(完整版)中考数学函数综合题型及解题方法讲解

合集下载

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件
















时,S有最大值,最大值为 ,此时点P的坐标为(3; =- m2+9m=- (m2-6m)=- (m-3)2+ .


∵- <0,∴ 当m=3
类型二面积问题
典例2 (2023·
湘潭)如图,二次函数y=x2+bx+c 的图象与x轴交于点
∴ 设M(t,-t2+2t+3)(0<t<3),则Q(t,-t+3).∴ MQ
=-t2+3t.过点Q作QD⊥OC,垂足为D,则易得△CDQ是等腰直
角三角形.∴ CQ= t.
∴ MQ+ CQ=-t2+3t+2t=-t2+5t=-




+ .∴


时,MQ+ CQ 有最大值,此时点M的坐标为
式,当x=1时求出y的值,从而求出点P的坐标,此时PA+PC的最
小值就是BC的长,利用勾股定理求解即可;(3) 由抛物线与直线
BC对应的函数解析式,分别设出点M,Q的坐标,过点Q作
QD⊥OC,垂足为D,将MQ+ 2CQ用含参数的代数式表示出来,
再结合二次函数的性质求解问题.
解:(1) ∵ 抛物线y=ax2+bx+3(a≠0)的对称轴是直线x=1,点A的坐标为(-
1,0),∴ 由抛物线的对称性,可知点B的坐标为(3,0).
(2) 由题意,可知抛物线对应的函数解析式为y=a(x+1)(x-
3)=a(x2-2x-3).∵ 抛物线y=ax2+bx+3(a≠0)与y轴交于点
C,
∴ 易得C(0,3).将C(0,3)代入y=a(x2-2x-3),得-3a=
3,解得a=-1.∴ 抛物线对应的函数解析式为y=-x2+2x+3.如图

中考数学——二次函数的综合压轴题专题复习含答案解析

中考数学——二次函数的综合压轴题专题复习含答案解析

中考数学——二次函数的综合压轴题专题复习含答案解析一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=12CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB =OC ,又∵BE =CE ,OE =OE ,∴△OBE ≌△OCE (SSS ),∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限,∴E 点坐标为(113+,﹣113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC ,∴S △ACF =2S △AOC ,∴AF =2OA =2,∴F (1,0).∵A (﹣1,0),C (0,﹣3),∴直线AC 的解析式为y =﹣3x ﹣3.∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b ,将F (1,0)代入,得0=﹣3+b ,解得b =3,∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩, 解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩, ∴点Q 的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3k bb+=⎧⎨=⎩,解得:33kb=-⎧⎨=⎩,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,在平面直角坐标系中有抛物线y=a(x﹣2)2﹣2和y=a(x﹣h)2,抛物线y=a (x﹣2)2﹣2经过原点,与x轴正半轴交于点A,与其对称轴交于点B;点P是抛物线y=a(x﹣2)2﹣2上一动点,且点P在x轴下方,过点P作x轴的垂线交抛物线y=a(x﹣h)2于点D,过点D作PD的垂线交抛物线y=a(x﹣h)2于点D′(不与点D重合),连接PD′,设点P的横坐标为m:(1)①直接写出a的值;②直接写出抛物线y=a(x﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y=a(x﹣h)2经过原点时,设△PDD′与△OAB重叠部分图形周长为L:①求PDDD'的值;②直接写出L与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O、A、D、D′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1;②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩…; (3)h =±3 【解析】 【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值. 【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭,2222322m 22,PG m 22m 2422FH PH PF ===-+-=-+ ∵DD ′∥EGEG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG2212242222m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)L ⎧+<⎪∴=⎨+-+++<<⎪⎩…;(3)如图3,∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD ∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2. ∵EG 关于y 轴对称, ∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG 设点E 的坐标为(n ,n +3), 点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n ∵DE =DC =4, ∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3) 将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1). ∴EC =22(0)(31)k k -+++=22816k k ++. ∵EC =CD =4, ∴2k 2+8k +16=16, 解得k 1=0(舍去),k 2=﹣4. ∴点E 的坐标为(﹣4,﹣1) 将点E 上移1个单位长度得点G . ∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:257m m x ()-±-=即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.9.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1) S=﹣231003t +0<t <5); (2) 307;(3)见解析. 【解析】 【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3AM=AO+OM ,列方程可得t 的值;(3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值. 【详解】解:(1)如图1,∵四边形ABCD 是菱形, ∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20,∴OB=10,3 由题意得:AP=4t ,∴PQ=2t ,AQ=23t , ∴S=S △ABC ﹣S △APQ , =11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5); (2)如图2,在Rt △APM 中,AP=4t , ∵点Q 关于O 的对称点为M , ∴OM=OQ , 设PM=x ,则AM=2x , ∴AP=3x=4t , ∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t ,t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积, ∴S △APN =S △PMN ,过M 作MG ⊥PN 于G ,∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴3,∵AM=AO+OM ,同理可知:3﹣3,3333t ,t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.10.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中, 得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+, ∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.11.如图,直线y =﹣x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当12MQ NQ =时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值. 【答案】(1)y =﹣x 2+3x +4;(2)t 的值为12;(3)当△PDM 是等腰三角形时,t =1或t ﹣1. 【解析】 【分析】(1)求直线y=-x+4与x 轴交点B ,与y 轴交点C ,用待定系数法即求得抛物线解析式. (2)根据点B 、C 坐标求得∠OBC=45°,又PE ⊥x 轴于点E ,得到△PEB 是等腰直角三角形,由PB =求得BE=PE=t ,即可用t 表示各线段,得到点M 的横坐标,进而用m 表示点M 纵坐标,求得MP 的长.根据MP ∥CN 可证MPQ NCQ V V ∽,故有12MP MQ NC NQ ==,把用t 表示的MP 、NC 代入即得到关于t 的方程,求解即得到t 的值. (3)因为不确定等腰△PDM 的底和腰,故需分3种情况讨论:①若MD=MP ,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP ,则∠DMP=∠MPD=45°,进而得AE=ME ,把含t 的式子代入并解方程即可;③若MP=DP ,则∠PMD=∠PDM ,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF 进而得CF=CD .用t 表示M 的坐标,求直线AM 解析式,求得AM 与y 轴交点F 的坐标,即能用t 表示CF 的长.把直线AM 与直线BC 解析式联立方程组,解得x 的值即为点D 横坐标.过D 作y 轴垂线段DG ,得等腰直角△CDG ,用DG 即点D 横坐标,进而可用t 表示CD 的长.把含t 的式子代入CF=CD ,解方程即得到t 的值. 【详解】(1)直线y =﹣x +4中,当x =0时,y =4 ∴C (0,4)当y =﹣x +4=0时,解得:x =4 ∴B (4,0)∵抛物线y =﹣x 2+bx +c 经过B ,C 两点 ∴1640004b c c -++=⎧⎨++=⎩ 解得:34b c =⎧⎨=⎩∴抛物线解析式为y =﹣x 2+3x +4(2)∵B (4,0),C (0,4),∠BOC =90° ∴OB =OC∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PBt ∴∠BEP =90°∴Rt △BEP 中,2PE sin PBE PB ∠==∴BE PE t ==, ∴4M P P x x OE OBBE t y PE t ===﹣=﹣,== ∵点M 在抛物线上∴2243445M y t t t t +++=﹣(﹣)(﹣)=﹣, ∴24MP MP y y t t +=﹣=﹣ , ∵PN ⊥y 轴于点N∴∠PNO =∠NOE =∠PEO =90° ∴四边形ONPE 是矩形 ∴ON =PE =t ∴NC =OC ﹣ON =4﹣t ∵MP ∥CN ∴△MPQ ∽△NCQ ∴12MP MQ NC NQ == ∴24142t t t -+=-解得:12142t t =,=(点P 不与点C 重合,故舍去) ∴t 的值为12(3)∵∠PEB =90°,BE =PE ∴∠BPE =∠PBE =45° ∴∠MPD =∠BPE =45°①若MD =MP ,则∠MDP =∠MPD =45° ∴∠DMP =90°,即DM ∥x 轴,与题意矛盾 ②若DM =DP ,则∠DMP =∠MPD =45° ∵∠AEM =90° ∴AE =ME∵y =﹣x 2+3x +4=0时,解得:x 1=﹣1,x 2=4 ∴A (﹣1,0)∵由(2)得,x M =4﹣t ,ME =y M =﹣t 2+5t ∴AE =4﹣t ﹣(﹣1)=5﹣t ∴5﹣t =﹣t 2+5t解得:t 1=1,t 2=5(0<t <4,舍去)③若MP =DP ,则∠PMD =∠PDM如图,记AM 与y 轴交点为F ,过点D 作DG ⊥y 轴于点G ∴∠CFD =∠PMD =∠PDM =∠CDF ∴CF =CD∵A (﹣1,0),M (4﹣t ,﹣t 2+5t ),设直线AM 解析式为y =ax +m ∴()2045a m a t m t t -+=⎧⎨-+=-+⎩ 解得:a tm t =⎧⎨=⎩ , ∴直线AM :y tx t += ∴F (0,t ) ∴CF =OC ﹣OF =4﹣t ∵tx +t =﹣x +4,解得:41tx t -=+, ∴41D x tt DG -=+==, ∵∠CGD =90°,∠DCG =45° ∴)2421t CD DG t -+==,∴)2441t t t -+﹣ 解得:21t =﹣综上所述,当△PDM 是等腰三角形时,t =1或21t =﹣. 【点睛】本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.12.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】 【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解; (2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V ,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)二次函数表达式为:()219y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V , 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.13.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值2254. 【解析】 【分析】(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125MH CM ==得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值 【详解】(1)5÷2.5=2/cm s ;(7.5-2.5)×2=10cm (2)①解:在C 点相遇得到方程57.5v= 在B 点相遇得到方程152.5v= ∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得 23=5v v ⎧=⎪⎨⎪⎩。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

数学中考函数与像题型解题方法总结

数学中考函数与像题型解题方法总结

数学中考函数与像题型解题方法总结在中考数学中,函数与像是一个重要的考点。

掌握解题方法是提高解题效率的关键。

本文将对数学中考函数与像题型解题方法进行总结和归纳,以帮助同学们更好地理解和应用。

一、函数与像的基本概念函数是一个非常基础的数学概念,它将一个元素映射到另一个元素。

在数学中,我们用f(x)来表示函数,其中x为自变量,f(x)为对应的因变量。

函数与像的核心概念在于解决元素之间的关系,常用的函数形式包括线性函数、二次函数、指数函数、对数函数等。

二、函数与像题型解题方法总结1. 判断函数性质:在解题过程中,需要根据题目给出的函数表达式,判断函数的性质,如函数的奇偶性、单调性、定义域和值域等。

这样可以更好地理解函数的特点,辅助后续的解题过程。

2. 求函数的特殊值:在解题中,有时需要求函数的特殊值,如函数的零点、最值等。

通过设定函数等于0,或者求导数等方法,可以求得函数的特殊值,为后续解题提供依据。

3. 判断像的性质:在解题中,需要判断像的性质,如像的奇偶性、单调性、定义域和值域等。

像是函数映射后得到的结果,通过分析函数的性质,可以推断出像的特点,从而解决像相关的问题。

4. 求像的过程:求像的过程是将自变量代入函数中得到对应的因变量。

根据题目给出的函数表达式和特定的自变量值,代入函数中进行计算。

注意在计算过程中,遵循运算优先级和基本的代数运算法则。

5. 利用函数图像解题:函数图像可以直观地反映函数的特点。

通过观察函数图像的形状、位置等,可以帮助理解函数的性质,从而解决与函数与像相关的问题。

6. 综合运用解题方法:在实际解题过程中,常常需要综合运用多种解题方法。

根据题目的要求,灵活选择合适的解题方法,结合数学知识和解题技巧,逐步推进解题思路,最终得出正确的答案。

三、典型题目解析1. 题目:已知函数f(x) = 2x + 3,求f(4)的值。

解析:根据题目给出的函数表达式,将自变量x代入函数中,可以得到f(4) = 2(4) + 3 = 11。

一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)

一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)

一次函数和反比例函数综合问题目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数和反比例函数是全国中考的热点内容,更是全国中考的必考内容.每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数和反比例函数的图象和性质是考查的基础,也是高频考点、必考点,所以对一次函数和反比例函数的图象和性质必须熟记.2.从题型角度看,以解答题的第三题或第四题为主,分值8分左右,着实不少!易错点一 一次函数与反比例函数中由面积求点坐标【例1】(2024·广东珠海·模拟预测)如图,在平面直角坐标系xOy 中,一次函数图象5y x =−+与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为(),4B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;S=ABCABCS=【例2】(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy 中,一次函数4y x =−与反比例函数ky x=的图象交于A ,B 两点,与x 轴相交于点C ,已知点A ,B 的坐标分别为()5,n n 和(),5m −.(1)求反比例函数的解析式; (2)点P 为反比例函数ky x=图象上任意一点,若2POC AOC S S =△△,求点P 的坐标.【例3】(2024·山东济宁·一模)如图,点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点,连接OA 、OB .(1)求a 的值; (2)求AOB 的面积;(3)若点C 的坐标为()9,0,点P 是反比例函数图象上的点,若POC △的面积等于AOB 面积的3倍,求点P的坐标. )AOB 的面积为AODBOES S=,由BOEAODAOEB S SS S=−四边形,可得AOBS=1273322POCAOBSOC PE S =⨯⨯==⨯,即可求解,【详解】(1)解:∵点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点, ∴63m=,解得:18m =, ∴反比例函数解析式为:18y x=, ∴186a =,解得:3a =, 故答案为:3a =,(2)解:过点A ,B ,作AC x ⊥轴,BD x ⊥轴,垂足分别为D ,E ,由(1)可知,点()3,6A ,()6,3B 是反比例函数18y x=的图象上的两点, ∴6AC =,3OD =,3BD =,6OE =,AODBOES S=,∵BOEAODAOEB AOEB S SS S−=−四边形四边形,∴()()()()()1112763632222AOBADEB SS AD BE DE AD BE OE OD ==+⋅=+⋅−=+−=梯形, 故答案为:AOB 的面积为272, (3)解:设点P 坐标为18,p p ⎛⎫⎪⎝⎭,过点P ,作PE x ⊥轴,垂足为E ,∴18180PE p p=−=,9OC =, ∴1273322POCAOBSOC PE S =⨯⨯==⨯, 即:118279322p ⨯⨯=⨯,解得:2p =或2p =−, ∴()2,9P 或()2,9P −−,故答案为:点P 的坐标为()2,9或()2,9−−.一次函数中平移问题【例1】(2024·河北邯郸·二模)如图,直线1:4l y x =+与y 轴,x 轴交于点A ,点B ,直线2l 与y 轴,x 轴交于点A ,点,2C OC OA =.(1)求点A 的坐标及直线2l 的解析式;(2)点13,22D m m ⎛⎫+ ⎪⎝⎭在直线3l 上.①直接写出直线3l 的解析式;②若点D 在ABC 内部(含边界),求m 的取值范围;③横纵坐标都为整数的点为整点,将直线3l 向上平移n 个单位长度(n 为整数),直线3l 在第二象限恰有4个整点,直接写出n的值.=OC OA2①点在ABC 内部(含边界)【例2】(2024·河北石家庄·一模)如图,平面直角坐标系中,线段AB 的端点为(2,2)A ,(4,1)B .直线:2l y x =+与x 轴,y 轴分别交于C ,D 两点,动点P 从点D 出发,沿y 轴以每秒1个单位长度的速度向下移动,设移动时间为t 秒.某同学设计了一个动画:线段AB 为蓝色光带,当有动点或动直线经过线段AB 时,蓝色光带会变成红色.(1)求直线AB 的解析式;(2)①若直线l 随点P 向下平移,当2t =时,蓝色光带是否变红?②点M 是直线l 上的一点,若点M 向下平移4个单位长度的过程中,能使蓝色光带变红,求点M 的横坐标M x 的取值范围;Q m n三点共线时,直接写出m与t的函数关系式.(3)当点C,点P与蓝色光带上的点(,)直线过直线又直线②点A)()20C −,易错点三 一次函数与反比例函数中求线段和的最小值问题【例1】(2024·甘肃兰州·模拟预测)如图,一次函数8y x =+的图象与反比例函数()0ky x x=<的图象交于(),6A a ,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)在y 轴上存在点P ,使得AP BP +的值最小,求AP BP +的最小值.则AP BP +的最小值A =【例2】(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长. )解:点点点A题型一 一次函数的图象和性质【例1】(2024·浙江·模拟预测)已知点()11,A m n ,()22,B m n ()12m m <在一次函数y kx b =+的图像上. (1)用含有1m ,1n ,2m ,2n 的代数式表示k 的值.(2)若123m m b +=,124n n kb +=+,2b >.试比较1n 和2n 的大小,并说明理由.【例2】(2024·浙江杭州·一模)设一次函数31y ax a =++(a 是常数,0a ≠). (1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标: (2)若24x ≤≤时,该一次函数的最大值是6,求a 的值. 【详解】(1)解:一次函数1, 当3x =−时,11y =,∴无论a 取何值,该一次函数图象始终过定点(3,1)−;(2)解:当0a >时,当4x =时,一次函数14316y a a =++=,1.(2024·北京·一模)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2−,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.解:一次函数2.(2024·浙江宁波·模拟预测)已知一次函数10y mx n mn =+≠.(1)已知关于x 的一元二次方程20x mx n +−=必有两个不相等的实数根,试说明一次函数1y mx n =+的图象过第一和第二象限.(2)在(1)的条件下,已知另一函数2y nx m =+的图象与y 1图象的交点在第四象限,求不等式12y y >的解. 【答案】(1)见解析解:∵关于x 的一元二次方程20x mx n +−=的解,可看作抛物线2y x =与直线y mx n =−+的交点, 根据题意得,抛物线2y x =与直线y mx n =−+必有两个不同的交点, ∴0n >,∴一次函数1y mx n =+的图象过第一和第二象限; (2)解:∵2y nx m =+,0n >,∴直线2y nx m =+一定经过第一、三象限, ∵直线2y nx m =+与y 1图象的交点在第四象限,∴直线2y nx m =+一定经过第一、三、四象限, ∴0m <, ∴0m n −<, ∵12y y >, ∴mx n nx m +>+, 整理得()m n x m n −>−, ∴1x <,即不等式12y y >的解集为1x <.题型二 反比例函数的图象和性质【例1】(2024·陕西西安·一模)已知反比例函数3my x−=. (1)若该反比例函数图象在每一个象限内,y 都随着x 的增大而减小,求m 的取值范围; (2)若点()2,3A 在此反比例函数图象上,求反比例函数的解析式.1.(2024·福建南平·一模)反比例函数ky x=图象经过点(1,6)A ,(,3)B a . (1)求a 的值;(2)若点(,)C m n 在反比例函数ky x=图象上,其中3n <,求m 的取值范围. 题型三 一次函数和反比例函数与不等式综合问题【例1】(2024·贵州毕节·一模)如图,一次函数()0y ax b a =+≠与反比例函数()0ky k x=≠的图象在第一象限交于()2,3A 和()3,B m 两点,与x 轴交于点C .(1)求反比例函数和一次函数的表达式; (2)直接写出关于x 的不等式(0)kax b x x+>>的解集. )解:点又B【例2】(2024·陕西宝鸡·一模)如图所示,一次函数1y x m =−+图象与反比例函数2ky x=图象相交于点(,3)A n 和点(3,1)B −.(1)求反比例函数解析式; (2)当12y y >时,求x 的取值范围.1.(2024·山西朔州·一模)如图,反比例函数()1110,0k y k x x=>>与一次函数()2220y k x b k =+≠的图象交于()2,3A ,3,2B m ⎛⎫⎪⎝⎭两点.(1)求m 的值及一次函数的表达式. (2)直接写出当12y y >时,x 的取值范围.)解:反比例函数与一次函数的图象交于当24x <<时,12y y <,所以,当12y y >时, x 的取值范围为02x <<或4x >.2.(2024·江西九江·一模)如图一次函数y kx b =+的图象与反比例函数4y x=−的图象相交于点()1,A m −,(),1B n −.(1)求一次函数的解析式;(2)结合图象,直接写出不等式4kx b x+>−的解集.3.(2024·河南安阳·模拟预测)如图,一次函数12y x =−的图象与反比例函数(0)y k x=≠的图象交于()(),12,A a B b −,两点,与x 轴相交于点C .(1)求反比例函数的表达式;(2)观察图象,直接写出不等式112kx x−<的解集;(3)若(),0P m 为x 轴上的一动点,连接AP ,当APC △的面积为52时,求点P 的坐标. )解:函数)函数在112y x =−中, 当y =解得:2x =,()2,0C ∴, ()0,P m ,APC S =△题型四 一次函数和反比例函数中求三角形面积问题【例1】(2024·山西大同·一模)如图,一次函数y ax b =+的图象与反比例函数()0ky k x=>的图象相交于点()6,32A n −−,点(),3B n −,与y 轴交于点C .(1)求一次函数和反比例函数的解析式;(2)点D 是点C 关于x 轴的对称点,连接AD BD 、,求ABD △的面积.S=ABD【例2】(2024·吉林白山·一模)如图,在平面直角坐标系中,一次函数5y x =−+的图象与反比例函数(0)ky k x=>的图象相交于()1,A m 、()4,B n 两点,与x 轴相交于点C ,连接OA 、OB .(1)求反比例函数的解析式; (2)求AOB 的面积. AOBS=1.(2024·湖南长沙·三模)如图,在平面直角坐标系中,一次函数32y x b =−+与反比例函数()0ky k x=≠交于()(),6,4,3A m B −两点,与y 轴交于点C ,连接,OA OB .(1)求反比例函数和一次函数的表达式; (2)求AOB 的面积.解:点解:点AOBAOCBOCS SS=+与反比例函数(0)ky x x=>的图象交于点()1,C a ,D 是反比例函数图象上的一个动点,过点D 向y 轴作垂线与一次函数图象交于点E ,其中点A 的坐标为(3,0)−.(1)求反比例函数的表达式;(2)连接,DB DC ,当DCE △的面积等于DBC △面积的2倍时,求点E 的坐标;(3)若P 是x 轴上的一个动点,连接,EP DP ,当DPE 与AOB 相似时,求点D 的纵坐标. 坐标,根据DPE 与AOB 相似计算即可,注意分情况讨论.()033b =⨯−+∵过点D向y轴作垂线与一次函数图象交于点∴设12D mm⎛⎫⎪⎝⎭,,则点E纵坐标为∴1239y xm=+=,解得x412⎛⎫当AOB PED∽时,当时,AOB PED ∽,此时时,P AOB DE ∽,此时∴12PD m =,DE m ⎛=− ⎝∴1243PD m DE m m m ==⎛⎫−− ⎪⎝⎭时,E AOB PD ∽,此时时,P AOB ED ∽,此时,则N EPM PD ∽∴EM MP PEPN DN PD== 此时12EM DN m==,DE 当D AOB EP ∽时,PE PD 同理当AOB DPE ∽时,PD综上所述,当DPE 与AOB 相似时,求点题型五 一次函数和反比例函数中求证问题【例1】(新考法,拓视野)(2024·河南周口·一模)如图,反比例函数ky x=与正比例函数y ax =交于点()3,2A 和点C ,与正比例函数6y x =交于点B 和点D .(1)求k 与a 的值,并求点B ,C ,D 的坐标; (2)求证:CBD ADB ∠=∠.1.(2024·湖南怀化·一模)在平面直角坐标系中,点O 为坐标原点.如图,一次函数y ax b =+(a 为常数,0a ≠)与反比例函数ky x=(k 为常数,0k ≠)的图象相交于点()25A ,和点()4B m −,.(1)求反比例函数与一次函数的解析式;(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,相交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,相交于点D .求证:C ,O ,D 三点在同一条直线上.2.(2024·河南平顶山·一模)如图,一次函数y ax b =+的图象与反比例函数y x=的图象交于第一象限(1,4)C ,D(4,m)两点,与坐标轴交于A 、B 两点,连接OC ,OD (O 是坐标原点).(1)求一次函数与反比例函数的解析式;(2)当kax bx+<时,直接写出x的取值范围;(3)将直线AB向下平移多少个单位长度,直线与反比例函数图象只有一个交点?题型六一次函数和反比例函数中求线段长问题【例1】(2024·广东珠海·一模)如图1.直线21y x =+与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点()1,A a .图2将线段AB 向右平移m 个单位长度()0m >,得到对应线段CD ,连接AC ,BD .当点D 恰好落在反比例函数图象上时,过点C 作CF x ⊥轴于点F ,交反比函数图象于点E .(1)求反比例函数表达式; (2)求EF 的长度.1.(2024·河南·模拟预测)如图所示,在平面直角坐标系中,一次函数1y ()0kx b k =+≠的图象与反比例函数2y ()0mm x=≠的图象相交于第二、四象限内的()1,3A −,(),1B a −两点,与y 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在x 轴上找一点P ,使PA PC −最大,求PA PC −的最大值及点P 的坐标.一次函数的解析式为Rt ADC中,由勾股定理可得题型七利用反比例函数的图象和性质探究平移问题【例1】(新考法,拓视野)(2024·广东深圳·模拟预测)小明在学习了反比例函数的图象与性质后,进一步研究了函数1yx=−的图象与性质.其探究过程如下:(1)绘制函数图象,如图,列表:下表是x与y的几组对应值,其中m=;描点:根据表中各组对应值,x y,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(2)通过观察函数图象,写出该函数的一条性质:.(3)利用函数图象,解不等式1230xx−+<.观察图形得出函数的性质:图象关于y轴对称;故答案为:图象关于y轴对称;(3)【例2】(2024·陕西西安·一模)乐乐同学在学习了反比例函数的基础上,进一步探究函数21y x =-的性质.以下是他的研究过程,请补充完整.(1)如表是y 与x 的几组对应值.(2)在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察图象,发现这个函数图象为中心对称图形,则它的对称中心为______;(4)若直线2y x =与函数21y x =-的图象交于第一象限内一点(),P x y ,则下面关于x 的取值范围描述正确的是( )A .1 1.25x <<B .1.25 1.5x <<C .1.5 1.75x <<D .1.752x <<【详解】(1)解:①4x =时,413y ==−, 23m ∴=, 故答案为:23; (2)解:如图:(3)解:观察图象,发现这个函数图象为中心对称图形,则它的对称中心为(1,0);故答案为:(1,0);(4)解:作出直线2y x =如图:把3y =代入2y x =求得 1.5x =,把3y =代入21y x =-,求得53x =, 观察图象,若直线2y x =与函数21y x =-的图象交于第一象限内一点(,)P x y ,则x 的取值范围是51.53x <<, ∴关于x 的取值范围描述正确的是C ,故答案为:C .1.(2024·山西大同·一模)中考新考法:注重过程性学习,某数学小组在研究函数221x y −+=+时,对函数的图象进行了探究,探究过程如下:(1)①x 与y 的几组对应值如下表,请补全表格;②在上图平面直角坐标系中,描出上表中各组对应值为坐标的点,并根据描出的点画出该函数的图象;(2)我们知道,函数()()20,0,0y a x h k a h k =−+≠>>的图象是由二次函数2y ax =的图象向右平移h 个单位,再向上平移k 个单位得到的.类似地,请直接写出将2y x =−的图象经过怎样的平移可以得到221x y −+=+的图象;(3)若一次函数123y x =−+的图象与函数221x y −+=+的图象交于A B 、两点,连接OA OB 、,求AOB 的面积. 【答案】(1)见解析,(2)向左平移1个单位,向上平移2个单位(3)5(2)2y x=−的图象向左平移1(3)一次函数123y x =−+的图象,如图,可知∴AOB 的面积为()12232⨯⨯+=。

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

一次函数与反比例函数综合题【例1】。

如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。

【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。

中考数学-函数与几何综合问题(共25题)(解析版)

中考数学-函数与几何综合问题(共25题)(解析版)

专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,∴∠NAJ+∠ANJ=90°,∵AN=MN,∠ANM=90°,∴∠MNK+∠ANJ=90°,∴∠MNK=∠NAJ,∴△MNK≌△NAJ,设N x,-2x-6,∴MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB=8,∴-2x-12-x=8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.2(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D 3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.3(2023·江苏无锡·统考中考真题)二次函数y =a (x -1)(x -5)a >12的图像与x 轴交于点A 、B ,与y 轴交于点C ,过点M 3,1 的直线将△ABC 分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.【答案】910或2+25或2+12【分析】先求得A 1,0 ,B 5,0 ,C 0,5a ,直线BM 解析式为y =-12x +52,直线AM 的解析式为y =12x -12,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线,则①如图1,直线AM 过BC 中点,②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,直线MB 与y 轴平行,必不成立;2)当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,根据相似三角形的性质,即可求解;⑤如图5,直线ME ∥AC ,⑥如图6,直线ME ∥BC ,同理可得AE AB =12,进而根据tan ∠MEN =tan ∠CBO ,即可求解.【详解】解:由y =a (x -1)(x -5),令x =0,解得:y =5a ,令y =0,解得:x 1=1,x 2=5,∴A 1,0 ,B 5,0 ,C 0,5a ,设直线BM 解析式为y =kx +b ,∴5k +b =03k +b =1解得:k =-12b =52 ∴直线BM 解析式为y =-12x +52,当x =0时,y =52,则直线BM 与y 轴交于0,52,∵a >12,∴5a >52,∴点M 必在△ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y =mx +n∴k +b =03k +b =1解得:m =12n =-12 则直线AM 的解析式为y =12x -12①如图1,直线AM 过BC 中点,,BC 中点坐标为52, 52a ,代入直线求得a =310<12,不成立; ②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,∴△CEN ∽△COA∴CE CO =CN CA =12,∴5a -15a =12,解得a =2+25;⑤如图5,直线ME∥AC,MN∥CO,则△EMN∽△ACO∴BE AB =12,又AB=4,∴BE=22,∵BN=5-3=2<22,∴不成立;⑥如图6,直线ME∥BC,同理可得AEAB=12,∴AE=22,NE=22-2,tan∠MEN=tan∠CBO,∴1 22-2=5a5,解得a=2+12;综上所述,a=910或2+25或2+12.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B的坐标;(2)若OD:OC=2:1,直线y=-x+b分别交x轴、y轴、AD于点E,F,M,且M是AD的中点,直线EF交DC延长线于点N,求tan∠MND的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使△NPQ是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.【答案】(1)B-4,0(2)tan∠MND=13(3)存在,等腰三角形的个数是8个,Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4 -4,3【分析】(1)解方程得到OB,OC的长,从而得到点B的坐标;(2)由OD:OC=2:1,OC=2,得OD=4.由AD=BC=6,M是AD中点,得到点M的坐标,代入直线y =-x+b中,求得b的值,从而得到直线的解析式,进而求得点E,点F的坐标,由坐标特点可得∠FEO= 45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.从而△DOC∽△NKC,DO:OC=NK:CK=2: 1,进而得到NK=2CK,易证∠KEN=∠KNE=45°,可得EK=NK=2CK,因此EC=CK,由EC=OC -OE=2-1=1可得CK=1,NK=2,EK=2,从而通过解直角三角形在Rt△ENK中,得到EN=EK cos∠KEN =22,在Rt△ECH中,CH=EH=EC⋅cos∠CEH=22,因此求得NH=EN-EH=322,最终可得结果tan∠MND=CHNH=13;(3)分PN=PQ,PN=NQ,PQ=NQ三大类求解,共有8种情况.【详解】(1)解方程x2-6x+8=0,得x1=4,x2=2.∵OB>OC,∴OB=4,OC=2.∴B-4,0;(2)∵OD:OC=2:1,OC=2∴OD=4.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6.∵M是AD中点,∴MD=3.∴M-3,4.将M-3,4代入y=-x+b,得3+b=4.∴b=1.∴E1,0,F0,1.∴∠FEO=45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.∵△DOC∽△NKC,DO:OC=NK:CK=2:1.∴NK=2CK∵∠KEN=∠FEO=45°∴∠KNE=90°-∠KEN=45°∴∠KEN=∠KNE∴EK=NK=2CK∴EC=CK∵EC=OC-OE=2-1=1∴CK=1,NK=2,EK=2∴在Rt△ENK中,EN=EKcos∠KEN =2cos45°=22在Rt△ECH中,CH=EH=EC⋅cos∠CEH=1⋅cos45°=22∴NH =EN -EH =22-22=322∴tan ∠MND =CH NH =22322=13(3)解:由(2)知:直线EF 解析式为y =-x +1,N 3,-2 ,设P 0,p ,Q q ,-q +1 ,①当PN =QN =5时,3-0 2+-2-p 2=52,3-q 2+-2+q -1 2=52,解得p =-6或p =2,q =6+522或q =6-522,∴Q 16-522,52-42 ,Q 26+522,-52+42 ,P 10,-6 ,P 20,2 ,如图,△P 1Q 1N 、△P 1Q 2N 、△P 2Q 1N 、△P 2Q 2N 都是以5为腰的等腰三角形,;②当PQ =QN =5时,由①知:Q 16-522,52-42 ,Q 26+522,-52+42 ,∵6+522>5,∴PQ 2不可能等于5,如图,△P 3Q 1N ,△P 4Q 1N 都是以5为腰的等腰三角形,;③当PN=PQ=5时,由①知:P10,-6,P20,2,当P10,-6时,0-q2+-6+q-12=5,解得q1=3(舍去),q2=4,∴Q34,-3,如图,当P20,2时,0-q2+2+q-12=5,解得q1=3(舍去),q2=-4,∴Q4-4,3,如图,综上,等腰三角形的个数是8个,符合题意的Q坐标为Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4-4,3【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)BD 是⊙O 的切线,证明见解析(2)1+52(3)y =x 0<x ≤1【分析】(1)依据题意,由勾股定理,首先求出∠ACB =90°,从而∠CAB +∠ABC =90°,然后根据∠DBC =∠CAB ,可以得解;(2)由题意,据S 1⋅S =S 2 2得CD CD +AC =AC 2,再由tan ∠D =BC CD =tan ∠ABC =AC BC ,进而进行变形利用方程的思想可以得解;(3)依据题意,连接OM ,分别在Rt △OFM 、Rt △AFE 、Rt △BFN 中,找出边之间的关系,进而由FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,可以得解.【详解】(1)解:BD 是⊙O 的切线.证明:如图,在△ABC 中,AB 2=BC 2+AC 2,∴∠ACB =90°.又点A ,B ,C 在⊙O 上,∴AB 是⊙O 的直径.∵∠ACB =90°,∴∠CAB +∠ABC =90°.又∠DBC =∠CAB ,∴∠DBC +∠ABC =90°.∴∠ABD =90°.∴BD 是⊙O 的切线.(2)由题意得,S 1=12BC ⋅CD ,S 2=12BC ⋅AC ,S =12AD ⋅BC .∵S 1⋅S =S 2 2,∴12BC ⋅CD ⋅12AD ⋅BC =12BC ⋅AC 2.∴CD •AD =AC 2.∴CD CD +AC =AC 2.又∵∠D +∠DBC =90°,∠ABC +∠A =90°,∠DBC =∠A ,∴∠D =∠ABC .∴tan ∠D =BC CD =tan ∠ABC =AC BC.∴CD =BC 2AC.又CD CD +AC =AC 2,∴BC 4AC2+BC 2=AC 2.∴BC 4+AC 2⋅BC 2=AC 4.∴1+AC BC 2=AC BC4.由题意,设tan D 2=m ,∴AC BC2=m .∴1+m =m 2.∴m =1±52.∵m >0,∴m =1+52.∴tan D 2=1+52.(3)设∠A =α,∵∠A +∠ABC =∠ABC +∠DBC =∠ABC +∠N =90°,∴∠A =∠DBC =∠N =α.如图,连接OM .∴在Rt △OFM 中,OF =OM 2-FM 2=1-x 2.∴BF =BO +OF =1+1-x 2,AF =OA -OF =1-1-x 2.∴在Rt △AFE 中,EF =AF ⋅tan α=1-1-x 2 ⋅tan α,AE =AF cos α=1-1-x 2cos α.在Rt △ABC 中,BC =AB ⋅sin α=2sin α.(∵r =1,∴AB =2)AC =AB ⋅cos α=2cos α.在Rt △BFN 中,BN =BF sin α=1+1-x 2sin α,FN =BF tan α=1+1-x 2tan α.∴y =FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=x 2⋅12+21-x 2+12-21-x 2=x 2⋅2-21-x 2+2+21-x 24-41-x 2 =x 2⋅1x 2=x 2⋅1x=x .即y =x .∵FM ⊥AB ,∴FM 最大值为F 与O 重合时,即为1.∴0<x ≤1.综上,y =x 0<x ≤1 .【点睛】本题主要考查了圆的相关性质,切线的判定定理,求角的正切值,解题时要熟练掌握并灵活运用.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.【答案】(1)k 的值为-1,m 的值为3,n 的值为2(2)①函数y 2的图像的对称轴为x =-13;②函数y 2的图像过两个定点0,1 ,-23,1 ,理由见解析(3)能构成正方形,此时S >2【分析】(1)根据题意得到a 2=c 2,a 1=c 2,b 1=-b 2≠0即可解答;(2)①求出y 1的对称轴,得到s =-3r ,表示出y 2的解析式即可求解;②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0求解即可;(3)由题意可知y 1=ax 2+bx +c ,y 2=cx 2-bx +a 得到A 、B 的坐标,表示出CD ,EF ,根据CD =EF 且b 2-4ac >0,得到a =c ,分a =-c 和a =c 两种情况求解即可.【详解】(1)解:由题意可知:a 2=c 2,a 1=c 2,b 1=-b 2≠0,∴m =3,n =2,k =-1.答:k 的值为-1,m 的值为3,n 的值为2.(2)解:①∵点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,∴对称轴为x =r +s 2=-2r 2,∴s =-3r ,∴y 2=sx 2-2rx +1,∴对称轴为x =--2r 2s =r s =-13.答:函数y 2的图像的对称轴为x =-13.②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0,解得x 1=0,x 2=-23,∴过定点0,1,-2 3 ,1.答:函数y2的图像过定点0,1,-2 3 ,1.(3)解:由题意可知y1=ax2+bx+c,y2=cx2-bx+a,∴A-b2a ,4ac-b24a,B b2c,4ac-b24c,∴CD=b2-4aca ,EF=b2-4acc,∵CD=EF且b2-4ac>0,∴a =c ;①若a=-c,则y1=ax2+bx-a,y2=-ax2-bx+a,要使以A,B,C,D为顶点的四边形能构成正方形,则△CAD,△CBD为等腰直角三角形,∴CD=2y A ,∴b2+4a2|a|=2⋅-4a2-b24a,∴2b2+4a2=b2+4a2,∴b2+4a2=4,∴S正=12CD2=12⋅b2-4aca2=12⋅b2+4a2a2=2a2,∵b2=4-4a2>0,∴0<a2<1,∴S正>2;②若a=c,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD是边长为4的菱形,∠A=60°,点Q为CD的中点,P为线段AB上的动点,现将四边形PBCQ沿PQ翻折得到四边形PB C Q.(1)当∠QPB=45°时,求四边形BB C C的面积;(2)当点P在线段AB上移动时,设BP=x,四边形BB C C的面积为S,求S关于x的函数表达式.【答案】(1)43+8(2)S=323xx2+12+43【分析】(1)连接BD、BQ,根据菱形的性质以及已知条件可得△BDC为等边三角形,根据∠QPB=45°,可得△PBQ为等腰直角三角形,则PB=23,PQ=26,根据翻折的性质,可得∠BPB =90°,PB=PB ,则BB =26,PE=6;同理CQ=2,CC =22,QF=2;进而根据S四边形BB C C=2S梯形PBCQ-S△PBB+S △CQC,即可求解;(2)等积法求得BE =23x x 2+12,则QE =12x 2+12,根据三角形的面积公式可得S △QEB =123x x 2+12,证明△BEQ ∼△QFC ,根据相似三角形的性质,得出S △QFC =43x x 2+12,根据S =2S △QEB +S △BQC +S △QFC 即可求解.【详解】(1)如图,连接BD 、BQ ,∵四边形ABCD 为菱形,∴CB =CD =4,∠A =∠C =60°,∴△BDC 为等边三角形.∵Q 为CD 中点,∴CQ =2,BQ ⊥CD ,∴BQ =23,QB ⊥PB .∵∠QPB =45°,∴△PBQ 为等腰直角三角形,∴PB =23,PQ =26,∵翻折,∴∠BPB =90°,PB =PB ,∴BB =26,PE =6;.同理CQ =2,∴CC =22,QF =2,∴S 四边形BB C C =2S 梯形PBCQ -S △PBB +S △CQC =2×12×2+23 ×23-12×23 2+12×22=43+8;(2)如图2,连接BQ 、B Q ,延长PQ 交CC 于点F .∵PB =x ,BQ =23,∠PBQ =90°,∴PQ =x 2+12.∵S △PBQ =12PQ ×BE =12PB ×BQ ∴BE =BQ ×PB PQ =23x x 2+12,∴QE =12x 2+12,∴S △QEB =12×23x x 2+12×12x 2+12=123x x 2+12.∵∠BEQ =∠BQC =∠QFC =90°,则∠EQB =90°-∠CQF =∠FCQ ,∴△BEQ ∼△QFC ,∴S △QFC S △BEQ =CQ QB 2=223 2=13,∴S △QFC =43x x 2+12.∵S △BQC =12×2×23=23,∴S =2S △QEB +S △BQC +S △QFC =2123x x 2+12+23+43x x 2+12=323x x 2+12+43.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y=-3x2+23x的图象与x 轴分别交于点O,A,顶点为B.连接OB,AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D,E分别在线段OB,BC上,连接AD,DE,EA,DE与AB交于点F,∠DEA=60°.(1)求点A,B的坐标;(2)随着点E在线段BC上运动.①∠EDA的大小是否发生变化?请说明理由;②线段BF的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE的中点在该二次函数的因象的对称轴上时,△BDE的面积为.【答案】(1)A2,0,B1,3;(2)①∠EDA的大小不变,理由见解析;②线段BF的长度存在最大值为12;(3)239【分析】(1)y=0得-3x2+23x=0,解方程即可求得A的坐标,把y=-3x2+23x化为顶点式即可求得点B的坐标;(2)①在AB上取点M,使得BM=BE,连接EM,证明△AED是等边三角形即可得出结论;②由BM= AB-AF=2-AF,得当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,进而解直角三角形即可求解;(3)设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,证四边形OACB是菱形,得BC∥OA,进而证明△MBE≌△MHD得DH=BE,再证△BME∽△NAM,得ANBM=MNBE=AMME即1BM=MNBE=3,结合三角形的面积公式即可求解.【详解】(1)解:∵y=-3x2+23x=-3x-12+3,∴顶点为B1,3,令y=0,-3x2+23x=0,解得x=0或x=2,∴A2,0;(2)解:①∠EDA的大小不变,理由如下:在AB上取点M,使得BM=BE,连接EM,∵y=-3x-12+3,∴抛物线对称轴为x=1,即ON=1,∵将线段AB绕点A按顺时针方向旋转60°得到线段AC,∴∠BAC=60°,AB=AC,∴△BAC是等边三角形,∴AB=AC=BC,∠C=60°,∵A2,0,B1,3,O0,0,ON=1,∴OA=2,OB=12+32=2,AB=2-12+32=2,∴OA=OB=AB,∴△OAB是等边三角形,OA=OB=AC=BC=2,∴∠OAB=∠OBA=∠AOB=60°,∵∠MBE=60°,BM=BE,∴△BME是等边三角形,∴∠BME=60°=∠ABE,ME=BE=BM,∴∠AME=180°-∠BME=120°,BD∥EM,∵∠DBE=∠ABO+∠ABC=120°,∴∠DBE=∠AME,∵BD∥EM,∴∠FEM+∠BED=180°-120°=60°=∠AEF=∠MEA+∠FEM,∴∠BED=∠MEA,∴△BED≌△MEA,∴DE=EA,又∠AED=60°,∴△AED是等边三角形,∴∠ADE=60°,即∠ADE的大小不变;②,∵BF=AB-AF=2-AF,∴当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,∵△DAE是等边三角形,∴∠DAF=12∠DAE=30,∴∠OAD=60°-∠DAF=30°,∴AD⊥OB,∴AD=OA×cos∠OAD=2×cos30°=3,∴AF=AD×cos∠DAF=2×cos30°=32,∴BF=AB-AF=2-32=12,即线段BF的长度存在最大值为12;(3)解:设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,∵OA=OB=AC=BC=2,∴四边形OACB是菱形,∴BC∥OA,∵DH⊥BN,AN⊥BN,∴DH∥BC∥OA,∴∠MBE=∠MHD,∠MEB=∠MDH,∵DE的中点为点M,∴MD=ME,∴△MBE≌△MHD,∴DH =BE ,∵∠ANM =90°,∴∠MBE =180°-90°=90°=∠ANM ,∠NMA +∠NAM =90°,∵DE 的中点为点M ,△DAE 是等边三角形,∴AM ⊥DE ,∴∠AME =90°,∴∠BME +∠NMA =180°,∴∠BME =∠NAM ,∴△BME ∽△NAM ,∴AN BM =MN BE =AM ME 即1BM =MN BE=3,∴BM =33, ∴MN =BN -BM =233,∴DH =BE =MN 3=23,∴S △BDE =S △BDM +S △BEM =12×33×23+12×33×23=239,故答案为239.【点睛】本题主要考查了二次函数的图像及性质,菱形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,等边三角形的判定及性质以及解直角三角形,题目综合性较强,熟练掌握各知识点是解题的关键.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.【答案】(1)C (3,1),D (0,2),E (6,0)(2)①证明见解析,②点P 的坐标为(1,3)或(7,37-6)【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设F (m ,0),然后利用勾股定理求解,m =2,过点C 作CG ⊥x 轴,垂足为G .再由等腰三角形及各角之间的关系即可证明;②根据题意得出tan ∠PFK =13,设点P 的坐标为t ,-t 2+3t +1 ,根据题意得13<t <3.分两种情况分析:(i )当点P 在直线KF 的左侧抛物线上时,tan ∠P 1FK =13,13<t <2.(ii )当点P 在直线KF 的右侧抛物线上时,tan ∠P 2FK =13,2<t <3.求解即可.【详解】(1)解:∵直线y =-13x +2交y 轴于点D ,交x 轴于点E ,当x =0时,y =2,∴D 0,2 ,当y =0时,x =6,∴E 6,0 .∵直线y =-13x +2交抛物线于B ,C 两点,∴-x 2+3x +1=-13x +2,∴3x 2-10x +3=0,解得x 1=13,x 2=3.∵点B 在点C 的左侧,∴点C 的横坐标为3,当x =3时,y =1.∴C (3,1);(2)如图,①抛物线y =-x 2+3x +1交y 轴于点A ,当x =0时,y =1,.∴A (0,1),∴OA =1,在Rt △AOF 中,∠AOF =90°,由勾股定理得AF 2=OA 2+OF 2,设F (m ,0),∴OF =m ,∴AF 2=1+m 2,∵E (6,0),.∴OE =6,∴EF =OE -OF =6-m ,∵AF 2+EF 2=21,∴1+m 2+(6-m )2=21,∴m 1=2,m 2=4,∵OF <EF ,∴m =2,∴OF =2,∴F (2,0).∵D (0,2),∴OD =2,∴OD =OF .∴△DOF 是等腰直角三角形,∴∠OFD=45°.过点C作CG⊥x轴,垂足为G.∵C(3,1),∴CG=1,OG=3,∵GF=OG-OF=1,∴CG=GF,∴△CGF是等腰直角三角形,∴∠GFC=45°,∴∠DFC=90°,∴△DFC是直角三角形.②∵FK平分∠DFC,∠DFC=90°,∴∠DFK=∠CFK=45°∴∠OFK=∠OFD+∠DFK=90°,∴FK∥y轴.∵3tan∠PFK=1,∴tan∠PFK=13.设点P的坐标为t,-t2+3t+1,根据题意得13<t<3.(i)当点P在直线KF的左侧抛物线上时,tan∠P1FK=13,13<t<2.过点P1作P1H⊥x轴,垂足为H.∴P1H∥KF,∠HP1F=∠P1FK,∴tan∠HP1F=13.∵HF=OF-OH,∴HF=2-t,在Rt△P1HF中,∵tan∠HP1F=HFP1H =13,∴P1H=3HF,∵P1H=-t2+3t+1,∴-t2+3t+1=3(2-t),∴t2-6t+5=0,∴t1=1,t2=5(舍去).当t=1时,-t2+3t+1=3,∴P1(1,3)(ii)当点P在直线KF的右侧抛物线上时,tan∠P2FK=13,2<t<3.过点P2作P2M⊥x轴,垂足为M.∴P2M∥KF,∴∠MP2F=∠P2FK,∴tan∠MP2F=13,∵MF=OM-OF,∴MF=t-2在Rt △P 2MF 中,∵tan ∠MP 2F =MF P 2M=13,∴P 2M =3MF ,∵P 2M =-t 2+3t +1,∴-t 2+3t +1=3(t -2),∴t 2=7,∴t 3=7,t 4=-7(舍去).当t =7时,-t 2+3t +1=37-6,∴P 2(7,37-6)∴点P 的坐标为(1,3)或(7,37-6).【点睛】题目主要考查一次函数与二次函数综合问题,特殊三角形问题及解三角形,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.【答案】(1)4-x ;x(2)y =4x 2-12x +160<x ≤2 -4x +162<x ≤4(3)x =43或x =83【分析】(1)根据正方形中心对称的性质得出OM =OP ,OQ =ON ,可得四边形PQMN 是平行四边形,证明△ANP ≌△CQM 即可;(2)分0<x ≤2,2<x ≤4两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,AP =x ×1=x cm ,则PB =AB -AP =4-x cm ,∵四边形ABCD 是正方形,∴AD ∥BC ,∠DAB =∠DCB =90°,∵点O 是正方形对角线AC 的中点,∴OM =OP ,OQ =ON ,则四边形PQMN 是平行四边形,∴MQ =PN ,MQ ∥NP ,∴∠PNQ =∠MQN ,又AD ∥BC ,∴∠ANQ =∠CQN ,∴∠ANP =∠MQC ,在△ANP ,△CQM 中,∠ANP =∠MQC∠NAP =∠QCM NP =MQ,∴△ANP ≌△CQM ,∴MC =AP =x cm故答案为:4-x ;x .(2)解:当0<x ≤2时,点Q 在BC 上,由(1)可得△ANP ≌△CQM ,同理可得△PBQ ≌△MDN ,∵PB =4-x ,QB =2x ,MC =x ,QC =4-2x ,则y =AB 2-2S △MCQ -2S △BPQ=16-4-x ×2x -x 4-2x=4x 2-12x +16;当2<x ≤4时,如图所示,则AP =x ,AN =CQ =2x -CB =2x -4,PN =AP -AN =x -2x -4 =-x +4,∴y =-x +4 ×4=-4x +16;综上所述,y =4x 2-12x +160<x ≤2-4x +162<x ≤4 ;(3)依题意,①如图,当四边形PQMN 是矩形时,此时∠PQM =90°,∴∠PQB +∠CQM =90°,∵∠BPQ +∠PQB =90°,∴∠BPQ =∠CQM ,又∠B =∠BCD ,∴△BPQ ~△CQM ,∴BP CQ =BQCM ,即4-x 4-2x =2x x,解得:x =43,当四边形PQMN 是菱形时,则PQ =MQ ,∴4-x 2+2x 2=x 2+4-2x 2,解得:x =0(舍去);②如图所示,当PB =CQ 时,四边形PQMN 是轴对称图形,4-x =2x -4,解得x =83,当四边形PQMN 是菱形时,则PN =PQ=4,即-x +4=4,解得:x =0(舍去),综上所述,当四边形PQMN 是轴对称图形时,x =43或x =83.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上,如图2,将正方形OABC绕点O 逆时针旋转,旋转角为α0°<α<45°,AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN,将△OFN与△OCF的面积分别记为S1与S2,设S=S1-S2,AN=n,求S关于n的函数表达式.【答案】(1)22.5°(2)FC=154(3)S=1n22【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出∠AOG=∠AOE,再由题意得出∠EOG=45°,即可求解;(2)过点A作AP⊥x轴,根据勾股定理及点的坐标得出OA=5,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O、C、F、N四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN=ON,∠FNO=90°,过点N作GQ⊥BC于点G,交OA于点Q,利用全等三角形及矩形的判定和性质得出CG=OQ,CO=QG,结合图形分别表示出S1,S2,得出S=S1-S2=NQ2,再由等腰直角三角形的性质即可求解.【详解】(1)解:∵正方形OABC,∴OA=OC,∠A=∠C=90°,∵OE=OF,∴Rt△OCF≌Rt△OAE(HL),∴∠COF=∠AOE,∵∠COF=∠AOG,∴∠AOG=∠AOE,∵AB交直线y=x于点E,∴∠EOG=45°,∴∠AOG=∠AOE=22.5°,即∠COF=22.5°;(2)过点A作AP⊥x轴,如图所示:∵A (4,3),∴AP =3,OP =4,∴OA =5,∵正方形OABC ,∴OC =OA =5,∠C =90°,∴∠C =∠APO =90°,∵∠AOP =∠COF ,∴△OCF ∽△OPA ,∴OC OP =FC AP即54=FC 3,∴FC =154;(3)∵正方形OABC ,∴∠BCA =∠OCA =45°,∵直线y =x ,∴∠FON =45°,∴∠BCA =∠FON =45°,∴O 、C 、F 、N 四点共圆,∴∠OCN =∠FON =45°,∴∠OFN =∠FON =45°,∴ΔFON 为等腰直角三角形,∴FN =ON ,∠FNO =90°,过点N 作GQ ⊥BC 于点G ,交OA 于点Q ,∵BC ∥OA ,∴GQ ⊥OA ,∵∠FNO =90°,∴∠1+∠2=90°,∵∠1+∠3=90°,∴∠2=∠3,∴△FGN ≌△NQO (AAS )∴GN =OQ ,FG =QN ,∵GQ ⊥BC ,∠FCO =∠COQ =90°,∴四边形COQG 为矩形,∴CG =OQ ,CO =QG ,∴S 1=S ΔOFN =12ON 2=12OQ 2+NQ 2 =12GN 2+NQ 2 =12GN 2+12NQ 2,S 2=S ΔCOF =12CF ⋅CO =12GC -FG GN +NQ =12GN 2-NQ 2 =12GN 2-12NQ 2,∴S =S 1-S 2=NQ 2,∵∠OAC =45°,∴△AQN 为等腰直角三角形,∴NQ =22AN =22n ,∴S =NQ 2=22n 2=12n2【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.【答案】(1)32,2,-1,0 ,12(2)2,3(3)m =217,13≤k <17【分析】(1)利用待定系数法求二次函数解析式即可求得b =32、c =2,从而可得OB =4,OC =2,由y =0,可得-12x 2+32x +2=0,求得A -1,0 ,在Rt △COB 中,根据正切的定义求值即可;(2)过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,由tan ∠OCA =tan ∠ABC =12,即∠OCA =∠ABC ,再由∠PCB =2∠ABC ,可得∠EPC =ABC ,证明△PEC ∼△BOC ,可得EP OB=EC OC,设点P 坐标为t ,-12t 2+32t +2 ,可得t4=-12t 2+32t 2,再进行求解即可;(3)①作DH ⊥DQ ,且使DH =BQ ,连接FH .根据SAS 证明△BQE ≌△HDF ,可得BE +QF =FH +QF ≥QH ,即Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,设G (n ,0),则Q n ,-12n 2+32n +2 ,根据QG =BG 求出点Q 的坐标,燃然后利用勾股定理求解即可;②作PT ∥y 轴,交BC 于点T ,求出BC 解析式,设T a ,-12a +2 ,P a ,-12a 2+32a +2 ,利用三角形面积公式表示出S ,利用二次函数的性质求出S 的取值范围,结合①中结论即可求解.【详解】(1)解:∵抛物线y =-12x 2+bx +c 经过点B (4,0),C (0,2),∴-8+4b +c =0c =2 ,解得:b =32c =2 ,∴抛物线解析式为:y =-12x 2+32x +2,∵抛物线y =-12x 2+bx +c 与x 轴交于A 、B (4,0)两点,∴y =0时,-12x 2+32x +2=0,解得:x 1=-1,x 2=4,∴A -1,0 ,∴OB =4,OC =2,在Rt △COB 中,tan ∠ABC =OC OB=24=12,故答案为:32,2,-1,0 ,12;(2)解:过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,∵AO =1,OC =2,OB =4,∴tan ∠OCA =AOCO=12,由(1)可得,tan ∠ABC =12,即tan ∠OCA =tan ∠ABC ,∴∠OCA =∠ABC ,∵∠PCB =2∠OCA ,∴∠PCB =2∠ABC ,∵CD ∥x 轴,EP ∥x 轴,∴∠ACB =∠DCB ,∠EPC =∠PCD ,∴∠EPC =ABC ,又∵∠PEC =∠BOC =90°,∴△PEC ∽△BOC ,∴EP OB =EC OC,设点P 坐标为t ,-12t 2+32t +2 ,则EP =t ,EC =-12t 2+32t +2-2=-12t 2+32t ,∴t4=-12t 2+32t 2,解得:t =0(舍),t =2,∴点P 坐标为2,3 .(3)解:①如图2,作DH ⊥DQ ,且使DH =BQ ,连接FH .∵∠BQD +∠BDQ =90°,∠HDF +∠BDQ =90°,∴∠QD =∠HDF ,∵QE =DF ,DH =BQ ,∴△BQE ≌△HDF (SAS ),∴BE =FH ,∴BE +QF =FH +QF ≥QH ,∴Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,∵OB =OD ,∠BOD =90°,∴∠OBD =45°,∵∠QBD =90°,∴∠QBG =45°,∴QG=BG.设G(n,0),则Q n,-12n2+32n+2,∴-12n2+32n+2=4-n,解得n=1或n=4(舍去),∴Q(2,3),∴QG=BG=4-1=3,∴BQ=DH=32,QD=52,∴m=QH=322+522=217;②如图3,作PT∥y轴,交BC于点T,待定系数法可求BC解析式为y=-12x+2,设T a,-12a+2,P a,-12a2+32a+2,则S=12-12a2+32a+2+12a-2×4=-a-22+4,∴0<S≤4,∴0<14m2-k≤4,∴0<17-k≤4,∴13≤k<17.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与x轴的交点、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程、锐角三角函数、最值问题、二次函数最值、用分割法求三角形面积,熟练掌握相关知识是解题的关键.13(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.【答案】(1)等腰直角三角形(2)详见解析(3)①t=3;②t=6;③D125,6 5【分析】(1)由A(0,2),B(2,0)得到OA=OB=2,又由∠AOB=90°,即可得到结论;(2)由∠EOD=90°,∠AOB=90°得到∠AOE=∠BOD,又有AO=OB,OD=OE,利用SAS即可证明△AOE≌△BOD;(3)①求出直线AC的解析式和抛物线y1的解析式,联立得x2-t+3x+3t=0,由Δ=(t+3)2-4×3t= (t-3)2=0即可得到t的值;②抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到抛物线y2=-2tx-t-222+(t-2)22t,则抛物线y2的顶点Pt-22,(t-2)22t,将顶点P t-22,(t-2)22t代入y AC=-2t x+2得到t2-6t=0,解得t1=0,t2=6,根据t>2即可得到t的值;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,先证明△ODN≌△EOM(AAS),则ON=EM,DN=OM,设EM=2OM=2m,由OA∥EM得到OC:CM=OA:EM,则tt+m =22m,求得m=tt-1,得到D2tt-1,tt-1,由抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3=-2tx2+2t(t-2)x-2(t-1)2,把D2tt-1,tt-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,得到3t2-19t+6=0,解得t1=13,t2=6,由t>2,得t=6,即可得到点D的坐标.【详解】(1)证明:∵A(0,2),B(2,0),∴OA=OB=2,∵∠AOB=90°,∴△AOB是等腰直角三角形,故答案为:等腰直角三角形(2)如图,∵∠EOD=90°,∠AOB=90°,∴∠AOB-∠AOD=∠DOE-∠AOD,∴∠AOE=∠BOD,∵AO=OB,OD=OE,∴△AOE≌△BOD(SAS);(3)①设直线AC的解析式为y=kx+b,∵A(0,2),C(t,0),∴b=2kt+b=0 ,∴y AC=-2tx+2,将C(t,0),B(2,0)代入抛物线y1=ax2+bx-4得,0=at2+bt-40=4a+2b-4,解得a=-2t,b=2t(t+2),∴y1=-2t x2+2t(t+2)x-4,∵直线y AC=-2t x+2与抛物线y1=-2tx2+2t(t+2)x-4有唯一交点∴联立解析式组成方程组解得x2-t+3x+3t=0∴Δ=(t+3)2-4×3t=(t-3)2=0∴t=3②∵抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到y2,∴抛物线y2=-2tx-t-222+(t-2)22t,∴抛物线y2的顶点P t-22,(t-2)22t,将顶点Pt-22,(t-2)22t代入y AC=-2t x+2,∴t2-6t=0,解得t1=0,t2=6,∵t>2,∴t=6;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,∴∠EMO=∠OND=90°,∵∠DOE=90°,∴∠EOM+∠MEO=∠EOM+∠NOD=90°,∴∠MEO=∠NOD,∵OD=OE,∴△ODN≌△EOM(AAS),∴ON=EM,DN=OM,∵OE的解析式为y=-2x,∴设EM=2OM=2m,∴DN=OM=m,∵EM⊥x轴,∴OA∥EM,∴△CAO~△CEM,∴OC:CM=OA:EM,∴t t+m =2 2m,∴m=tt-1,∴EM=ON=2OM=2m=2tt-1,DN=OM=m=tt-1,∴D2tt-1,t t-1,∵抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3,∴抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴D2tt-1,t t-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴3t2-19t+6=0,解得t 1=13,t 2=6,由t >2,得t =6,∴2t t -1=126-1=125,t t -1=66-1=65,∴D 125,65.【点睛】此题是二次函数和几何综合题,考查了二次函数的平移、二次函数与一次函数的交点问题、待定系数法求函数解析式、解一元二次方程、全等三角形的判定和性质及相似三角形的判定与性质等知识点,综合性较强,熟练掌握二次函数的平移和数形结合是解题的关键.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)S =-32x 2+23x(2)当x =2时,S 的最大值为23【分析】(1)过点A 作AG ⊥OC 于点G ,连接AC ,证明△AOC 是等边三角形,可得DE =x ,进而证明△CDF ∽△COB ,得出DF =34-x ,根据三角形面积公式即可求解;(2)根据二次函数的性质即可求解.【详解】(1)解:如图所示,过点A 作AG ⊥OC 于点G ,连接AC ,∵顶点A 的坐标为2,23 ,∴OA =22+232=4,OG =2,AG =23∴cos ∠AOG =OG AO=12,∴∠AOG =60°∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BD ,AO =OC ,∴△AOC 是等边三角形,∴∠ACO =60°,∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°∴△EOD 是等边三角形,。

中考函数题型及答案

中考函数题型及答案

中考函数题型及答案1. 已知函数 y=3x-2,求 x=5 时的函数值 y。

解答:将 x=5 代入函数得 y=3(5)-2=13,因此当 x=5 时,y=13。

2. 已知函数 y=x^2,求 x=3 时的函数值 y。

解答:将 x=3 代入函数得 y=3^2=9,因此当 x=3 时,y=9。

3. 已知函数 y=2x-1 和函数 z=x+5,求当 y=z 时,x 的值。

解答:将 y=z 代入得 2x-1=x+5,解得 x=3,因此当 y=z 时,x=3。

4. 已知函数 y=x^2-3x+2,求最小值及最小值点。

解答:将 y 化简得 y=(x-\frac{3}{2})^2-\frac{1}{4},因此最小值为 -\frac{1}{4},最小值点为 x=\frac{3}{2}。

5. 已知函数 y=x^3,求 y 的导数式及当 x=2 时的导数值。

解答:对函数求导得 y'=3x^2,将 x=2 代入得 y'=3(2)^2=12,因此当 x=2 时,导数值为 y'=12。

6. 已知函数 y=e^x,求其反函数及反函数在 x=0 时的函数值。

解答:将y=x 解得反函数为x=\ln y,将x=0 代入得y=e^0=1,因此反函数在 x=0 时的函数值为 y=1。

7. 已知函数 y=\frac{x+1}{x-1},求其最大值及最大值点。

解答:对函数进行约分得 y=1+\frac{2}{x-1},因此最大值为y_{max}=1+2=3,最大值点为 x-1=0,即 x=1。

8. 已知函数 y=4\sin x,求其在 [0,\pi] 区间内最大值及最大值点。

解答:由于 \sin x 的最大值为 1,所以 y 在 [0,\pi] 区间内的最大值为 y_{max}=4\times 1=4,最大值点为 x=\frac{\pi}{2}。

初三函数题型及解题方法

初三函数题型及解题方法

初三函数题型及解题方法初三函数是一个重要的高中数学学科,学习这个学科的学生应该具备一定的函数基础知识,以及函数题型及解题方法。

函数题也是考察学生数学基础的核心考试内容之一,它的出题越多,越值得学生们重视。

因此,本文将要介绍如何正确解决初三函数题。

初三函数题一般分为三类:映射函数型、反函数型和综合函数型。

一、映射函数型映射函数型中,学生可能会遇到求函数值、求最值、求导数等问题。

解决方法是:1、求函数值:学生需要根据给定的函数公式,得出被测量点的函数值。

2、求最值:学生需要根据函数的特征,如单调性和平滑性,得出函数的最大值或最小值。

3、求导数:学生需要根据函数的定义,利用微分运算计算出函数的导数值。

二、反函数型反函数型中的题目是求函数的反函数,解决方法是:1、首先计算原函数的导数。

2、然后利用反函数的定义:若函数y=f(x)满足f(x)>0,则函数y=f^(-1)(x)满足f^(-1)(x)<0;若函数y=f(x)满足f(x)=0,则函数y=f^(-1)(x)满足f^(-1)(x)=0。

3、根据定义求出反函数的导数,即可得到反函数的表达式。

三、综合函数型综合函数型中的题目比较复杂,要求学生将映射函数与反函数结合起来,解答求反函数与求函数最值等问题。

解决方法是:1、根据所给函数公式计算出其原函数以及反函数的表达式。

2、根据定义求出原函数与反函数的导数表达式。

3、利用函数是单调函数或函数最值的定义,求出其最大值或最小值。

总之,解决初三函数题要根据题目的不同,掌握正确的解题方法,以便把握住函数的特点,有效解决函数题。

学生们在复习的过程中,要多练习,多加强初三函数的专项训练,以期达到高分的考试成绩。

本文就介绍了初三函数题的基本类型及解题方法,希望能为学生们提供一定的参考和帮助,从而能够在考试中取得理想的成绩。

(完整版)中考数学二次函数压轴题题型归纳

(完整版)中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。

4、二次函数与x 轴的交点为整数点问题。

(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。

解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。

6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。

中考数学解题技巧如何应对含参数的函数题

中考数学解题技巧如何应对含参数的函数题

中考数学解题技巧如何应对含参数的函数题在中考数学中,含参数的函数题是学生常常会遇到的一类题型。

这类题目给出了一个函数,其中包含了一个或多个参数,需要根据不同的参数值去求解题目所要求的内容。

在解决这类题目时,学生需要掌握一定的数学技巧和方法,以下将介绍几种常用的解题技巧,帮助学生应对含参数的函数题,提高解题的准确性和效率。

一、代入法对于含参数的函数题,一种常见的解题技巧是代入法。

具体步骤如下:1. 首先,将题目中给出的参数的值代入到函数中,计算出具体的函数值。

2. 根据题目的要求,利用计算出的函数值进行进一步的运算和操作,得出最后的结果。

例如,题目给出了一个函数 y = ax + b,其中 a 和 b 是参数,要求当x = 3 时的 y 的值。

首先,将 x = 3 代入函数中,得到 y = 3a + b。

然后,根据题目的要求,利用得到的 y 值进行后续的计算和分析。

二、方程解法另一种常用的解题技巧是方程解法。

对于含参数的函数题,学生可以通过建立方程的方式,求解参数的值。

具体步骤如下:1. 首先,根据题目的要求,建立一个方程,其中包含了参数和已知条件。

2. 利用已知条件和已知数值,将方程化简为简单的方程组或一个方程。

3. 解方程,求得参数的值。

4. 将得到的参数代入到函数中,计算出具体的函数值。

例如,题目给出了一个函数 y = ax^2 + bx + c,要求在 x = 1 时的函数值等于 3。

首先,代入 x = 1,得到方程 a + b + c = 3。

然后,根据题目的要求,将方程进行简化为一个方程。

接着,解方程 a + b + c = 3,求得参数的值。

最后,将参数的值代入函数中,计算出具体的函数值。

三、辅助线法辅助线法是解决含参数的函数题时常用的一种技巧。

对于某些特殊的函数题,学生可以通过引入辅助线的方式,简化解题过程,提高解题效率。

具体步骤如下:1. 首先,根据题目的要求,通过观察和分析,找到适合引入辅助线的地方。

初中函数题型及解题技巧

初中函数题型及解题技巧

初中函数题型及解题技巧1. 嘿,咱来说说那让人又爱又恨的一次函数题型!就好比跑步,速度固定,那跑的路程和时间不就有固定关系嘛。

比如给你个题目,已知某一次函数经过两点,让你求出解析式,这不难吧!只要把那两个点带进去,不就轻松搞定啦!记住哦,一次函数就像你前进的路线,搞懂了它,前方就一路顺畅啦!2. 哇塞,二次函数题型可有的研究啦!这不就像投篮,高度和距离之间有着奇妙的联系。

像给出一个二次函数图像,让你判断开口方向、对称轴啥的,你就瞪大眼睛仔细看呀。

看曲线是往上还是往下,对称轴不就在那摆着嘛!搞清楚二次函数,就像是掌握了投篮的技巧,一投一个准儿!3. 哎呀呀,反比例函数题型也是很有特点的哟!它就跟跷跷板似的,这边下去那边就上来。

比如说知道面积一定的长方形,长和宽的关系不就是反比例嘛。

别被那些数字吓住,它们都是纸老虎,找准关键信息,解决反比例函数题型那简直是小意思啦!4. 嘿,还有那种函数综合题型呢,那可真是个大挑战啊!就像是一场复杂的游戏,各种规则混在一起。

可别害怕,就一步步来,把每个函数都理清楚。

比方说一次函数和二次函数放一块的题,分别解决它们,再综合起来看,难题也会变简单哟,对吧?5. 再说说函数中的最值问题吧!这就像是在寻找宝藏,要找到那个最珍贵的点。

像求一个函数在某个区间内的最大值或最小值,多有趣呀!只要运用好咱学的知识,顺藤摸瓜,不就找到宝藏——最值啦!这多有意思呀!6. 最后可别忘了函数图像的变换问题呀!这就好比变魔术,图像可以平移、对称啥的。

比如把一个函数图像向左平移几个单位,那规律可得记牢啦!你想想,就像变魔术一样神奇地移动图像,多好玩呀!总之,初中函数题型虽然多样,但只要咱掌握好技巧,都能轻松搞定!大家加油呀!。

中考数学复习-一次函数与反比例函数综合题型-教案

中考数学复习-一次函数与反比例函数综合题型-教案

专题复习三 一次函数与反比例函数综合题型【教学笔记】一、求一次函数与反比例函数的解析式 1、待定系数法.2、一次函数需要两个坐标点,反比例函数只需要一个坐标点. 二、图象中涉及的三角形及有关图形面积的问题 1、反比例函数k .2、将大三角形面积看作几个小三角形面积之和3、图形面积与坐标点之间的关系 三、交点问题 根据已知量求未知量四、根据图象直接写出自变量的取值范围 数形结合的思想【典型例题】考点一:求一次函数与反比例函数的解析式【例1】(2015资阳)如图10,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx (x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为2,0 (). (1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q 、C 、H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.解:(1)把A (﹣2,0)代入y=ax+1中,求得a=, ∴y=x+1,由PC=2,把y=2代入y=x+1中,得x=2,即P (2,2), 把P 代入y=得:k=4,则双曲线解析式为y=;(2)设Q(a,b),∵Q(a,b)在y=上,∴b=,当△QCH∽△BAO时,可得=,即=,∴a﹣2=2b,即a﹣2=,解得:a=4或a=﹣2(舍去),∴Q(4,1);当△QCH∽△ABO时,可得=,即=,整理得:2a﹣4=,解得:a=1+或a=1﹣(舍),∴Q(1+,2﹣2).综上,Q(4,1)或Q(1+,2﹣2).【例2】(2016资阳)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC交y轴于点E,∴S△C DE=S△E DA+S△A DC=,即△CDE的面积是3.【课后练习】1、(2014资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值解:(1)一次函数y=kx+b (k≠0)的图象过点P (﹣,0)和A (﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x ﹣3,反比例函数y=(m≠0)的图象过点A (﹣2,1), ∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B (,﹣4)由图象可知,当﹣2<x <0或x >时,一次函数的函数值小于反比例函数的函数值.2、如图,一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (1,0),B (0,-1)两点,且与反比例函数y =mx (m ≠0)的图象在第一象限交于C 点,C 点的横坐标为2.(1)求一次函数的解析式;(2)求C 点坐标及反比例函数的解析式.解:(1)由题意得⎩⎪⎨⎪⎧k +b =0,b =-1.解得⎩⎪⎨⎪⎧k =1,b =-1,一次函数的解析式为y =x -1;(2)当x =2时,y =2-1=1,所以C 点坐标为(2,1);又C 点在反比例函数y =m x (m ≠0)的图象上,∴1=m 2,解得m =2.所以反比例函数的解析式为y =2x .3、(2016乐山中考)如图,反比例函数y =k x 与一次函数y =ax +b 的图象交于点A (2,2),B ⎝⎛⎭⎫12,n .(1)求这两个函数解析式;(2)将一次函数y =ax +b 的图象沿y 轴向下平移m 个单位长度,使平移后的图象与反比例函数y =kx 的图象有且只有一个交点,求m 的值.解:(1)∵A (2,2)在反比例函数y =kx 的图象上,∴k =4.∴反比例函数的解析式为y =4x .又∵点B ⎝⎛⎭⎫12,n 在反比例函数y =4x 的图象上,∴12n =4,解得n =8,即点B 的坐标为⎝⎛⎭⎫12,8.由A (2,2),B ⎝⎛⎭⎫12,8在一次函数y =ax +b 的图象上,得⎩⎪⎨⎪⎧2=2a +b ,8=12a +b ,解得⎩⎪⎨⎪⎧a =-4,b =10,∴一次函数的解析式为y =-4x +10; (2)将直线y =-4x +10向下平移m 个单位长度得直线的解析式为y =-4x +10-m ,∵直线y =-4x +10-m 与双曲线y =4x 有且只有一个交点,令-4x +10-m =4x ,得4x 2+(m -10)x +4=0,∴Δ=(m -10)2-64=0,解得m =2或18.4、如图,一次函数5+=kx y (k 为常数,且0≠k )的图像与反比例函数xy 8-=的图像交于()b A ,2-,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移)0(>m m 个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值. 解:(1)将()b A ,2-代入反比例函数xy 8-=,得: 428=--=b∴()4,2-A将()4,2-A 代入一次函数5+=kx y ,得: 4=-2k+5,解得21=k ∴一次函数的表达式为521+=x y (2)直线AB 向下平移)0(>m m 个单位长度后的表达式为m x y -+=521, 由⎪⎪⎩⎪⎪⎨⎧-=-+=x y m x y 8521得:08)5(212=+-+x m x ,ABOy x16)5(8214)5(4222--=⨯⨯--=-=∆m m ac b∵平移)0(>m m 个单位长度后的直线与反比例函数的图像有且只有一个公共点;∴Δ=0,即016)5(2=--m ,解得9,121==m m , ∴m 的值为1或9.5、(2016成都中考)如图,在平面直角坐标系xoy 中,正比例函数y kx =的图象与反比例函数直线m y x=的图象都经过点A(2,-2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴相交 于点B ,与反比例函数的图象在第四象限内的交点 为C ,连接AB ,AC ,求点C 的坐标及△ABC 的面积。

中考数学函数综合题型及解题方法讲解之欧阳法创编

中考数学函数综合题型及解题方法讲解之欧阳法创编

二次函数综合题型精讲精练时间:2021.03.09 创作:欧阳法主讲:姜老师题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B (2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.解析:(1)把A(﹣2,﹣4),O(0,0),B (2,0)三点的坐标代入y=ax2+bx+c中,得解这个方程组,得a=﹣,b=1,c=0所以解析式为y=﹣x2+x.(2)由y=﹣x2+x=﹣(x﹣1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB∴OM=BM∴OM+AM=BM+AM连接AB交直线x=1于M点,则此时OM+AM最小过点A作AN⊥x轴于点N,在Rt△ABN中,AB===4,因此OM+AM最小值为.方法提炼:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。

同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。

应用的定理是:两点之间线段最短。

A A B BM 或者 M A ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。

(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x+≥2,并说明x 为何值时才会有12x x +=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合题型精讲精练主讲:姜老师题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4,因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。

同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。

应用的定理是:两点之间线段最短。

A AB B M或者 MA ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。

(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。

解析:(1)∵抛物线过(0,-3)点,∴-3a =-3 ∴a =1 ∴y=x 2+bx -3∵x 2+bx -3=0的两根为x 1,x 2且21x -x =4∴21221214)(x x x x x x -+=-=4且b <0∴b =-2 ∴y=x 2-2x -3=(x -1)2-4∴抛物线C1的顶点坐标为(1,-4) (2)∵x >0,∴0)1(212≥-=-+xx x x ∴,21≥+x x 显然当x =1时,才有,21=+xx(3)方法一:由平移知识易得C2的解析式为:y =x 2∴A(m ,m 2),B (n ,n 2) ∵ΔAOB 为Rt Δ ∴OA 2+OB 2=AB 2∴m 2+m 4+n 2+n 4=(m -n )2+(m 2-n 2)2 化简得:m n =-1 ∵SΔAOB =OB OA •21=424221n n m m +•+ ∵m n =-1 ∴SΔAOB =22221221221mm n m ++=++ =1221121)1(212=⨯≥⎪⎭⎫ ⎝⎛+=+m m m m ∴SΔAOB 的最小值为1,此时m =1,A(1,1) ∴直线OA 的一次函数解析式为y=x方法提炼:①已知一元二次方程两个根x 1,x 2,求|x 1-x 2|。

因为|x 1-x 2|=212214x x )x (x -+可得到:根公式根据一元二次方程的求;24;242221aacb b x a ac b b x -+-=-+-=.;2121acx x a b x x =-=+②,取得最小值。

时,当211);(,21=+=>≥+mm m o m m m 例3:如图,已知抛物线经过点A (﹣1,0)、B (3,0)、C (0,3)三点. (1)求抛物线的解析式.(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长.(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.解析:(1)设抛物线的解析式为:y=a (x+1)(x ﹣3),则: a (0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x ﹣3)=﹣x 2+2x+3. (2)设直线BC 的解析式为:y=kx+b ,则有:,解得;故直线BC 的解析式:y=﹣x+3.已知点M 的横坐标为m ,则M (m ,﹣m+3)、N (m ,﹣m 2+2m+3); ∴故MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m (0<m <3). (3)如图;∵S △BNC =S △MNC +S △MNB =MN (OD+DB )=MN ×OB , ∴S △BNC =(﹣m 2+3m )×3=﹣(m ﹣)2+(0<m <3);∴当m=时,△BNC 的面积最大,最大值为.方法提炼:因为△BNC 的面积不好直接求,将△BNC 的面积分解为△MNC 和△MNB 的面积和。

然后将△BNC 的面积表示出来,得到一个关于m 的二次函数。

此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。

题型二:二次函数与三角形的综合问题例4:如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.解:(1):由题意得,A (3,0),B (0,3)∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c =++得方程组⎪⎩⎪⎨⎧=++==++03039c b a c c b a解得:⎪⎩⎪⎨⎧=-==341c b a∴抛物线的解析式为243y x x =-+(2)由题意可得:△ABO 为等腰三角形,如图所示,若△ABO∽△AP 1D ,则1DP OBAD AO = ∴DP 1=AD=4 , ∴P 1(1,4)-若△ABO∽△ADP 2 ,过点P 2作P 2 M⊥x 轴于M ,AD=4,∵△ABO 为等腰三角形, ∴△ADP 2是等腰三角形,由三线合一可得:DM=AM=2= P 2M , 即点M 与点C 重合 ∴P 2(1,2) (3)如图设点E (,)x y ,则||2||21y y AD S ADE =⋅⋅=∆ ①当P 1(-1,4)时, S 四边形AP1CE =S △ACP1+S △ACE||2214221y ⋅⨯+⨯⨯== 4y +∴24y y =+ ∴4y = ∵点E 在x 轴下方 ∴4y =-代入得: 2434x x -+=-,即 0742=+-x x ∵△=(-4)2-4×7=-12<0 ∴此方程无解②当P 2(1,2)时,S 四边形AP2CE =S 三角形ACP2+S 三角形ACE = 2y +∴22y y =+ ∴2y =∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=-即 0542=+-x x ,∵△=(-4)2-4×5=-4<0∴此方程无解综上所述,在x 轴下方的抛物线上不存在这样的点E 。

方法提炼:①求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。

②要求一个动点使两个图形面积相等,我们一般是设出这个动点的坐标,然后根据两个图形面积相等来求这个动点的坐标。

如果图形面积直接求不好求的时候,我们要考虑将图形面积分割成几个容易求解的图形。

例5:如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过点A .O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解析:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A.B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),方法提炼:求一动点使三角形成为等腰三角形成立的条件,这种题型要用分类讨论的思想。

因为要使一个三角形成为等腰三角形,只要三角形的任意两个边相等就可以,所以应该分三种情况来讨论。

题型三:二次函数与四边形的综合问题例6:综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B,D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.解析:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.∵点A在点B的左侧,∴A.B的坐标分别为(﹣1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=k1x+b1(k1≠0),则,解得,∴直线AC的解析式为y=3x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)抛物线上有三个这样的点Q,①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+,﹣3);③当点Q在Q3位置时,点Q3的纵坐标为﹣3,代入抛物线解析式可得,点Q3的坐标为(1﹣,﹣3);综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3).(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则点M为所求,过点B′作B′E⊥x轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2.∴Rt△AOC~Rt△AFB,∴,由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,∴AC=,AB=4.∴,∴BF=,∴BB′=2BF=,由∠1=∠2可得Rt△AOC∽Rt△B′EB,∴,∴,即.∴B′E=,BE=,∴OE=BE﹣OB=﹣3=.∴B′点的坐标为(﹣,).设直线B′D的解析式为y=k2x+b2(k2≠0).∴,解得,∴直线B'D的解析式为:y=x+,联立B'D与AC的直线解析式可得:,解得,∴M点的坐标为(,).方法提炼:求一动点使四边形成为平行四边形成立的条件,这种题型要用分类讨论的思想,一般需要分三种情况来讨论。

相关文档
最新文档