?通过讨论,是学生明确可以分为两大类型。

师:下面我们就分类来具体分析。

(二)分类总结解题方法1、出示例1:六(1)班有学生40人,其中女生18人,女生人数占全班的几分之几?分析讲解之后,归纳总结:第一类型:求一个数是另一个数的几(百)分之几关键是:找单位“1方法是:用除法,÷单位“1”的量学生练习:(1)苹果树有150棵,梨树有98棵。

《分数、百分数应用题整理与复习》说课稿

《分数、百分数应用题整理与复习》说课稿

《分数、百分数应用题整理与复习》说课稿《分数、百分数应用题整理与复习》说课稿范文我说课的内容是人教版小学数学第十二册总复习部分《分数、百分数应用题整理与复习》的教学内容,下面我着重从五个方面来谈谈我对本课的教学设计。

一、说教材:1.教材分析本单元内容不仅是本册教科书的一个重点,也是全套教材的一个重要组成部分。

这部分教学质量的高低直接关系到小学数学教学目标的任务能否圆满地完成。

应用题部分是这一单元的重要组成部分,分数、百分数应用题的数量关系也是这一部分的难点所在,因此,我们要通过复习和比较使学生牢固地掌握分数、百分数应用题之间的数量关系,提高学生的辨析能力,使学生弄清复杂的分数应用题,从而为中学学习打下坚实基础。

2.学情分析我们的学生在思想上都积极要求进步,学习态度上都很严谨认真,大多数学生能按照老师的要求自主完成学习任务。

但有少部分学生学习态度不够端正,应用题的分析、解答能力较差,在老师和同学的帮助下学习成绩虽然有所攀升,也不是太尽人意。

3.教学目标的确立根据本课的内容和学生已有的知识和心理特征,我制订如下教学目标:知识目标:1.使学生在解答生活问题的过程中,进一步理解和掌握分数、百分数应用题的数量关系和解题方法。

2.沟通分数、百分数应用题之间的联系,通过学生自主建构使知识系统化。

能力目标:增强学生的数学应用意识,提高学生分析、推理、判断能力以及解决简单的实际问题的能力。

情感目标:培养学生收集、处理信息的能力,使学生体会到数学的价值。

依据本节课的特点和在本小节中的地位和作用,结合学生的认知水平和年龄特征,将本课的教学重难点确定为:教学重点:熟悉分数和百分数应用题的数量关系,进一步掌握解题方法,解决简单的生活实际问题。

教学难点:沟通分数、百分数之间的练习,建构完善的知识体系。

二、说教法、学法:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,以学生为主体,教师进行点拨,引导学生进行主动探索、积极思考和讨论交流,形成技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分数、百分数解决问题的复习》教学设计
教学目标:
1、通过分数解决问题的复习,让学生熟练掌握其内在联系,并能灵活解决实际问题。

1、以解决问题为例,让学生认识到数学知识的联系,能运用联系,提高复习效果。

教学重点:正确解决问题
教学难点:利用分数与比联系灵活解决问题。

教学过程:
一、师生互动交流
师:问大家几个问题,知道就大声地说,好不好?
生:好。

师:一头牛有几个耳朵?
师:有几只眼睛?
师:有几条腿?
师:喂什么?(生想了一会儿未答,师把“喂什么”写在黑板上。


二、复习回顾
1、50的4/5是多少?如何列式?为什么?
2、已知x的4/5是40,求x。

如何列式?为什么?
3、把分数、比互化。

4/5 1:4 4/9
师:大家做得非常正确,今天,我们就利用分数、比的联系来解决问题。

有信心吗?听声音觉得大家信心不足,有信心吗?大声回答。

三、发现并整理信息
师:我校为迎六一特组建了校文艺队,女生40人,男生50人,你能从中发现哪些数学信息呢?
生:男生女生共多少人?
师:共多少人?
生:90人。

师:把问题和答案合起来呢?
生:男生女生共90人。

师:对,这就是你得到的信息,你开始的回答是个问题,连同答案一起表述出来才是信息。

(生点了点头。


师:谁得到了不同的信息?
生:男生女生差10人。

生:男生多,女生少。

生:女生是男生的4/5。

生:男生是女生的5/4。

生:女生比男生少1/5。

生:男生比女生多1/4。

生:女生占总数的4/9。

生:男生占总数的5/9。

师:如果把这些分数化成比,又是什么呢?(学生很快地说出了答案。


四、解决问题
师:大家真不愧为数学小能手,发现了这么多的信息,现在用上男生50人和这些信息,求女生多少人。

师:谁给大家读一下第一题?大家再齐读一遍吧。

师:其余的五道题目大家该知道了吧?大家先默读题目,然后列出算式,并说出思路,遇到不会的同桌可以交流。

师:解决了这些问题的同学,谁来给大家讲解第一题?
师:说得非常正确,这位同学不仅知道算式,还知道为什么这样列式。

大家一起说一遍。

师:第二题呢?就像刚才这位同学的讲解一样。

师:第3题有点难度,谁来说一说?
师:有不同的思路吗?
师:1-1/5求的是什么?女生比男生少1/5,谁是单位“1”?
师:女生的分率是多少?
师:所以,先求出的是女生占男生的分率,求女生人数就是求男生的(1-1/5)是多少,列式为50×(1-1/5)。

师:第4题呢?
生:X+1/4x=50。

女生为x人,男生比女生多1/4x人,所以X+1/4x=50。

师:讲得真清楚!还可以把女生看作单位“1”,男生分率(1+1/4),女生的(1+1/4)是50人,还可以怎么做?
生:列方程(1+1/4)X=50,或列算式50÷(1+1/4)。

师:一起说思路。

男生比女生多1/4,男生是女生的1+1/4,已知女生的(1+1/4)是50,求女生人数用方程或除法。

师:第5题呢?
生:50÷(1-4/9)-50,先求出总数,再减男生人数。

师:最后一题呢?
生:50÷5/9-50。

师:刚才的6道题,我们也可以试着用比来解决。

如:第1题女生男生的人数比4:5,可以把男生人数女生人数看作多少份呢?
生:男生5份,女生4份。

师:一份数怎么求呢?女生人数呢?
生:50÷5×4。

师:你能用同样的方法解决其余的5道题吗?
师:大家做得真快,谁说一下第2题?
生:50÷5×4。

师:第3题。

生:50÷5×(5-1)。

师:第4题。

生:50÷(1+4)×4。

师:第5题。

生:50÷(9-4)×4。

师:第6题。

生:50÷5×(9-5)。

五、布置练习。

相关文档
最新文档