2019七年级下册数学期末考试试题(含答案)
北京市东城区景山学校2019-2020学年七年级(下)期末数学试卷(含解析)
![北京市东城区景山学校2019-2020学年七年级(下)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/aa7bdaa48662caaedd3383c4bb4cf7ec4bfeb647.png)
2019-2020学年北京市东城区景山学校七年级(下)期末数学试卷一.选择题(共8小题)1.下列各组二次根式中,同类二次根式的是()A.B.C.D.2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB=()A.2B.C.D.1.53.能使有意义的实数x的值有()A.0个B.1个C.2个D.3个4.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则等腰三角形的腰长为()A.2cm B.8cmC.2cm或8cm D.以上答案都不对5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.若三个正方形的面积如图所示,则正方形A的面积为()A.6B.36C.64D.87.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.8.化简二次根式的结果是()A.B.C.D.二.填空题(共10小题)9.在实数范围内分解因式:3a2﹣9=.10.若等腰三角形的两条边分别长2,5,则此三角形的周长是.11.如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE=7cm,AE=5cm,则AC=cm.12.已知直角三角形的两条直角边的长度分别是6cm和8cm,则第三边上的高为.13.关于x的分式方程的解为正数,则m的取值范围是.14.如图,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=cm.15.有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为尺.16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是.17.如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,则AC=,∠ECD=.18.如图,线段OA的长为2,它的一个端点O是数轴的原点,OA与数轴正半轴的夹角为45度,以OA为一边作等腰三角形OAB,使项点B在数轴上,则数轴上点B所表示的数是.三.解答题19.(1);(2);(3);(4);(5);(6)()();(7)(2﹣)(2+);(8)()2.20.解方程:21.解方程:+1=22.下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….(1)假如你也在课堂中,你的意见如何,为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)23.已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.24.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.25.“五•一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km,小东家到公园的路程为12km,小明骑车的平均速度比小东快3.5km/h,结果两人同时到达公园.求小东从家骑车到公园的平均速度.26.如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K 是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.2019-2020学年北京市东城区景山学校七年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题)1.下列各组二次根式中,同类二次根式的是()A.B.C.D.【分析】将选项中的二次根式化为最简,然后根据同类二次根式的被开方数相同即可得出答案.【解答】解:A、与3的被开方数不同,不是同类二次根式,故本选项错误;B、3与的被开方数不同,不是同类二次根式,故本选项错误;C、=,=,被开方数相同,是同类二次根式,故本选项正确;D、=2,=,被开方数不同,不是同类二次根式,故本选项错误;故选:C.2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB=()A.2B.C.D.1.5【分析】根据含30°角的直角三角形的性质定理得出AB=2BC,代入求出即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC,∵BC=1,∴AB=2,故选:A.3.能使有意义的实数x的值有()A.0个B.1个C.2个D.3个【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵二次根式有意义,∴﹣x2≥0,解得:x=0,即符合题意的只有一个值.故选:B.4.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则等腰三角形的腰长为()A.2cm B.8cmC.2cm或8cm D.以上答案都不对【分析】设腰长为x,得出方程(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,求出x 后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故选:B.5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.6.若三个正方形的面积如图所示,则正方形A的面积为()A.6B.36C.64D.8【分析】根据算术平方根的概念分别求出两个正方形的边长,根据勾股定理求出正方形A 的边长,求出正方形A的面积.【解答】解:面积为100的正方形的边长为10,面积为64的正方形的边长为8,由勾股定理得,正方形A的边长==6,∴正方形A的面积为36,故选:B.7.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.【分析】设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,根据甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,由题意得,=.故选:D.8.化简二次根式的结果是()A.B.C.D.【分析】根据二次根式找出隐含条件a+2≤0,即a≤﹣2,再化简.【解答】解:若二次根式有意义,则﹣≥0,﹣a﹣2≥0,解得a≤﹣2,∴原式==.故选:B.二.填空题(共10小题)9.在实数范围内分解因式:3a2﹣9=3(a+)(a﹣).【分析】首先提取公因式3,进而利用平方差公式进行分解即可.【解答】解:3a2﹣9=3(a2﹣3)=3(a+)(a﹣).故答案为:3(a+)(a﹣).10.若等腰三角形的两条边分别长2,5,则此三角形的周长是10+2.【分析】分类讨论即可解决问题.【解答】解:当等腰三角形腰为2,底为5时,等腰三角形周长为:2+2<5,不能构成三角形;当等腰三角形腰为5,底为2时,等腰三角形周长为:5+5+2=10+2,故答案为:10+2.11.如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE=7cm,AE=5cm,则AC=12cm.【分析】由CD是角平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE,从而求出AC的长.【解答】解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD,又∵DE∥BC,∴∠BCD=∠EDC.∴∠ACD=∠EDC.∴DE=CE.∴AC=AE+CE=5+7=12.故填12.12.已知直角三角形的两条直角边的长度分别是6cm和8cm,则第三边上的高为 4.8cm.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,∴直角三角形斜边上的高为4.8cm.故答案为4.8cm.13.关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.14.如图,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=12cm.【分析】首先连接AD,由DE垂直平分AC,可得AD=CD,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠DAC=30°,继而求得AD与CD的长,则可求得BD 的长,继而求得答案.【解答】解:连接AD,∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AC,∴AD=CD,∴∠DAC=∠C=30°,∴AD=CD=2DE=2×2=4(cm),∴∠BAD=∠BAC﹣∠DAC=90°,∴BD=2AD=8(cm),∴BC=BD+CD=12(cm).故答案为:12.15.有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为13尺.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故答案为:1316.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是10.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为:10.17.如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,则AC=9cm,∠ECD=60°.【分析】根据等边三角形性质得出AB=AC,AD=AE,∠BAC=∠EAD=∠B=60°,求出∠BAD=∠CAE,根据SAS证△BAD≌△CAE,推出∠ACE=∠B=60°,BD=CE=15cm,求出BC和∠ECD即可.【解答】解:∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=∠B=60°,∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,BD=CE=15cm,∴BC=BD﹣CD=15cm﹣6cm=9cm,∵△ABC是等边三角形,∴AC=BC=9cm,∵∠B+∠BAC=∠ACD=120°,∠ACE=∠B=60°,∴∠ECD=60°,故答案为:9cm,60°18.如图,线段OA的长为2,它的一个端点O是数轴的原点,OA与数轴正半轴的夹角为45度,以OA为一边作等腰三角形OAB,使项点B在数轴上,则数轴上点B所表示的数是﹣2或或2或2.【分析】如图,在数轴上取点B1,B2,B3,B4,使OB1=OA=2,OB3=OA=2,AB4=OA=2,进而可得数轴上点B所表示的数.【解答】解:如图,在数轴上取点B1,B2,B3,B4,使OB1=OA=2,OB3=OA=2,AB4=OA=2,根据题意可知:OA=2,∠AOB2=45°,作AB2⊥x轴于点B2,则OB2=AB2=,∴OB4=2,∴数轴上点B所表示的数是:﹣2,,2,2.故答案为:﹣2或或2或2.三.解答题19.(1);(2);(3);(4);(5);(6)()();(7)(2﹣)(2+);(8)()2.【考点】6E:零指数幂;6F:负整数指数幂;76:分母有理化;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)根据二次根式的除法可以解答本题;(2)根据二次根式的加减法可以解答本题;(3)根据二次根式的的乘法和减法可以解答本题;(4)先化简,然后合并同类二次根式即可解答本题;(5)根据负整数指数幂、零指数幂和分母有理化可以解答本题;(6)根据二次根式的乘法和加减法可以解答本题;(7)根据平方差公式和完全平方公式可以解答本题;(8)根据完全平方公式可以解答本题.【解答】解:(1)=2×÷=2×=;(2)=4﹣+=4﹣+3﹣2=+1;(3)=﹣3﹣=﹣;(4)==﹣;(5)=+1+﹣1=+1+﹣1=2;(6)()()=2﹣4﹣3+=3﹣7;(7)(2﹣)(2+)=[2﹣()][2+()]=4﹣()2=4﹣(3﹣2+5)=4﹣8+2=﹣4+2;(8)()2=2+﹣2+2﹣=2+﹣2+2﹣=2.20.解方程:【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.21.解方程:+1=【考点】B3:解分式方程.【专题】11:计算题.【分析】本题考查解分式方程的能力,因为x2﹣1=(x+1)(x﹣1),所以可得最简公分母为(x+1)(x﹣1).去分母后解整式方程即可,注意检验.【解答】解:方程两边同乘以(x2﹣1),得x2﹣4x+x2﹣1=2x(x﹣1),2x2﹣4x﹣1=2x2﹣2x,﹣2x=1,∴x=﹣.经检验:x=﹣是原方程的解,∴原方程的解为x=﹣.22.下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….(1)假如你也在课堂中,你的意见如何,为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)【考点】KH:等腰三角形的性质.【专题】21:阅读型;32:分类讨论.【分析】乍一看两个同学说的都对,但是细分析我们就能看出两个人的回答都不全面,而正确的应该是两者的结合,即结果有两种情况.通过此题教我们养成考虑问题要全面考虑的好习惯.【解答】答:(1)上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.理由如下:①当∠A是顶角时,设底角是α.∴30°+α+α=180°,α=75°.∴其余两角是75°和75°.②当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°.∴其余两角分别是30°和120°.(2)感受为:解题时,思考问题要全面,有的题目要进行分类讨论,分类时要做到不重不漏.23.已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.【考点】KI:等腰三角形的判定.【专题】14:证明题.【分析】由∠1=∠2,∠3=∠4,根据三角形外角的性质,易证得∠B=∠C,然后由等角对等边,证得:△ABC是等腰三角形.【解答】证明:∵∠B=∠3﹣∠1,∠C=∠4﹣∠2,又∵∠1=∠2,∠3=∠4,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.24.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.【考点】KF:角平分线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】延长AD交BC于F,由AD是∠BAC的平分线,∠B=∠EAC,易证得∠DFE =∠DAE,可得AE=FE,又由ED⊥AD,根据三线合一的性质,即可证得ED平分∠AEB.【解答】证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠FDE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.25.“五•一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km,小东家到公园的路程为12km,小明骑车的平均速度比小东快3.5km/h,结果两人同时到达公园.求小东从家骑车到公园的平均速度.【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设小东从家骑车到公园的平均速度为xkm/h,,解得,x=14,经检验x=14是原分式方程的解,答:小东从家骑车到公园的平均速度14km/h.26.如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K 是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【考点】KY:三角形综合题.【专题】152:几何综合题;67:推理能力.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,∵∠MFN=∠BFC,∴∠MFN=∠Q,同理,∠NMF=∠APQ,∴∠MFN=∠FMN,∴NM=NF;(3)连接CE,∵AC⊥PQ,PC=CQ,∴AP=AQ,∴∠P AC=∠QAC,∵BD⊥AQ,∴∠DBQ+∠Q=90°,∵∠Q+∠CAQ=90°,∴∠CAQ=∠QBD,∴∠P AC=∠FBC,∵AC=BC,∠ACP=∠BCF,∴△APC≌△BFC(AAS),∴CP=CF,∵AM=CP,∴AM=CF,∵∠CAB=∠CBA=45°,∴∠EAB=∠EBA,∴AE=BE,∵AC=BC,∴直线CE垂直平分AB,∴∠ECB=∠ECA=45°,∴∠GAM=∠ECF=45°,∵∠AMG=∠CFE,∴△AGM≌△CEF(ASA),∴GM=EF,∵BN=BE+EF+FN=AE+GM+MN,∴BN=AE+GN.。
(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)
![(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/f4f751a8a417866fb94a8eb2.png)
2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。
2019-2020学年四川省成都市新都区七年级(下)期末数学试卷 (含答案解析)
![2019-2020学年四川省成都市新都区七年级(下)期末数学试卷 (含答案解析)](https://img.taocdn.com/s3/m/d231d36983c4bb4cf7ecd1fc.png)
2019-2020学年四川省成都市新都区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. m3⋅m3=2m3B. 5m2n−4mn2=mnC. (m+1)(m−1)=m2−1D. (m−n)2=m2−mn+n22.∠A的补角为125°12′,则它的余角为()A. 54°18′B. 35°12′C. 35°48′D. 以上都不对3.如图,AB//CD,∠B=75°,∠E=27°,则∠D的度数为()A. 45°B. 48°C. 50°D. 58°4.直径为0.00000008米,用科学记数法表示为()米.A. 0.8×10−7B. 8×10−8C. 8×10−9D. 8×10−75.下列剪纸作品中,不是轴对称图形的是()A. B. C. D.6.已知x a=2,x b=−3,则x3a−2b=()A. 23B. 89C. −23D. −897.温度(℃)−20−100102030声速(m/s)318324330336342348下列说法中,错误的是().A. 在这个变化中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为20℃时,声音5s可以传播1740mD. 当温度每升高10℃,声速增加6m/s8.下列语句正确的是()A. 一个角小于它的补角B. 相等的角是对顶角C. 同位角互补,两直线平行D. 同旁内角互补,两直线平行9.下列事件中,属于不确定事件的是()A. 科学实验,前100次实验都失败了,第101次实验会成功B. 投掷一枚骰子,朝上面出现的点数是7点C. 太阳从西边升起来了D. 用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形10.如图所示,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,∠1=()度.A. 55B. 65C. 70D. 75二、填空题(本大题共9小题,共36.0分)11.已知:a+b=2,a2−b2=12,那么a−b=______ .12.若4x2−kx+9(k为常数)是完全平方式,则k=______.13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红,那么袋中的球共有______个.球的概率为1314.如图,AB//CD,一副三角板按如图所示放置,∠AEG=30∘.则∠HFD度数为.15.已知2x+5y−3=0,则4x·32y的值为________.16.+已知(x+1)(x+q)的结果中不含x的一次项,则常数q=.17.如图,四边形ABCD的对角线AC、DB交于点E,AB=CD,AC=DB,图中全等的三角形共有______对.×1×2218.已知:13=1=14×22×3213+23=9=14×32×4213+23+33=36=1413+23+33+43=100=1×42×524 …根据上述规律计算:13+23+33+⋯+193+203=______ .19.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,那么S3=______ ,则S n=______ .(用含n的式子表示)三、解答题(本大题共9小题,共84.0分)20.计算:(1)(−2)0+(−2)2−(−2)−2.(2)a3⋅a2⋅a−a7÷a+(−2a2)3.(3)1013×923−(−3)2017⋅(13)2019.(4)(a−b+2)(a+b−2).21.计算:(1)[x(x2y2−xy)−y(x2−x3y)]÷3x2y(2)(x−1)(2x+1)−2(x−5)(x+2)22.已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.23.25.如图,在长度为1个单位长度的小正方形组成的大正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为_________________;(3)△ABC的周长为_________________;(保留根号)(4)在直线l上找一点P,使PB+PC的长最短.(保留痕迹)24.某种汽车油箱可储油60升,加满油并开始行驶,油箱中的余油量y(升)与行驶里程x(千米)之间的关系是一次函数关系(如图).(1)求y关于x的函数表达式(不要求写出自变量的取值范围);(2)加满一箱油汽车可行驶多少千米?25.如图,在△ABC中,AD是∠BAC的平分线,交BC于点D,CE是AB边上的高,若∠B=30°,∠BDA=130°,求∠ACE的度数.26.当k为何值时,关于x,y的多项式x2+2kxy−3y2−6xy−y中不含xy项?27.(1)你能求出(a−1)(a99+a98+a97+⋯+a2+a+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情况入手,分别计算下列各式的值:(a−1)(a+1)=_________,(a−1)(a2+a+1)=_________,(a−1)(a3+a2+a1)=_________,…由此我们可得到:(a−1)(a99+a98+a97+⋯+a2+a+1)=_________;(2)利用(1)中的结论,完成下列计算:①2199+2198+2197+⋯+22+2+1;②(−2)49+(−2)48+(−2)47+⋯+(−2)+1.28.如图,在△ABC中,点D在边AB上,点E在边AC上,CE=BD,连接CD,BE,BE与CD相交于点F.(1)如图1,若△ACD为等边三角形,且CE=DF,求∠CEF的度数;(2)如图2,若AC=AD,求证:EF=FB;(3)如图3,在(2)的条件下,若∠CFE=45°,△BCD的面积为4,求线段CD的长.-------- 答案与解析 --------1.答案:C解析:【分析】本题考查了同底数幂乘法,合并同类项,平方差公式和完全平方公式,根据它们各自的法则分别判断即可.【解答】解:A.根据同底数幂乘法法则,m3⋅m3=m6,故A错误;B.5m2n−4mn2不能合并,故B错误;C.根据平方差公式可得(m+1)(m−1)=m2−1,故C正确;D.根据完全平方公式可得(m−n)2=m2−2mn+n2,故D错误.故选C.2.答案:B解析:解:∵∠A=180°−125°12′,∴∠A的余角为90°−∠A=90°−(180°−125°12′)=125°12′−90°=35°12′.故选:B.两角互补和为180°,互余和为90°,先求出∠A,再用90°−∠A即可解出本题.此题考查的是角的性质,两角互余和为90°,互补和为180°.3.答案:B解析:【分析】此题考查平行线的性质,关键是根据平行线的性质解答.根据平行线的性质解答即可.【解答】解:如图,∵AB//CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75°−27°=48°,故选:B.4.答案:B解析:【分析】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000008=8×10−8,故选:B.5.答案:D解析:解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.答案:B解析:解:∵x a=2,x b=−3,∴x3a−2b=(x a)3÷(x b)2=8÷9=8.9故选:B.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.7.答案:C解析:【分析】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324−318=6(m/s),330−324=6(m/s),336−330=6(m/s),342−336=6(m/s),348−342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选C.8.答案:D解析:解:A、一个角和它的补角的大小没有关系,故错误;B、相等的角不一定是对顶角,故错误;C、同位角相等,两直线平行,故错误;D正确;故选:D.根据补角的定义即可判断A;根据对顶角的定义即可判断B;根据平行线的判定方法即可判断C、D.本题考查角互补的概念:和为180度的两个角互为补角.同时考查了平行的判定方法,解题的关键是熟记定义.9.答案:A解析:[分析]根据事件发生的可能性大小判断相应事件的类型即可.[详解]解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选:A.[点睛]本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.答案:C解析:解:∵四边形ABCD为长方形,∴AD//BC.∴∠DEF=∠EFG=55°.∵由翻折的性质可知:∠DEF=∠GED=55°,∴∠DEG=110°.∴∠1=180°−∠DEG=180°−110°=70°.故选:C.由平行线的性质可求得∠DEF的度数,然后依据翻折的性质可求得∠GEF的度数,最后依据∠1= 180°−∠DEG求解即可.本题主要考查的是翻折的性质、平行线的性质的应用,熟练掌握相关性质是解题的关键.11.答案:6解析:解:a2−b2=12,(a−b)(a+b)=122(a−b)=12a−b=6.故答案为:6.利用平方差公式,即可解答.本题考查了平方差公式,解决本题的关键是熟记平方差公式.12.答案:±12解析:【分析】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵4x2−kx+9=(2x)2−kx+32,∴−kx=±2×2×3x,解得k=±12,故答案为±12.13.答案:12解析:解:设袋中的球共有m个,其中有4个红球,则摸出红球的概率为4m,根据题意有4m =13,解得:m=12.故答案为:12.根据红球的概率公式列出方程求解即可.本题考查的是随机事件概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.答案:45°解析:【分析】本题主要考查了平行线的性质.根据平行线的性质结合三角板的角度和可求出∠AEF= 75°,从而可得∠EFD=∠AEF=75°,进而可求∠HFD的度数.【解答】解:∵AB//CD,∴∠EFD=∠AEF,又∵∠AEG=30°,∠GEF=45°,∠AEF=∠AEG+∠GEF,∴∠EFD=75°,又∵∠EFH=30°,∴∠HFD=∠EFD−∠EFH=45°.故答案为45°.15.答案:8解析:【分析】本题是对同底数的乘法和幂的乘方的性质的考查.根据同底数的乘法和幂的乘方的性质,先都化成以2为底数的幂相乘的形式,再代入已知条件计算即可.【解答】解:∵2x+5y−3=0,∴2x+5y=3,∴4x⋅32y=22x⋅25y=22x+5y=23=8.故答案为8.16.答案:−1解析:解:(x+1)(x+q)=x2+(q+1)x+q,由结果不含x的一次项,得到q+1=0,解得:q=−1,故答案为:−1.原式利用多项式乘以多项式法则计算,整理后根据结果不含x的一次项,求出q的值即可.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.答案:3解析:解:∵AB=CD,AC=DB,BC=BC,∴△ABC≌△DBC,∴∠BAC=∠BDC,∵∠AEB=∠DEC,AB=DC,∴△ABE≌△DEC,∴BE=CE,AE=DE,∵AB=DC,BD=AC,AD=AD,∴△ABD≌△ADC,∴图中全等的三角形共有3对,故答案为:3根据全等三角形的判定解答即可.本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”.18.答案:44100×12×22,解析:解:(1)∵13=14×22×32,13+23=1413+23+33=14×32×42,∴13+23+33+⋯+193+203=14×202×212=44100; 故答案为:44100.观察不难发现,从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4.本题主要考查数字的变化规律,根据题意得出数字的规律是从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4是解题的关键.19.答案:√32(34)3;√32(34)n解析:解:∵等边三角形ABC 的边长为2,AB 1⊥BC ,∴BB 1=1,AB =2,根据勾股定理得:AB 1=√3,∴S 1=12×√34×(√3)2=√32(34)1; ∵等边三角形AB 1C 1的边长为√3,AB 2⊥B 1C 1,∴B 1B 2=√32,AB 1=√3,根据勾股定理得:AB 2=32,∴S 2=12×√34×(32)2=√32(34)2; 依此类推,S n =√32(34)n ; ∴S 3=√32(34)3, 故答案为:√32(34)3,√32(34)n . 由AB 1为边长为2的等边三角形ABC 的高,利用三线合一得到B 1为BC 的中点,求出BB 1的长,利用勾股定理求出AB 1的长,进而求出S 1,同理求出S 2,依此类推,得到S n .此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键. 20.答案:解:(1)原式=1+4−14=434(2)原式=a 6−a 6−8a 6=−8a 6;(3)原式=(10+13)×(10−13)+32017×132017×132=100−19+19=100;(4)原式=[a −(b −2)][a +(b −2)]=a 2−(b −2)2=a2−b2+4b−4;解析:(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据实数的运算法则即可求出答案.(4)根据平方差公式以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21.答案:解:(1)[x(x2y2−xy)−y(x2−x3y)]÷3x2y=[x3y2−x2y−x2y+x3y2]÷3x2y=(2x3y2−2x2y)÷3x2y=23xy−23;(2)原式=2x2−2x+x−1−2(x2−3x−10)=2x2−x−1−2x2+6x+20=5x+19.解析:本题考查了整式的混合运算的应用,能灵活运用运算法则进行化简是解此题的关键,注意运算顺序.(1)先算乘法,再合并同类项,最后算除法即可;(2)先利用多项式乘以多项式的法则进行计算,然后去括号和合并同类项即可.22.答案:解:∠1=∠2,理由:∵∠CDG=∠B,∴DG//BA(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵AD⊥BC,EF⊥BC(已知),∴AD//EF(在同一平面内,垂直于同一直线的两条直线平行),∴∠2=∠BAD(两直线平行,同位角相等),∴∠1=∠2(等量代换).解析:根据平行线的判定推出DG//AB和AD//EF,根据平行线的性质得出∠1=∠BAD和∠2=∠BAD,即可得出答案.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.23.答案:(1)见解析;(2)3;(3)2√2+√5+√17;(4)见解析.解析:【分析】(1)利用轴对称图形的性质得出各对应点的位置,进而作出图形即可;(2)利用△ABC所在矩形的面积减去周围三角形的面积进行求解即可;(3)利用勾股定理求△ABC的周长即可;(4)连接BC’交直线l于点P,则点P即为所求.【详解】解:(1)如图所示:△AB′C′即为所求;(2)△ABC 的面积为:2×4−12×2×2−12×2×1−12×1×4=3;故答案为:3;(3)△ABC 的周长为:√22+22+√22+12+√12+42=2√2+√5+√17,故答案为:2√2+√5+√17;(4)如图所示:P 点即为所求.【点睛】此题主要考查了轴对称变换以及勾股定理等知识,熟练掌握轴对称的性质是解题关键.24.答案:解:(1)设油箱中的剩余油量y(升)与汽车行驶里程x(km)的解析式为y =kx +b , 由于图象经过(50,55)(80,52),∴{50k +b =5580k +b =52解之得{k =−0.1b =60∴y 与x 之间的函数关系是y =−0.1x +60;(2)由题意,−0.1x +60=0,解得x =600,即加满一箱油汽车可行驶600km .解析:本题考查了一次函数的应用,掌握待定系数法求一次函数的解析式是解决问题的关键.(1)设油箱中的剩余油量y 升与汽车行驶里程xkm ,把已知坐标代入,依题意列出函数解析式;(2)令y =0求解x ,即为答案.25.答案:解:∵∠B =30°,∠BDA =130°,∴∠BAD =180°−∠B −∠BDA =20°,∵AD 是∠BAC 的平分线,∴∠BAC =2∠BAD =40°,∵CE 是AB 边上的高,∠ACE +∠BAC =90°,∴∠ACE=90°−∠BAC=50°.解析:本题考查了三角形的内角和,角平分线的性质,熟练掌握三角形的内角和是解题的关键.根据已知条件得到∠BAD=180°−∠B−∠BDA=20°,根据角平分线的定义得到∠BAC=2∠BAD= 40°,根据三角形的内角和即可得到结论.26.答案:解:x2+2kxy−3y2−6xy−y=x2+(2k−6)xy−3y2−y,∵多项式x2+2kxy−3y2−6xy−y中不含xy项,∴2k−6=0,解得:k=3.解析:此题考查了多项式,熟练掌握运算法则是解本题的关键.多项式合并得到结果,根据结果不含xy项,即可确定出k的值.27.答案:解:(1)a2−1;a3−1;a4−1;a100−1;(2)①原式=(2−1)(2199+2198+2197+⋯+22+2+1),=2200−1;×(−2−1)[(−2)49+(−2)48+(−2)47+⋯+(−2)2+(−2)+1],②原式=−13[(−2)50−1],=−13(250−1).=−13解析:【分析】此题考查了平方差公式,多项式乘以多项式,找出题中的规律是解本题的关键.(1)已知等式利用平方差公式,多项式乘以多项式法则计算,以此类推得到一般性规律,即可求出所求式子的值;(2)利用(1)中计算将原式变形,计算即可得到结果.【解答】解:(1)(a−1)(a+1)=a2−1;(a−1)(a2+a+1)=a3−1;(a−1)(a3+a2+a+1)=a4−1;…由此我们可以得到:(a−1)(a99+a98+a97+⋯+a2+a+1)=a100−1;故答案为a2−1;a3−1;a4−1;a100−1;(2)见答案.28.答案:(1)解:∵CE=BD,CE=DF,∴BD=DF,∴∠DFB=∠B,∵△ACD为等边三角形,∴∠ADC=∠C=60°,∴∠DFB=∠B=30°,∴∠CEF=90°;(2)证明:作BG//AC交CD的延长线于G,∴∠C=∠G,∵AC=AD,∴∠C=∠ADC,∴∠BDG=∠G,∴BD=BG,∵CE=BD,∴BD=CE,∵BG//AC,在△CFE和△GFB中,{∠CFE=∠GFB ∠FCE=∠GCE=GB,∴△CFE≌△GFB,∴EF=FB;(3)解:作EP⊥CD于P,BH⊥CD交CD的延长线于H,设EP=x,GH=a,∵∠CFE=45°,∴FP=EP=x,∵△CFE≌△GFB,∴BH=EP=x,则FH=BH=x,∵BD=BG,BH⊥CD,∴DH=GH=a,∴CF=FG=x+a,DF=x−a,∴CD=CF+DF=2x,由题意得,12×CD×BH=4,即12×2x×x=4,解得,x=2,则CD=2x=4.解析:(1)根据等边三角形的性质得到∠ADC=∠C=60°,根据三角形的外角的性质计算;(2)作BG//AC交CD的延长线于G,证明△CFE≌△GFB,根据全等三角形的性质证明;(3)作EP⊥CD于P,BH⊥CD交CD的延长线于H,设EP=x,GH=a,根据全等三角形的性质得到BH=EP=x,根据三角形的面积公式计算.本题考查的是等边三角形的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
【北师大版】七年级下册数学《期末考试题》(含答案解析)
![【北师大版】七年级下册数学《期末考试题》(含答案解析)](https://img.taocdn.com/s3/m/8c0b8581f12d2af90342e680.png)
2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
2019葫芦岛市建昌县七年级下期末数学试卷(有答案).doc
![2019葫芦岛市建昌县七年级下期末数学试卷(有答案).doc](https://img.taocdn.com/s3/m/07e19abe4afe04a1b171de05.png)
七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2 B.﹣2 C.±2 D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).=,=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于、y的方程组的解比y的值大1,求方程组的解及的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.辽宁省葫芦岛市建昌县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数,使得2=a,则就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数,y,.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式+3<2的解集是<﹣1 .【分析】不等式经过移项即可得到答案.【解答】解:+3<2,移项得:<﹣1,即不等式的解集为:<﹣1,故答案为:<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为 5 .【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”解即可.17.点A在轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1 .【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).=12 ,=8 ,C=20% ,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000 ,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350 户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4﹣1<5+1,得:>﹣2,解不等式﹣2≤5﹣,得:≤,则不等式组的解集为﹣2<≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB ∥CD ,若∠B =55°,∠D =125°,请根据所学的知识判断BC 与DE 的位置关系,并证明你的结论.解:BC ∥DE证明:∵AB ∥CD (已知)∴∠C =∠B ( 两直线平行,内错角相等 )又∵∠B =55°(已知)∠C = 55 °( 等量代换 )∵∠D =125°(已知)∴ ∠C +∠D =180°∴BC ∥DE ( 同旁内角互补,两直线平行 )【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7 ;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于、y的方程组的解比y的值大1,求方程组的解及的值.【分析】把看做已知数表示出方程组的解,根据比y的值大1,确定出的值,进而求出方程组的解即可.【解答】解:,把=y+1代入①得:2y+1=③,代入②得:y+1﹣2y=3﹣④,联立③④,解得:,把y=1代入①得:=2,则方程组的解为,的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。
2018-2019学年七年级下学期期末考试数学试卷含答案解析
![2018-2019学年七年级下学期期末考试数学试卷含答案解析](https://img.taocdn.com/s3/m/fbec6ac16edb6f1afe001fb4.png)
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
2019--2020第二学期期末考试七年级数学试题(附答案)
![2019--2020第二学期期末考试七年级数学试题(附答案)](https://img.taocdn.com/s3/m/cbcb25b2a216147916112890.png)
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:
2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版
![2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版](https://img.taocdn.com/s3/m/6e3c4bc3a98271fe910ef9e7.png)
2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7 4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x75.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)26.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠210.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于°.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是,因变量是;(2)无人机在75米高的上空停留的时间是分钟;(3)在上升或下降过程中,无人机的速度为米/分;(4)图中a表示的数是;b表示的数是;(5)图中点A表示.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是.(填正确结论的番号)二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6﹣2(ax+b)(mx+n)am bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:A.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:3﹣1=,故选:D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.00000008=8×10﹣8;故选:A.4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x7【分析】根据同底数幂的乘法计算法则进行计算即可.【解答】解:∵x2•x7=x9,∴“□”所表示的代数式为x7,故选:D.5.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)2【分析】利用完全平方公式进行判断即可.【解答】解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.6.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,根据SSS证明三角形全等即可解决问题,【解答】解:由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,∴△DOC≌△D′O′C′(SSS),∴∠BOA=∠B′O′A′.故选:D.7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等【分析】根据不等式的性质判断A;根据对顶角的性质判断B;根据平行线的性质判断C;根据全等三角形的判定定理判断D.【解答】解:A、当x=0,y=﹣3时,满足x>y,但是不满足x2>y2,故本选项说法错误,不符合题意;B、对顶角相等,故本选项说法正确,符合题意;C、两直线平行,同旁内角互补,故本选项说法错误,不符合题意;D、两边及夹角对应相等的两三角形全等,故本选项说法错误,不符合题意.故选:B.8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a绕点O顺时针旋转的度数.【解答】解:如图.∵∠AOC=∠2=40°时,OA∥b,∴要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是70°﹣40°=30°.故选:C.9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠2【分析】根据直角三角形的定义、直角三角形两锐角互余和同角的余角相等解答.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠A+∠1=∠1+∠2=90°,∴∠A=∠2;∵∠1+∠A=∠A+∠B=90°,∴∠1和∠B都是∠A的余角;∵直角有∠ACB、∠ADC、∠BDC共3个,∴图中有三个直角三角形;∠1与∠2只有△ABC是等腰直角三角形时相等,综上所述,错误的结论是∠1=∠2.故选:B.10.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.【分析】由题意可知,△POD的面积可分两种情况讨论:P由点A移动到D时,面积逐渐减小;P由点D移动到C时,面积逐渐增大,据此判定即可.【解答】解:∵正方形ABCD的边长为2cm,O是对角线的交点,∴点O到AD或CD的距离为1cm,当P由点A移动到D时,y=PD•h=(2﹣x)×1=1﹣x(0≤x≤2);当P由点D移动到C时,y=PD•h=(x﹣2)×1=x﹣1(2<x≤4);故符合条件的图象只有选项C.故选:C.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是20.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=4×5=20,故答案为:20.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为9b﹣4a.【分析】根据长方形的面积公式先列出算式,再进行计算即可得出答案.【解答】解:它的宽为:(27ab2﹣12a2b)÷3ab=9b﹣4a;故答案为:9b﹣4a.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=50°.【分析】利用“8字型”求出∠CAD=∠DEB=25°,再根据角平分线的定义求出∠CAB 即可.【解答】解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=25°,∵AE平分∠CAB,∴∠CAB=2∠CAD=50°,故答案为50°.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于105°.【分析】根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【解答】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∵∠AEH=30°,∴∠DEF=∠HEF=(180°﹣∠AEH)=75°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°﹣75°=105°,故答案为:105.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【解答】解:(1)原式=8+1﹣3=6;(2)原式=﹣27a6﹣4a6+5a6=﹣26a6.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.【分析】直接利用乘法公式以及整式的混合运算法则化简得出答案.【解答】解:原式=(4a2﹣b2﹣3a2﹣3b2﹣6ab+4b2)÷a=(a2﹣6ab)÷a=3a﹣18b,当a=2,b=﹣1时,原式=6+18=24.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.【分析】(1)对角线垂直的四边形的面积=对角线乘积的一半.(2)分别画出A,B,C,D的对应点A′,B′,C′,D′即可.【解答】解:(1)S四边形ABCD=×3×4=6.(2)如图,四边形A′B′C′D′即为所求.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.【分析】根据角平分线的定义得出∠EBC=ABC,∠FDA=ADC,求出∠EBC =∠FDA,根据平行线的性质得出∠EBC=∠CFD,求出∠CFD=∠FDA,根据平行线的判定得出即可.【解答】证明:∵BE,DF分别是∠ABC,∠ADC的角平分线,∴∠EBC=ABC,∠FDA=ADC,∵∠ABC=∠ADC,∴∠EBC=∠FDA,∵BE∥DF,∴∠EBC=∠CFD,∴∠CFD=∠FDA,∴BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是5分钟;(3)在上升或下降过程中,无人机的速度为25米/分;(4)图中a表示的数是2;b表示的数是15;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留的时间12﹣7=5分钟即可;(3)根据速度=路程除以时间计算即可;(4)根据速度的汽车时间即可;(5)根据点的实际意义解答即可.【解答】解:(1)横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是12﹣7=5分钟;(3)在上升或下降过程中,无人机的速度=25米/分;(4)图中a表示的数是分钟;b表示的数是分钟;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米;故答案为:时间(或t);高度(或h);5;25;2;15;在第6分钟时,无人机的飞行高度为50米.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.【分析】(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD =DA=BD,则∠OAD=45°,证出∠DAN=∠MOD.证△ODM≌△ADN(ASA),得S=S△ADN,进而得出答案.△ODM【解答】(1)解:∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠DOM.∵MD⊥ND,即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM和△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××3×3=.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为﹣9.【分析】先根据多项式乘以多项式法则进行计算,再合并同类项,最后代入求出即可.【解答】解:∵x2+x=3,∴(x+4)(x﹣3)=x2﹣3x+4x﹣12=x2+x﹣12=3﹣12=﹣9,故答案为:﹣9.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为﹣3.【分析】将已知等式左边配方得出(a+1)2+(b﹣1)2=0,利用非负数的性质求出a、b,代入3a+b﹣1,计算即可.【解答】解:∵a2+b2+2+2a﹣2b=0,∴(a+1)2+(b﹣1)2=0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,∴3a+b﹣1=3×(﹣1)+1﹣1=﹣3.故答案为:﹣3.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为30.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【解答】解:根据题意得:=0.4,解得:a=30,则a的值约为30.故答案为:30.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=112°.【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB 于E′,交BC于F′,则点E′,F′即为所求,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣34)=34°∴∠ADE′+∠CDF′=∠P+∠Q=34,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣68°=112°故答案为:112°.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是①②⑤.(填正确结论的番号)【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.②正确.证明△ABP≌△FBP,推出P A=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.③错误.利用反证法,假设成立,推出矛盾即可.④错误,可以证明S四边形ABDE=2S△ABP.⑤正确.由DH∥PE,利用等高模型解决问题即可.【解答】解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,∴AD=AP+PD=PF+PH.故②正确.∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故⑤正确,∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正确.若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故③错误,故答案为①②⑤.二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)61﹣2(ax+b)(mx+n)am an+bm bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.【分析】(1)根据多项式乘多项式的计算法则即可求解;(2)先根据多项式乘多项式的计算法则展开,合并同类项后使二次项系数和一次项系数为0即可求解.【解答】解:(1)(2x﹣1)(3x+2)=6x2+4x﹣3x﹣2=6x2+x﹣2,(ax+b)(mx+n)=amx2+anx+bm)x+bn=amx2+(an+bm)x+bn,二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6 1 ﹣2(ax+b)(mx+n)am an+bm bn故答案为:1、an+bm;(2)(x+2)(x2+mx+n)=x3+mx2+nx+2x2+2mx+2n=x3+(m+2)x2+(2m+n)x+2n,∵既不含二次项,也不含一次项,∴,解得:,∴m+n=﹣2+4=2.故m+n的值为2.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.【分析】(1)在EF上截取EH=BE,由“SAS”可证△ACF≌△AHF,可得CF=HF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF≌△ANF,可得CF=NF,可得结论.【解答】证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AD,∴AC=AH,∵∠EAF═∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠F AH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF═∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠F AN=∠CAN,∴∠F AN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.【分析】(1)根据平行线的性质可得∠AEF+∠CFE=180°,再利用角平分线的定义可求解∠FEG+∠GFE=90°,进而证明结论;(2)分别过M,N作MG∥AB,NH∥AB,根据平行线的性质可得∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,再根据角平分线的定义结合∠AEP=∠AEF,∠CFP=∠EFC,可求解;(3)根据垂线的定义可求得∠FGQ=90°﹣∠GFQ,再根据角平分线的定义可求解∠FGQ=∠EHF.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵GE平分∠AEF,GF平分∠EFC,∴∠AEG=∠FEG=∠AEF,∠CFG=∠GFE=∠CFE,∴∠FEG+∠GFE=90°,即EG⊥FG;(2)∵分别过M,N作MG∥AB,NH∥AB,∵AB∥CD,∴AB∥MG∥NH∥CD,∴∠AEM=∠EMG,∠GMF=∠MFC,∠AEN=∠ENH,∠HNF=∠NFC,∴∠EMF=∠AEM+∠MFC,∠ENF=∠AEN+∠NFC,同理:∠EPF=∠AEP+∠PFC,∴∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,∵EM平分∠AEN,FN平分∠MFC,∴∠AEM=∠AEN,∠NFC=∠MFC,∴∠EMF+∠ENF=∠AEN+∠MFC+∠MFC+∠AEN=(∠MFC+∠AEN),∵∠AEP=∠AEF,∠CFP=∠EFC,∴∠MFC+∠AEN=(∠AEF+∠EFC)=×180°=72°,∴∠EMF+∠ENF=(∠MFC+∠AEN)=×72°=108°;(3)∠FGQ=∠EHF.证明:∵AB∥CD,∴∠EHF+∠CFH=180°,∵GQ⊥MF,∴∠FGQ=90°﹣∠GFQ,∵FG平分∠EFH,MF平分∠EFC,∴∠GFE=∠EFH,∠QFE=∠CFE,∴∠GFQ=∠CFH=(180°﹣∠EHF)=90°﹣∠EHF,∴∠FGQ=90°﹣(90°﹣∠EHF)=∠EHF.。
2018-2019学年七年级下期末考试数学试卷及答案
![2018-2019学年七年级下期末考试数学试卷及答案](https://img.taocdn.com/s3/m/d60468dff7ec4afe05a1df51.png)
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
【人教版】数学七年级下册《期末考试题》(带答案)
![【人教版】数学七年级下册《期末考试题》(带答案)](https://img.taocdn.com/s3/m/1a0a025a84254b35eefd348a.png)
22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)
2019-2020学年北京市东城区七年级下学期期末考试数学试卷及答案解析
![2019-2020学年北京市东城区七年级下学期期末考试数学试卷及答案解析](https://img.taocdn.com/s3/m/027253cfb84ae45c3a358c03.png)
2019-2020学年北京市东城区七年级下学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分) 1.如果a >b ,下列不等式一定成立的是( ) A .﹣3a >﹣3bB .5﹣a >5﹣bC .|a |>|b |D .a3+c >b 3+c2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ) A .7.6×108克B .7.6×10﹣7克 C .7.6×10﹣8克 D .7.6×10﹣9克3.下列运算中,正确的是( ) A .6a ﹣5a =1B .a 2•a 3=a 5C .a 6÷a 3=a 2D .(a 2)3=a 54.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有( ) ①了解学校口罩、洗手液、消毒片的储备情况; ②了解全体师生在寒假期间的离锡情况; ③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况. A .1个B .2个C .3个D .45.已知x ﹣5是多项式2x 2+8x +a 的一个因式,则a 可为( ) A .65B .﹣65C .90D .﹣906.某服装店店主统计一段时间内某品牌男衬衫39号,40号,41号,42号,43号的销售情况如下表所示. 男衬衫号码 39号 40号 41号 42号 43号 销售数量/件3122195他决定进货时,增加41号衬衫的进货数量,影响该店主决策的统计量是( ) A .平均数B .中位数C .众数D .方差7.下列命题中:①若√a 3=−√b 3,则√a =−√b ;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P (a ,b )表示原点;④√81的算术平方根是9.是真命题的有( ) A .1 个B .2 个C .3 个D .4 个8.二元一次方程2x +5y =25的正整数解个数是( ) A .1个 B .2个 C .3个 D .4个二.填空题(共8小题,满分24分,每小题3分)9.分解因式:n2﹣4m2=.10.如图,写出一个能判定EC∥AB的条件是.11.已知m﹣n=1,则m2﹣n2﹣2n的值为.12.把命题“对顶角相等”改写成“如果…那么…”的形式:.13.某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=.n=.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?14.如图,两个正方形的边长分别为a、b,如果a+b=7,ab=10,则阴影部分的面积为.15.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有本,学生有人.16.某公园划船项目收费标准如下:船型两人船(限乘两四人船(限乘四六人船(限乘六八人船(限乘八人)人) 人) 人) 每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为 元.三.解答题(共9小题,满分52分) 17.(5分)(π﹣3.14)0+(12)﹣1﹣|√8−3|18.(5分)解不等式组:{3(x −2)≤8−(x +6)x+12<2x−13+1,并把解集在数轴上表示出来.19.(5分)解方程组:{3x −y =3①x 2+y 3=2②20.(5分)化简:2x 2+(﹣2x +3y )(﹣2x ﹣3y )﹣(x ﹣3y )2,其中x =﹣2,y =﹣1. 21.(5分)(1)如图1,AB ∥CD ,∠A =33°,∠C =40°,求∠APC 的度数.(提示:作PE ∥AB ).(2)如图2,AB ∥DC ,当点P 在线段BD 上运动时,∠BAP =∠α,∠DCP =∠β,求∠CP A 与∠α、∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P 在射线DM 上运动,请你直接写出∠CP A 与∠α、∠β之间的数量关系.22.(5分)已知关于x 的二元一次方程组{2x −y =3k −22x +y =1−k (k 为常数).(1)求这个二元一次方程组的解(用k 的代数式表示). (2)若方程组的解满足x +y >5,求k 的取值范围.23.(6分)学校准备在各班设立图书角以丰富同学们的课余文化生话.为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了名学生;(2)请把折线统计图补充完整;(3)在统计图②中,求出“体育”部分所对应的圆心角的度数;(4)若该校有学生2400人,估计喜欢“科普”书籍的有多少人?24.(8分)小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,P之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,一共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.25.(8分)在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由.2019-2020学年北京市东城区七年级下学期期末考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分) 1.如果a >b ,下列不等式一定成立的是( ) A .﹣3a >﹣3bB .5﹣a >5﹣bC .|a |>|b |D .a3+c >b3+c【解答】解:A 、∵a >b ,∴﹣3a <﹣3b ,故本选项不符合题意; B 、∵a >b , ∴﹣a <﹣b ,∴5﹣a <5﹣b ,故本选项不符合题意; C 、a >b ,假如a 1,b =﹣3, 但是|a |<|b |,故本选项不符合题意; D 、∵a >b , ∴a 3>b3,∴a3+c >b 3+c ,故本选项符合题意; 故选:D .2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ) A .7.6×108克B .7.6×10﹣7克C .7.6×10﹣8克 D .7.6×10﹣9克【解答】解:0.00 000 0076克=7.6×10﹣8克,故选:C .3.下列运算中,正确的是( ) A .6a ﹣5a =1B .a 2•a 3=a 5C .a 6÷a 3=a 2D .(a 2)3=a 5【解答】解:A 、6a ﹣5a =a ,故此选项错误; B 、a 2•a 3=a 5,正确;C 、a 6÷a 3=a 3,故此选项错误;D 、(a 2)3=a 6,故此选项错误; 故选:B .4.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有( ) ①了解学校口罩、洗手液、消毒片的储备情况; ②了解全体师生在寒假期间的离锡情况; ③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况. A .1个B .2个C .3个D .4【解答】解:①了解学校口罩、洗手液、消毒片的储备情况适合普查; ②了解全体师生在寒假期间的离锡情况适合普查; ③了解全体师生入校时的体温情况适合普查;④了解全体师生对“七步洗手法”的运用情况适合抽样调查. 故选:C .5.已知x ﹣5是多项式2x 2+8x +a 的一个因式,则a 可为( ) A .65B .﹣65C .90D .﹣90【解答】解:设多项式的另一个因式为2x +b . 则(x ﹣5)(2x +b )=2x 2+(b ﹣10)x ﹣5b =2x 2+8x +a . 所以b ﹣10=8,解得b =18. 所以a =﹣5b =﹣5×18=﹣90. 故选:D .6.某服装店店主统计一段时间内某品牌男衬衫39号,40号,41号,42号,43号的销售情况如下表所示. 男衬衫号码 39号 40号 41号 42号 43号 销售数量/件3122195他决定进货时,增加41号衬衫的进货数量,影响该店主决策的统计量是( ) A .平均数B .中位数C .众数D .方差【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C .7.下列命题中:①若√a 3=−√b 3,则√a =−√b ;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P (a ,b )表示原点;④√81的算术平方根是9.是真命题的有( ) A .1 个B .2 个C .3 个D .4 个【解答】解:①若√a 3=−√b 3,但不能得出√a =−√b ,错误; ②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ,正确; ③若ab =0,则P (a ,b )表示原点或坐标轴,错误; ④√81的算术平方根是3,错误; 故选:A .8.二元一次方程2x +5y =25的正整数解个数是( ) A .1个B .2个C .3个D .4个【解答】解:∵2x +5y =25, ∴y =25−2x5, 当x =5时,y =3; 当x =10时,y =1; 故选:B .二.填空题(共8小题,满分24分,每小题3分) 9.分解因式:n 2﹣4m 2= (n ﹣2m )(n +2m ) .【解答】解:n 2﹣4m 2=n 2﹣(2m )2=(n ﹣2m )(n +2m ). 故答案为:(n ﹣2m )(n +2m ).10.如图,写出一个能判定EC ∥AB 的条件是 ∠A =∠ACE (答案不唯一) .【解答】解:∵∠A =∠ACE ,∴EC ∥AB (内错角相等,两直线平行). 故答案为:∠A =∠ACE (答案不唯一). 11.已知m ﹣n =1,则m 2﹣n 2﹣2n 的值为 1 . 【解答】解:∵m ﹣n =1, ∴m 2﹣n 2﹣2n=(m +n )(m ﹣n )﹣2n =(m +n )﹣2n =m +n ﹣2n=m﹣n=1.故答案为:1.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.13.某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=84.n=0.33.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?【解答】解:(1)22÷0.11=200人,m=200×0.42=84(人),n=66÷200=0.33,故答案为:84,0.33;(2)“其它”的频数为:200﹣84﹣22﹣66=28(人),频率为:28÷200=0.14,因为“文学”占比最高,因此“文学”读物最受学生欢迎,“艺术”读物占比最小,仅为11%,因此“艺术”读物受欢迎程度最小,(3)“文学”读物:3000×0.42=1260本,“艺术”读物:3000×0.11=330本,“科普”读物:3000×0.33=990本,“其它”读物:3000×0.14=280本,因此,在购书时,“文学”类的读物购买1260本,“艺术”类的读物购买330本,“科普”类的读物购买990本,“其它”类读物购买280本.14.如图,两个正方形的边长分别为a 、b ,如果a +b =7,ab =10,则阴影部分的面积为 9.5 .【解答】解:根据题意得:当a +b =7,ab =10时,S 阴影=12a 2−12b (a ﹣b )=12a 2−12ab +12b 2=12[(a +b )2﹣2ab ]−12ab =9.5. 故答案为:9.515.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有 26 本,学生有 6 人. 【解答】解:设学生有x 人,则这些书有(3x +8)本, 依题意,得:{3x +8≥5(x −1)3x +8<5(x −1)+3,解得:5<x ≤132. 又∵x 为正整数, ∴x =6, ∴3x +8=26. 故答案为:26;6.16.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人) 六人船(限乘六人) 八人船(限乘八人) 每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为 380 元.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元, 当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘6人船,1艘8人船,100+130+150=380元而810>490>390>380,∴当租1艘四人船,1艘6人船,1艘8人船费用最低是380元,故答案为:380.三.解答题(共9小题,满分52分)17.(5分)(π﹣3.14)0+(12)﹣1﹣|√8−3| 【解答】解:(π﹣3.14)0+(12)﹣1﹣|√8−3| =1+2﹣3+2√2=2√218.(5分)解不等式组:{3(x −2)≤8−(x +6)x+12<2x−13+1,并把解集在数轴上表示出来.【解答】解:{3(x −2)≤8−(x +6)①x+12<2x−13+1②, 解不等式①,得:x ≤2,解不等式②,得:x >﹣1,将不等式解集表示在数轴上如下:所以不等式组的解集为﹣1<x ≤2.19.(5分)解方程组:{3x −y =3①x 2+y 3=2②【解答】解:由②得3x +2y =12 ③由③﹣①得,3y =9,解得:y =3,把y =3代入①得,x =2.所以这个方程组的解是{x =2y =3. 20.(5分)化简:2x 2+(﹣2x +3y )(﹣2x ﹣3y )﹣(x ﹣3y )2,其中x =﹣2,y =﹣1.【解答】解:原式=2x 2+4x 2﹣9y 2﹣x 2+6xy ﹣9y 2=5x 2+6xy ﹣18y 2当x =﹣2,y =﹣1时,原式=5×4+6×2﹣18×1=14.21.(5分)(1)如图1,AB ∥CD ,∠A =33°,∠C =40°,求∠APC 的度数.(提示:作PE ∥AB ).(2)如图2,AB ∥DC ,当点P 在线段BD 上运动时,∠BAP =∠α,∠DCP =∠β,求∠CP A 与∠α、∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P 在射线DM 上运动,请你直接写出∠CP A 与∠α、∠β之间的数量关系.【解答】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠A =∠APE ,∠C =∠CPE ,∵∠A =33°,∠C =40°,∴∠APE =33°,∠CPE =40°,∴∠APC =∠APE +∠CPE =33°+40°=73°;(2)∠APC =∠α+∠β,理由是:如图2,过P 作PE ∥AB ,交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠APE =∠P AB =∠α,∠CPE =∠PCD =∠β,∴∠APC =∠APE +∠CPE =∠α+∠β;(3)如图3,过P 作PE ∥AB ,交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠P AB =∠APE =∠α,∠PCD =∠CPE =∠β,∵∠APC =∠APE ﹣∠CPE ,∴∠APC =∠α﹣∠β.22.(5分)已知关于x 的二元一次方程组{2x −y =3k −22x +y =1−k(k 为常数). (1)求这个二元一次方程组的解(用k 的代数式表示).(2)若方程组的解满足x +y >5,求k 的取值范围.【解答】解:(1)①+②得4x =2k ﹣1,∴x =2k−14, 代入①得y =3−4k 2,所以方程组的解为{x =2k−14y =3−4k 2; (2)方程组的解满足x +y >5,所以2k−14+3−2k 2>5, ∴k <−52.23.(6分)学校准备在各班设立图书角以丰富同学们的课余文化生话.为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了 300 名学生;(2)请把折线统计图补充完整;(3)在统计图②中,求出“体育”部分所对应的圆心角的度数;(4)若该校有学生2400人,估计喜欢“科普”书籍的有多少人?【解答】解:(1)这次调查一共调查学生90÷30%=300(名),故答案为:300;(2)喜欢“艺术”书籍的人数为300×20%=60(名),其它人数为300×10%=30(名), 补全图形如下:(3)喜欢“体育”书籍部分所对应的圆心角的度数为360°×40300=48°;(4)估计喜欢“科普”书籍的有2400×80300=640(人).24.(8分)小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,P之间的关系:3p+1=m;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,一共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.【解答】解:(1)用等式表示m,P之间的关系为:3p+1=m;(2)设六边形有x个,则正方形有(x+4)个,依题意有5x+1+3(x+4)+1=110,解得x=12.故正方形有16个,六边形有12个;(3)根据题意得3t+s=50,根据题意得t≥s,且s,t均为整数,因此s=2,t=16;s=5,t=15;s=8,t=14;s=11,t=13.故答案为:3p+1=m.25.(8分)在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=115°;若∠B=40°,则∠AFD=110°;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由.【解答】解:(1)①若∠BAC=100°,∠C=30°,则∠B=180°﹣100°﹣30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=12∠BAC=50°,∠FDG=12∠EDB=15°,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°﹣40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=12∠BAC,∠FDG=12∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C)=40°+12×140°=40°+70°=110°;故答案为:115°;110°;②∠AFD=90°+12∠B;理由如下:由①得:∠EDB=∠C,∠BAG=12∠BAC,∠FDG=12∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C)=∠B+12(180°﹣∠B)=90°+12∠B;(2)如图2所示:∠AFD=90°−12∠B;理由如下:由(1)得:∠EDB=∠C,∠BAG=12∠BAC,∠BDH=12∠EDB=12∠C,∵∠AHF=∠B+∠BDH,∴∠AFD=180°﹣∠BAG﹣∠AHF=180°−12∠BAC﹣∠B﹣∠BDH=180°−12∠BAC﹣∠B−12∠C=180°﹣∠B−12(∠BAC+∠C)=180°﹣∠B−12(180°﹣∠B)=180°﹣∠B﹣90°+12∠B=90°−12∠B.。
四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版
![四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版](https://img.taocdn.com/s3/m/de0ee5a8964bcf84b9d57bf6.png)
2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b34.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.()∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.()∵∠AME=∠CNE,∴∠1=∠2.()∵∠1=∠2,∴MP∥NQ.()18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了分钟;上述过程中,小明所走的路程为米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°【分析】利用对顶角的定义得出∠AOC=80°,进而利用角平分线的性质得出∠COM的度数.【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=80°,∴∠AOC=80°,∵射线OM是∠AOC的平分线,∴∠COM=×∠AOC=×80°=40°.故选:D.3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.4.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到白球是随机事件,不是必然事件,∴选项A不符合题意,选项C符合题意;∵摸到黑球是随机事件,∴选项B、D不符合题意;故选:C.7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【分析】地表以下岩层的温度随着所处深度的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是深度,因变量是岩层的温度.【解答】解:∵地表以下岩层的温度随着所处深度的变化而变化,∴自变量是深度,因变量是岩层的温度.故选:B.8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短【分析】根据三角形具有稳定性解答即可.【解答】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米【分析】根据三角形的三边关系定理可得50﹣20<x<50+20,再解即可.【解答】解:由题意得:50﹣20<x<50+20,即30<x<70,观察选项,D选项符合题意.故选:D.10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF【分析】由平行可得到∠B=∠DEF,又BE=CF推知BC=EF,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF.A、当AB=DE时,可用SAS证明△ABC≌△DEF,故本选项错误;B、当∠A=∠D时,可用AAS证明△ABC≌△DEF,故本选项错误;C、当AC=DF时,根据SSA不能判定△ABC≌△DEF,故本选项正确;D、当AC∥DF时,可知∠ACB=∠F,可用ASA证明△ABC≌△DEF,故本选项错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为9或﹣9.【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【解答】解:∵x2+2mx+81是一个完全平方式,∴2mx=±2•x•9,解得:m=±9.故答案为:9或﹣9.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为15cm2.【分析】根据三角形的面积公式解答即可.【解答】解:∵在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,∴AD⊥BC,∴△ABC的面积=,故答案为:15cm2.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是55°.【分析】先根据平角的定义求出∠3,再利用平行线的性质求出∠2=∠3即可.【解答】解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故答案为:55°.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为31元.【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).【分析】(1)根据零指数次幂,负指数次幂的性质,有理数的乘方进行计算,再乘除,后加减即可求解;(2)根据整式乘法的法则计算,再合并同类项即可求解.【解答】解:(1)原式==1﹣4+9=6;(2)原式=10a2﹣8a+20a2+2a﹣6=30a2﹣6a﹣6.16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.【分析】原式中括号中利用单项式乘多项式,完全平方公式以及平方差公式化简,去括号合并后得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣6xy+9y2+x2﹣4y2﹣2x2+5xy)﹣y=﹣xy+5y2﹣y,当x=﹣2,y=﹣3时,原式=﹣6+45+3=42.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等)∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义)∵∠AME=∠CNE,∴∠1=∠2.(等量代换)∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行)【分析】利用平行线的性质定理和判定定理解答即可.【解答】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;角平分线的定义;等量代换;同位角相等,两直线平行.18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是0.8;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【分析】(1)根据三角形内角和定理计算,得到答案;(2)根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【解答】解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF=FC=DA+DF+F A=20.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.【分析】(1)由角平分线的性质和平角的性质可求结论;(2)由“AAS”可证△BDE≌△DCF;(3)通过证明四边形DEFC是平行四边形,可得EF∥BC.【解答】证明:(1)∵DE平分∠ADB,DF平分∠ADC,∴∠PDE=∠ADB,∠FDP=∠ADC,∴∠EDF=∠PDE+∠PDF=∠ADB+∠ADC=(∠ADB+∠ADC)=90°,∴DE⊥DF;(2)∵BE⊥DE,DF⊥CF,∴∠BED=∠DFC=90°,∵∠BDE+∠CDF=90°,∠CDF+∠DCF=90°,∴∠BDE=∠DCF,∴DE∥CF,∵D是BC中点,∴BD=DC,在△BDE和△DCF中,,∴△BDE≌△DCF(AAS),(2)∵△BDE≌△DCF,∴DE=CF,∵DE∥CF,∴四边形DEFC是平行四边形,∴EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解答】解:()2019×()﹣2020===.故答案为:.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=180°﹣2∠α.【分析】利用平行线的性质可得∠α=∠3,∠1=∠β,再利用平角定义可得答案.【解答】解:∵AB∥CD,∴∠α=∠3,∠1=∠β,由折叠可得∠3=∠2,∵∠2+∠3+∠1=180°,∴∠β+2∠α=180°,∴∠β=180°﹣2∠α,故答案为:180°﹣2∠α.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.【分析】当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【解答】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=.故答案为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=2或4.【分析】延长AD至E,使DE=AD,连接CE,由“SAS”可证△ABD≌△ECD,可得CE=AB=6,由三角形的三边关系可得1<AD<5,即可求解.【解答】解:延长AD至E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=6,在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<10,∴1<AD<5,∵AD为偶数,∴AD=2或4,故答案为2或4.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为1.【分析】作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB 分别交于点M与N则P'P''的长即为△PMN周长的最小值;连接OP',OP'',过点O作OC⊥P'P'',在Rt△OCP'中求出OC即可.【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N则P'P''的长即为△PMN周长的最小值,连接OP',OP'',过点O作OC⊥P'P''于点C由对称性可知OP=OP'=OP'',∵OP=2,∠AOB=60°,∴∠P'=∠P''=30°,OP′=OP''=2,∴OC==1;故答案为1.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了20分钟;上述过程中,小明所走的路程为3800米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.【分析】(1)根据函数图象中的数据,可以计算出小明中途休息用了多少分钟,小明所走的路程是多少;(2)根据函数图象中的数据和题意,可以计算出a的值.【解答】解:(1)由图象可得,小明中途休息用了60﹣40=20(分钟),上述过程中,小明所走的路程为3800米,故答案为:20,3800;(2)由题意可得,a﹣60=(3800﹣2800)÷25,解得,a=100,即a的值是100.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3a2b+3ab2;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.【分析】【知识生成】利用面积相等推导公式(a+b)2﹣4ab=(a﹣b)2;【知识迁移】利用体积相等推导(a+b)3=a3+b3+3a2b+3ab2;(1)应用知识生成的公式,进行变形,代入计算即可;(2)先根据非负数的性质得:a+b=6,ab=7,由知识迁移的等式可得结论.【解答】解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.【分析】(1)结论:CE∥AB.证明△BAD≌△CAE(SAS)可得结论.(2)利用全等三角形的性质证明∠ADB=∠AEC=120°,证明∠ADB+∠ADE=180°即可解决问题.(3)结论:BE=AE+EC.在线段BE上取一点H,使得BH=CE,设AC交BE于点O.利用全等三角形的性质证明△AEH是等边三角形即可.【解答】(1)解:结论:CE∥AB.理由:如图1中,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE.(2)证明:如图2中,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC,∵△ADE是等边三角形,∴∠AED=∠ADE=60°,∵∠BEC=60°,∴∠AEC=∠AED+∠BEC=120°,∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=120°+60°=180°,∴B,D,E共线.(3)解:结论:BE=AE+EC.理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,∵BA=CA,BH=CE,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。
浙江省宁波市慈溪市2019-2020学年第二学期七年级下数学期末考试试卷 (解析版)
![浙江省宁波市慈溪市2019-2020学年第二学期七年级下数学期末考试试卷 (解析版)](https://img.taocdn.com/s3/m/0cc6ad6067ec102de2bd89f5.png)
浙江省宁波市慈溪市2019-2020年七年级下学期数学期末考试试卷一、选择题(每小题3分,共30分)1.如图中的五个正方体大小相同,则将四个正方体A ,B ,C ,D 经平移后能得到正方体W 的是( )A. 正方体AB. 正方体BC. 正方体CD. 正方体D2.下列四种调查中,最适宜作抽样调查的是( )A. 了解我国现代中学生喜欢的娱乐方式B. 某企业对职工进行健康检查C. 调查疫区中某社区人员感染新冠病毒的情况D. 了解本班学生视力状况3.下列计算正确的是( )A. (2a)3=2a 3B. a²·a 3=a 6C. (a²)3=a 5D. a 6÷a 2=a 44.纳米是非常小的长度单位,1纳米=10-7厘米。
经研究发现,2019新型冠状病毒(2019-n CoV)的单细胞直径范围为60纳米~140纳米,其最大直径140纳米用科学记数法表示为( )A. 1.40×10-5厘米B. 140×10-6厘米C. 1.40×10-7厘米D. 0.140×10-4厘米5.要使分式 x−1x−2 有意义,则x 的取值应满足( )A. x=1B. x≠1C. x=2D. x≠26.下列各组数中,不是二元一次方程2x-5y=3的解是( )A. {x =1.5y =0B. {x =−1y =1C. {x =4y =1D. {x =−6y =−3 7.不改变分式 1.3x−12x−0.7y 的值,把它的分子与分母中各项的系数化为整数,其结果正确的是( ) A. 13x−12x−7y B. 13x−102x−7y C. 13x−1020x−7y D. 13x−120x−7y8.下列从左到右的变形正确的是( )A. (-a-b)(a-b)=a²-b²B. 4a²-b²=(4a+b)(4a-b)C. 2x²-x-6=(2x+3)(x-2)D. 4m²-6mn+9n²=(2m-3n)²9.同一平面内五条直线l 1 , l 2 , l 3 , l 4与l 5的位置关系如图所示,根据图中标示的角度,下列判断正确的是( )A. l1∥l3,l2∥l3B. l2∥l3,l4与l5相交C. l1与l3相交,l4∥l5D. I1与l2相交,l1∥l310.将一张边长为a的正方形纸片按图1方式放置于长方形ABCD内,再将长为b(b<a),宽为b的长方形纸2片按图2,图3两种方式放置,长方形中未被覆盖的部分用阴影表示,设图2中阴影部分的面积为S1,图3中阴影部分的面积为S2,且S2-S1=2b,则AD-AB的值为( )A. 1B. 2C. 4D. 无法确定二、填空题(每小题4分,共24分)11.计算:2-1=________。
浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版
![浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版](https://img.taocdn.com/s3/m/586f3579d1f34693dbef3e51.png)
2019-2020学年浙江省温州市七年级(下)期末数学试卷一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠42.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣73.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy34.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.69.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.8010.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=.12.因式分解:m2﹣mn=.13.要使分式的值为0,则x的值为.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为人.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为cm.17.已知关于x,y的方程组的解互为相反数,则常数a的值为.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).20.解方程(组):(1);(2)+1=.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共只.(2)被检测电灯泡的最少使用寿命至少为时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.2019-2020学年浙江省温州市七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠4【分析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可.【解答】解:A、∠1和∠A是同旁内角,故本选项符合题意;B、∠2和∠A是同位角,不是同旁内角,故本选项不符合题意;C、∠3和∠A不是同旁内角,故本选项不符合题意;D、∠4和∠A是内错角,不是同旁内角,故本选项不符合题意.故选:A.2.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000005=5×10﹣6,故选:C.3.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy3【分析】运用单项式乘单项式的运算法则计算即可.【解答】解:y2•(﹣2xy)=﹣2x•(y2•y)=﹣2xy3.故选:A.4.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:4+a=5,解得:a=1,故选:B.5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【解答】解:由图形直观可以得出6月14日温差最大,是35﹣25=10(°C),故选:D.6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab【分析】分别根据单项式乘单项式与去括号的法则逐一判断即可.【解答】解:A.2a(a﹣1)=2a2﹣2a,故本选项不合题意;B.a(a+3b)=a2+3ab,故本选项符合题意;C.﹣3(a+b)=﹣3a﹣3b,故本选项不合题意;D.a(﹣a+2b)=﹣a2+2ab,故本选项不合题意.故选:B.7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【分析】根据两条直线平行,同旁内角互补,即可得∠1与∠2的关系.【解答】解:如图,∵直角三角板的直角顶点放在直尺的一边上,∴∠2=∠3,∠1+∠4=90°,∵直尺的两边平行,∴∠3+∠4=180°,∴∠2+90°﹣∠1=180°,∴∠2﹣∠1=90°.故选:D.8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.6【分析】利用十字相乘法的结果特征判断即可求出m的值.【解答】解:∵多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),而(x+4)(x﹣2)=x2+2x﹣8,∴m=2,故选:B.9.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.80【分析】设长方形的长为a,宽为b,根据四个半圆的周长之和为14π,可得a+b=14,根据面积之和为29π,可得a2+b2=116,进而求出ab的值即可.【解答】解:设长方形的长为a,宽为b,由题意得,πa+πb=14π,即:a+b=14,π×()2﹣π×()2=29π,即:a2+b2=116,∴ab=[(a+b)2﹣(a2+b2)]=(196﹣116)=40,故选:C.10.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.【分析】设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,相向而行,等量关系为:甲路程+乙路程=s;同向而行,等量关系为:甲路程﹣乙路程=s,则10xa+3xa =s,10xb﹣3xb=s,联立即可求得的值.【解答】解:设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,依题意有10xa+3xa=s①,10xb﹣3xb=s②,①﹣②得10xa+3xa﹣(10xb﹣3xb)=0,13a﹣7b=0,=,故选:B.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=4﹣x2.【分析】利用平方差公式计算即可得到结果.【解答】解:(2+x)(2﹣x)=22﹣x2=4﹣x2.故答案为:4﹣x2.12.因式分解:m2﹣mn=m(m﹣n).【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).13.要使分式的值为0,则x的值为1.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴1﹣x=0且x﹣2≠0,解得x=1,故答案为:1.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为10人.【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【解答】解:6÷(30%﹣15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.【分析】根据运算的定义即可直接求解【解答】解:5⊗(﹣2)=5﹣2=.故答案为:.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为 5.5cm.【分析】根据线段的和差关系可求AC+A′C′的长度,除以2可求A′C′的长度,再根据线段的和差关系可求CC′的长度,即为直线AB平移的距离.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.17.已知关于x,y的方程组的解互为相反数,则常数a的值为15.【考点】97:二元一次方程组的解.【专题】521:一次方程(组)及应用;66:运算能力.【分析】②﹣①求出2x+2y=a﹣15,根据已知得出a﹣15=0,求出即可.【解答】解:∵②﹣①得:2x+2y=a﹣15,∵关于x,y的方程组的解互为相反数,∴x+y=0,即2x+2y=0,∴a﹣15=0,∴a=15,故答案为15.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】设BE=BG=DF=DH=x,AE=CF=y.想办法构建方程组求出x,y即可解决问题.【解答】解:设BE=BG=DF=DH=x,AE=CF=y.∵四边形ABCD是正方形,∴AB=BC=CD=AD=x+y,∠ABC=∠ABG=90°,∠ADF=∠CDH=90°,∵BE=BG=DF=DH,∴△BGE≌△DFH(SAS),∠BEG=∠DFH=45°,∴EG=FH,∠AEG=∠CFH=135°,∵EA=FC,∴△AEG≌△CFH(SAS),∴S△AEG=S△CFH,∴xy+y(x+y)=20 ①,=②,由①②可得,∴正方形的面积=(2+)2=.故答案为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).【考点】4C:完全平方公式;4H:整式的除法.【专题】512:整式;66:运算能力.【分析】(1)根据完全平方公式展开后,再合并同类项即可;(2)根据大学生除以单项式的运算法则计算即可.【解答】解:(1)原式=a2+2a+1﹣a2=2a+1;(2)原式=(8x2y)÷(2x)﹣(4x3)÷(2x)=4xy﹣2x2.20.解方程(组):(1);(2)+1=.【考点】98:解二元一次方程组;B3:解分式方程.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用加减消元法解方程组;(2)去分母得到整式方程﹣2x+x﹣1=1,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),①+②×2得3x+2x=9+16,解得x=5,把x=5代入②得5﹣y=8,解得y=﹣3,所以方程组的解为;(2)去分母得﹣2x+x﹣1=1,解得x=2,经检验,原方程的解为x=﹣2.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先按照分式的混合运算法则进行化简,再代入使原式有意义的值进行计算.【解答】解:原式==,∵m=±1或0时,原式无意义,∴取m=2时,原式=.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共200只.(2)被检测电灯泡的最少使用寿命至少为1100时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据直方图中的数据,可以得到被检测的灯泡一共多少只;(2)根据直方图中的数据,可以得到被检测电灯泡的最少使用寿命至少为多少时;(3)根据统计图中的数据,可以计算出合格的电灯泡有多少只.【解答】解:(1)被检测的电灯泡共10+80+70+40=200(只),故答案为:200;(2)被检测电灯泡的最少使用寿命至少为1100时,故答案为:1100;(3)40000×=38000(只),即合格的电灯泡有38000只.23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由折叠的性质得出∠AEB=∠AEF,证出AE⊥EG,进而得出结论;(2)求出∠AEB=70°,由平行线的性质进而得出答案.【解答】(1)证明:由折叠知∠AEB=∠AEF,∵EG平分∠CEF,∴∠FEG=∠CEG,∵∠AEB+∠AEF+∠FEG+∠CEG=180°,∴∠AEG=∠AEF+∠FEG=90°,∴AE⊥EG,∵HG⊥EG,∴HG∥AE;(2)解:∵∠CEG=20°,∠AEG=90°,∴∠AEB=70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠AEB=∠DAE=70°,∵HG∥AE,∴∠DHG=∠DAE=70°.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.【考点】95:二元一次方程的应用;9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;69:应用意识.【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,根据总价=单价×数量,即可得出关于a,b的二元一次方程,再结合可使用时间=免洗手消毒液总体积÷每天需消耗的体积,即可求出结论;(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,根据需将9.6L 的免洗手消毒液进行分装且分装时平均每瓶需损耗20ml,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各分装方案,选择(m+n)最小的方案即可得出结论.【解答】解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.。
郑州市2019-2020学年七年级下期期末考试数学试题卷(含答案)
![郑州市2019-2020学年七年级下期期末考试数学试题卷(含答案)](https://img.taocdn.com/s3/m/43c1cf4550e2524de4187e7b.png)
郑州市2019-2020学年七年级下期期末考试数学试题卷(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B. C. D.2.据悉,中科院已经成功攻克了2nm 级芯片的一个关键技术,技术的全称为“垂直纳米 环栅晶体管”,该项技术完全由我国中科院院士自主研发,获得了多项专利,不但为我国研发2nm 芯片打下了一个非常好的基础,还可能使我国成为世界上第一个拥有2nm 芯片的国 家,已知2nm =0.000 000 002m ),0.000 000 002用科学记数法表示为( ) A .2×10-9 B .2×10-8 C .0.2×10 -9 D .0.2×10-83.下列计算正确的是( )A .a 6•a 4=a 24B .(a 3)3=a 6C (ab 4)4=ab 4D .a 10÷a 9=a 4.如图,直线a ∥b ,一块含60角的直角三角板ABC (∠A =60°) 按如图所示放置若∠1=43°,则∠2的度数为( ) A .101° B .103° C .105° D .107°5.下面是一些可以自由转动的转盘,按照转出黄色的可能性由大到小进行排列正确的 是( ).A .②④①③B .①②③④C .③①④②D .④①③②6.下面三个图是三个基本作图的作图痕迹,关于三条弧①、②、③有以下三种说法: ①弧①是以点O 为圆心,以任意长为半径所作的弧; ②弧②以点A 为圆心,以任意长为半径所作的弧; ③弧③以点O 为圆心,以大于12DE 的长为半径所作的弧 其中正确说法的个数为( )A .3个B .2个C .1个D .0个 7.下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .∠A =∠D ,∠B =∠E ,∠C =∠F D .AB =DE ,BC =EF ,△ABC 的周长=△DEF 的周长①②③102030405060708090100支撑物的高度h(cm)4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35小车下滑的时间t(s)下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23sC.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快9.七巧板是我国祖先的一项卓越创造,下面四幅图中有三幅图是小明用如图所示的七巧板拼成的,不是用如图所示的七巧板拼成的是( )A.B C. D.10.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙若图甲和图乙中中阴影部分的面积分别为3和30,则正方形A,B的面积之和为( )A.33B.30C.27D.24二、填空题(每小题3分,共15分)11.( - 3.14)0-(1)-2 = .212.如图△ABC≌△EFD,请写出一组图中平行的线段________.13.一天,小明洗手后没有把水龙头拧紧,如果该水龙头每分钟约滴出100滴水,每滴水约0.04毫升,那么所滴出的水的总量y(毫升)与小明离开的时间x(分钟)之间的关系式可以表示为______.14有一种数字游戏,操作步骤为:第一步任意写一个自然数(以下简称为原数,原数中至少有一个偶数数字),且位数小于10;第二步再写一个新三位数,它的百位数字是原数中偶数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数,以下每一步都以上一步得到的数为原数按照第二步的规则进行重复操作,则重复第二步的操作2020次后得到的数是______.15.如图,∠AOB=45°,点M、N分别在射线OA,OB上,MN=7,△OMN的面积为14,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为______.DCBA12G H F M E D AB C三、解答题(共55分)16.(6分)先化简,再求值:[(x -y )2-(x +2y )(x -2y )]÷(12y );其甲x =2,y =-110. 17.(6分)学习了“简单的轴对称图形”一课后,马老师带领数学兴趣小组的同学来到了 校园一角进行探究学习.校园一角的形状如图(1)所示,其中AB ,BC ,CD 表示围墙.同学们想通过作角平分线在图示的区域中找一点P (如图(2)所示),使得点P 到三面墙的距离都相等.请你用尺规作图的方法在图(2)中作出点P (不写作法,但要保留作图痕迹),并解释这样做的道理图(2)图(1) 图(2)18.(8分)如图,已知点E 在BC 上,BD ⊥AC ,EF ⊥AC ,垂足分别为D 、F ,点M 、G 在 AB 上,GF 交BD 于点H ,∠BMD +∠ABC =180°,∠1=∠2,则有MD ∥GF .下面是小颖 同学的思考过程,请你在括号内填上依据 思考过程:因为BD ⊥AC ,EF ⊥AC ,垂足分别为D 、F (已知), 所以∠BDC =90°,∠EFC =90°( )所以∠BDC =∠EFC (等量代换)所以_______(同位角相等,两直线平行) 所以∠2=∠CBD ( )因为∠1=∠2(已知),所以∠1=∠CBD ( 所以________(内错角相等,两直线平行) 因为∠BMD +∠ABC =180°( ) 所以MD ∥BC ( ) 所以MD ∥GF ( )19.(8分)如图,在△ABC 中,BD ⊥AC 于点D ,CE 平分∠ACB 交AB 于点E ,∠A 65°,∠CBD =36°,求∠BEC 的度数图3图1图2 AB C P C B ADE E D A BC (米)(分钟)家离家距离20.(8分)小明和小颖用一副去掉大、小王的扑克牌做摸牌游戏(扑克牌有四种花色,每 种花色有13张):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,45,6,2,8,9,10,J ,Q ,K ,A ,且牌面的大小与花色无关).然后两人把摸到的牌都放回重新开始游戏(1)若小明已经摸到的牌面为2,则小明获胜的概率为______,小颖获胜的概率为____. (2)若小明已经摸到的牌面为5,然后小颖摸牌,那么小明和小颖获胜的概率分别是多 少?21.(9分)小明骑自行车从家出发去上学,当他骑了一段路时想起要买某本书,于是又 折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间t (分)与离家 距离S (米)的关系示意图,根据图中提供的信息回答下列问题:(1)小明家到学校的路程是_____米,小明在书店停留了______分钟; ((2)在整个上学的途中_____(哪个时间段)小明骑车速度最快,最快的速度是___米/分 (3)请求出小明从家出发多长时间后,离学校的距离是600米?22.(10分)在学习全等三角形知识时,数学兴趣小组发现这样一个模型,它是由两个共 顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通 过资料查询,他们得知这种模型称为“手拉手模型”兴趣小组进行了如下探究(1)如图1,两个等腰三角形△ABC 和△ADE 中,AB =AC ,AE =AD ,∠BAC = ∠DAE ,连接BD ,CE ,如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB 全等的三角形是_______此时线段BD 和CE 的数量关系是_________; (2)如图2,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AE =AD ,∠BAC =∠DAE =90°,连接BD ,CE ,两线交于点P ,请判断线段BD 和CE 的数量关系和位置关系,并说明理由; (3)如图3,已知△ABC ,请完成作图:以AB ,AC 为边分别向△ABC 外作等边△ABD 和等边△ACE (等边三角形三条边相等,三个角都等于60°),连接BE ,CD ,两线交于点P , 并直接写出线段BE 和CD 的数量关系及∠PBC +∠PCB 的度数.12GHF M ED AB C郑州市2019—2020学年下期期末考试七年级数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.C ;2.A ;3.D ;4.B ;5.C ;6.D ;7.D ;8.D ;9.B ; 10.A. 二、填空题(每小题3分,共15分)11.3-; 12.答案不唯一∥,FE AB ; 13.x y 4=; 14.123; 15. 8.三、解答题(共55分)16.(6分)解:原式=(x 2-2xy+y 2-x 2+4y 2)÷(12y)=(-2xy+5y 2) ÷(12y)=-4x+10y , 当x=2,y=-110时,原式=-4×2+10×(-110)=-9. 17.(6分)解:如图,点P 即为所求;.......................4分因为点P 在∠ABC 的平分线上,所以点P 到AB 的距离 等于点P 到BC 的距离;又因为点P 在∠BCD 的平分线上,所以点P 到BC 的 距离等于点P 到CD 的距离.所以点P 到AB ,BC ,CD 的距离相等. .......................6分 (说明:本题解法不唯一,其它解法对应给分)18.(8分)思考过程:因为BD ∠AC ,EF ∠AC ,垂足分别为D 、F (已知),所以∠BDC =90°,∠EFC =90°(垂直的定义). .........................1分 所以∠BDC =∠EFC (等量代换).所以 BD ∥EF (同位角相等,两直线平行). .........................2分 所以∠2=∠CBD ( 两直线平行,同位角相等 ). .........................3分 因为∠1=∠2(已知), 所以∠1=∠CBD ( 等量代换 ). .........................4分所以BC∥GF ( 内错角相等,两直线平行 ). .........................5分 因为∠BMD +∠ABC=180°(已知), .........................6分所以MD ∠GF ( 同旁内角互补,两直线平行 ). .........................7分 所以DM ∠BC ( 平行于同一条直线的两条直线平行 ). .........................8分150012009006003001412108642(米)(分钟)学校家离家距离时间19.(8分)解:∵BD ⊥AC ,∠CBD =36°,∴∠BCD=90°-∠CBD=90°- 36°= 54°. .......................2分 ∵CE 平分∠ACB ,∴∠ACE=12∠ACB=12×54°=27°. .......................4分 ∵∠A=65°,∠A+∠AEC+∠ACE=180°,∴∠AEC=180°-∠A -∠ACE=180°- 65°- 27°=88°. ......................6分 ∵∠AEC+∠BCE=180°,∴∠BEC=180°-∠AEC=180°-88°=92°. .......................8分 (说明:本题解法不唯一,其它解法对应给分) 20.(8分)解:(1) 0 , 1716 ;.......................4分(2)P (小明获胜)=17451125143==⨯ ,P (小颖获胜)= .171251365149==⨯答:小明获胜的概率是174,小颖获胜的概率为1712. .......................8分 21.(9分)解:⑴1500,4;.....................2分⑵12—14分钟,450; .....................4分 ⑶1200÷6=200(米),(1500-600)÷200=92(分钟) 1500-600=900(米),1200-900=300(米), (1200-600)÷(8-6)=300(米/分) 300÷300=1(分钟),6+1=7(分钟). (1500-600)÷(14-12)=450(米/分), (1500-600-600)÷450=23(分钟), 12+23=1223(分钟)答:小明从家出发分钟或或3212729后,离学校的距离是600米. ............9分 (说明:本题解法不唯一,其它解法对应给分)22.(10分)解:(1)∠AEC ,BD =CE ; ...................2分 (2)BD=CE 且BD ∠CE ;....................4分 理由如下:因为∠DAE =∠BAC =90°,如图2. 所以∠DAE +∠BAE =∠BAC +∠BAE . 所以∠DAB =∠EAC .DEP图3ABC在∠DAB 和∠EAC 中,⎪⎩⎪⎨⎧=∠=∠=.,,AC AB EAC DAB AE AD所以∠DAB ≌∠EAC (SAS ). .......................6分 所以BD =CE ,∠DBA =∠ECA . 因为∠ECA+∠ECB+∠ABC=90°,所以∠DBA +∠ECB+∠ABC=90°. 即∠DBC+∠ECB=90°.所以∠BPC=180°-(∠DBC+∠ECB )=90°. 所以BD ⊥CE .综上所述:BD =CE 且BD ⊥CE . .......................8分(3)如图3所示,BE =CD ,∠PBC+∠PCB =60°. ...................10分。
2019—2020学年度第二学期期末考试七年级数学试题及答案
![2019—2020学年度第二学期期末考试七年级数学试题及答案](https://img.taocdn.com/s3/m/8e8040a66294dd88d0d26ba4.png)
七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。
2019-2020年七年级数学下学期期末试卷(含解析)
![2019-2020年七年级数学下学期期末试卷(含解析)](https://img.taocdn.com/s3/m/497306e883d049649b6658d5.png)
2019-2020年七年级数学下学期期末试卷(含解析)一.选择题(共10小题,每小题3分,满分30分.以下每小题给出的A、B、C、D四个选项,其中只有一个选项是正确的,请把正确答案的选项填写到下面的表格中.1.纳米是一种长度单位,1纳米=10﹣9米,已知某种花粉的直径为3500纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×103米B.3.5×10﹣5米C.3.5×10﹣9米D.3.5×10﹣6米2.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.a3﹣a2=aC.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a63.如图所示,图中不是轴对称图形的是()A. B. C. D.4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC5.把一张长方形纸条按图中,那样折叠后,若得到∠AOB′=70°,则∠B′OG的角度是()A.55° B.65° C.45° D.50°6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A. B. C. D.7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平 D.无法确定对谁有利8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS9.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,则∠ACB的度数是()A.100°B.115°C.105°D.120°10.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个二、填空题若4a2+2ka+9是一个完全平方式,则k等于.12.在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其它区别),从中随即取出1个球是红球的概率是.若在暗盒中增加1个黑球,则从中随即取出一个球是红球的概率是.13.计算:()﹣2+(﹣2)3﹣20110= .14.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形.15.如图所示,在△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长cm.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(本大题共6个小题,共55分)16.计算:(1)(π﹣3.14)0﹣()﹣2+()xx×(﹣3)xx(2)(a2)6÷a8+(﹣2a)2(﹣a2)17.先化简,再求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=﹣3.18.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.19.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)20.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2出现的次数7 9(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?21.如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由;(2)若BC=BF,试说明:BE⊥CF.四、解答题(共1小题,满分10分)22.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD ≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.探究应用:如图(4),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)求证:BE=AD;(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由.xx学年四川省达州市通川区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,满分30分.以下每小题给出的A、B、C、D四个选项,其中只有一个选项是正确的,请把正确答案的选项填写到下面的表格中.1.纳米是一种长度单位,1纳米=10﹣9米,已知某种花粉的直径为3500纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×103米B.3.5×10﹣5米C.3.5×10﹣9米D.3.5×10﹣6米【考点】科学记数法—表示较小的数.【专题】应用题.【分析】先把3 500纳米换算成3 500×10﹣9米,再用科学记数法表示为3.5×10﹣6.绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:3 500纳米=3 500×10﹣9米=3.5×10﹣6.故选D.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.a3﹣a2=aC.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a6【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;平方差公式.【分析】根据完全平方公式、合并同类项法则、平方差公式、幂运算的性质进行逐一分析判断.【解答】解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选D.【点评】此题综合考查了完全平方公式、平方差公式、合并同类项以及幂运算的性质,熟悉各个公式以及法则.3.如图所示,图中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【考点】全等三角形的判定.【分析】全等三角形的判定取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A∵.BD=DC,AB=AC,AD=AD∴根据SSS可以判定△ABD≌△ACD;B.∵∠ADB=∠ADC,BD=DC,AD=AD∴根据SAS可以判定△ABD≌△ACD;C.∵∠B=∠C,∠BAD=∠CAD,AD=AD∴根据AAS可以判定△ABD≌△ACD;D.∵∠B=∠C,BD=DC,AD=AD∴根据SSA不可以判定△ABD≌△ACD;故选(D)【点评】本题主要考查了全等三角形的判定,解题时注意:不存在SSA这样一种判定方法.5.把一张长方形纸条按图中,那样折叠后,若得到∠AOB′=70°,则∠B′OG的角度是()A.55° B.65° C.45° D.50°【考点】翻折变换(折叠问题);矩形的性质.【分析】根据翻折变换的性质可得∠BOG=∠B′OG,再根据平角等于180°列方程求解即可.【解答】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故选A.【点评】本题考查了翻折变换的性质,平角的定义,主要利用了翻折前后对应角相等.6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A. B. C. D.【考点】函数的图象.【专题】压轴题.【分析】从A1到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A3随着时间的增多,高度将不再变化,由此即可求出答案.【解答】解:因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平 D.无法确定对谁有利【考点】游戏公平性.【专题】应用题.【分析】根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇;由此可得:两人获胜的概率相等;故游戏公平.【解答】解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数概率为;一奇一偶概率也为,所以公平.故选C.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定与性质.【专题】作图题.【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.9.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,则∠ACB的度数是()A.100°B.115°C.105°D.120°【考点】三角形内角和定理.【分析】根据垂直的定义可得∠BFE=∠BDC=90°,然后根据同位角相等,两直线平行可得CD∥EF,再根据两直线平行,同位角相等可得∠2=∠BCD,然后求出∠1=∠BCD,再根据内错角相等,两直线平行,然后根据两直线平行,同位角相等可得∠3=∠ACB.【解答】解:∵CD⊥AB,EF⊥AB,∴∠BFE=∠BDC=90°,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.故选(C)【点评】本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法是解题的关键.10.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据对顶角相等得出∠CGF=∠AGE,根据角平分线定义得出∠CAB=∠DAC,根据平行线性质得出∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,即可得出答案.【解答】解:根据对顶角相等得出∠CGF=∠AGE,∵AC平分∠BAD,∴∠CAB=∠DAC,∵AB∥CD∥EF,BC∥AD,∴∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,∴与∠AGE相等的角有∠CGF、∠CAB、∠DAC、∠ABAC,∠DCA,共5个.故选D.【点评】本题考查了平行线性质,对顶角相等,角平分线的定义的应用,主要考查学生的推理能力.二、填空题(xx春•通川区期末)若4a2+2ka+9是一个完全平方式,则k等于±6 .【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵4a2+2ka+9=(2a)2+2ka+32,∴2ka=±2×2a×3,解得k=±6.故答案为:±6.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.12.在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其它区别),从中随即取出1个球是红球的概率是.若在暗盒中增加1个黑球,则从中随即取出一个球是红球的概率是.【考点】概率公式.【专题】压轴题.【分析】根据取出1个球是红球的概率是,可得取出1个球是黑球的概率,再由黑色球可求球的总数,从而得出红色球的个数;再根据概率公式即可得到从中随机取出一个球是红球的概率.【解答】解:盒中共有球的个数为:3÷(1﹣)=3÷=5(个),则红球的个数为:5﹣3=2(个),所以增加1个黑球后,从中随机取出一个球是红球的概率是:2÷(5+1)=.故答案为:.【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.13.计算:()﹣2+(﹣2)3﹣20110= ﹣5 .【考点】零指数幂;负整数指数幂.【分析】根据任何一个不为0的数的0次幂都为1和a﹣n=和有理数的加减法进行计算即可.【解答】解:原式=4﹣8﹣1=﹣5.故答案为:﹣5.【点评】本题考查的是负整数指数幂和零指数幂的运算,掌握任何一个不为0的数的0次幂都为1和a﹣n=是解题的关键.14.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为锐角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和是180°,求得三个内角的度数即可判断.【解答】解:根据三角形的内角和定理,得三角形的三个内角分别是180°×=40°,180°×=60°,180°×=80°.故该三角形是锐角三角形.【点评】此题考查了三角形的内角和定理以及三角形的分类.三角形按角分类有锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫锐角三角形;有一个角是钝角的三角形叫钝角三角形;有一个角是直角的三角形叫直角三角形.15.如图所示,在△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长 6 cm.【考点】线段垂直平分线的性质.【分析】要求BC的长,就要利用已知的周长计算,可先利用垂直平分线的性质求出AC的长,再计算.【解答】解:∵AB边上的垂直平分线DE交AB于D,交AC于E∴AE=BE∵AC=9 cm△BCE的周长为BC+CE+BE=BC+AC=15 cm∴BC=6cm.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(本大题共6个小题,共55分)16.计算:(1)(π﹣3.14)0﹣()﹣2+()xx×(﹣3)xx(2)(a2)6÷a8+(﹣2a)2(﹣a2)【考点】单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂.【分析】(1)根据零次幂,负整数指数幂与正整数指数幂互为倒数,积的乘方,可得答案;(2)根据幂的乘方,同底数幂的除法,积的乘方,整式的加减,可得答案.【解答】解:(1)原式=1﹣4+1=﹣2;(2)原式=a12÷a8+4a2(﹣a2)=a4﹣2a2=﹣a4.【点评】本题考查了单项式的乘法,利用幂的乘方,同底数幂的除法,积的乘方,整式的加减.17.先化简,再求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=﹣3.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2+2xy﹣(x2+2x+1)+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1,把代入,得原式=2xy﹣1=2××(﹣3)﹣1=﹣3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中.18.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【考点】利用轴对称设计图案.【专题】网格型;开放型.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.19.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)【考点】函数的图象.【专题】行程问题.【分析】把数和形结合在一起,准确理解函数的图象和性质.由图象可知:(1)甲乙出发的先后和到达终点的先后;(2)由路程6公里和运动的时间,可分别求出他们的速度;(3)结合图形可知他们都在行驶的时间段.【解答】解:由图象可知:(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为=0.2公里/每分钟,乙的速度为=0.4公里/每分钟.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.【点评】结合图形理解函数的图象和性质.20.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?【考点】利用频率估计概率;随机事件.【分析】(1)根据概率的公式计算“3点朝上”的频率和“5点朝上”的频率;(2)根据随机事件的性质回答.【解答】解:(1)3点朝上的频率为=;5点朝上的频率为=;(2)小颖和小红说法都错,因为实验是随机的,不能反映事物的概率.【点评】用到的知识点为:频率=所求情况数与总情况数之比.频率能反映出概率的大小,但是要经过n次试验,而不是有数的几次,几次试验属于随机事件,不能反映事物的概率.21.如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由;(2)若BC=BF,试说明:BE⊥CF.【考点】全等三角形的判定与性质.【分析】(1)判断:CD∥FB,利用“边角边”证明△DEC和△AEF全等,根据全等三角形对应角相等可得∠DCE=∠F,再根据内错角相等,两直线平行证明;(2)根据等腰三角形三线合一的性质证明即可.【解答】解:(1)判断:CD∥FB.证明如下:∵E是AD中点,∴AE=DE,∵E是CF中点,∴CE=EF,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠DCE=∠F,∴CD∥FB;(2)∵BC=BF,CE=EF,∴BE⊥CF(等腰三角形三线合一).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,是基础题,熟记性质与三角形全等的判定方法是解题的关键.四、解答题(共1小题,满分10分)22.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD ≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.探究应用:如图(4),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)求证:BE=AD;(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由.【考点】几何变换综合题.【分析】归纳结论:作等腰三角形底边上的高,构造全等三角形.探究应用:(1)BE与AD在两个直角三角形中,证这两个直角三角形全等即可;(2)可证点A,C在线段DE的垂直平分线上.注意结合(1)的结论,利用全等证明即可;【解答】解:归纳结论:已知:如图3,在△ABC中,AB=AC.求证:∠B=∠C;过A点作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∴△ABD≌△ACD(HL),∴∠B=∠C;探究应用(1)图(4)CABDE∵CB⊥AB,∴∠CBA=90°,∠ABD+∠DBC=90°∵CE⊥BD,∴∠BCE+∠DBC=90°∴∠BCE=∠ABD,在△ADB和△BEC中∴△DAB≌△EBC(ASA)∴BE=AD(2)∵E是AB中点,∴AE=BE∵AD=BE,∴AE=AD在△ABC中,∵AB=AC,∴∠BAC=∠BCA∵AD∥BC,∴∠DAC=∠BCA,∴∠BAC=∠DAC在△ADC和△AEC中,,∴△ADC≌△AEC(SAS)∴DC=CE,∴C在线段DE的垂直平分线上∵AD=AE,∴A在线段DE的垂直平分线上∴AC垂直平分DE.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是作出作∠BAC的角平分线AD判断∠B=∠C.。
黄冈市黄州区2019-2020学年七年级下期末数学试卷含答案解析
![黄冈市黄州区2019-2020学年七年级下期末数学试卷含答案解析](https://img.taocdn.com/s3/m/fbbaba560b1c59eef8c7b4c8.png)
黄冈市黄州区2019-2020学年七年级下期末数学试卷含答案解析一、选择题1.下列实数中,是无理数的为()A. B.C.πD.2.对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°3.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣44.若点P(﹣a,4﹣a)是第二象限的点,则a的取值范围是()A.a<4 B.a>4 C.a<0 D.0<a<45.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是266.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1) B.(﹣2,﹣1)C.(﹣3,1) D.(1,﹣2)7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.8.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%二、填空题9.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析,这个问题中的样本是.10.若的值在两个整数a与a+1之间,则a=.11.不等式2x+9≥3(x+2)的正整数解是.12.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k ﹣的算术平方根为.13.若关于x的不等式组无解,则a的取值范围是.14.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=.15.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).三、解答题(共75分)16.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.17.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG 交CD于G,求∠MGC的度数.18.已知关于x、y的方程组的解满足不等式x<2y﹣3,求实数a的取值范围.19.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.20.已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.21.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;(2)求三角形ABC的面积.22.教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a=,该校初一学生总人数为人;(2)根据图中信息,补全条形统计图;(3)扇形统计图中“活动时间为4天”的扇形所对圆心角的度数为;(4)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有人.23.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?24.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?-学年七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列实数中,是无理数的为()A. B.C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B、=﹣2是有理数,故B错误;C、π是无理数,故C正确;D、是有理数,故D错误;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠1=∠2,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;D、∠1+∠4=180°,∠1的对顶角与∠4是a、b被截得的同旁内角,符合题意.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【考点】二元一次方程的解.【专题】计算题.【分析】将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若点P(﹣a,4﹣a)是第二象限的点,则a的取值范围是()A.a<4 B.a>4 C.a<0 D.0<a<4【考点】点的坐标;解一元一次不等式组.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【解答】解:∵点P(﹣a,4﹣a)是第二象限的点,∴,解不等式①得,a>0,解不等式②得,a<4,所以,a的取值范围是0<a<4.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是26【考点】频数(率)分布直方图.【专题】压轴题;图表型.【分析】观察频率分布直方图,得分在70~80分之间的人数是14人,最多;该班的总人数为各组人数的和;得分在90~100分之间的人数最少,只有两人;及格(≥60分)人数是36人.【解答】解:A、得分在70~80分之间的人数最多,故正确;B、2+4+8+12+14=40(人),该班的总人数为40人,故正确;C、得分在90~100分之间的人数最少,有2人,故正确;D、40﹣4=36(人),及格(≥60分)人数是36人,故D错误,故选D.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1) B.(﹣2,﹣1)C.(﹣3,1) D.(1,﹣2)【考点】坐标确定位置.【专题】压轴题.【分析】根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.【解答】解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.【点评】此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.【解答】解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,根据吸烟与不吸烟中患肺癌的比例得出正确的等量关系是解题关键.8.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%【考点】一元一次不等式的应用.【专题】压轴题.【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay 元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.二、填空题9.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析,这个问题中的样本是抽查的1600名学生的体重.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析,这个问题中的样本是抽查的1600名学生的体重,故答案为:抽查的1600名学生的体重.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.若的值在两个整数a与a+1之间,则a=5.【考点】估算无理数的大小.【分析】利用的取值范围,进而得出的取值范围进而得出答案.【解答】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.故答案为:5.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.11.不等式2x+9≥3(x+2)的正整数解是1,2,3.【考点】一元一次不等式的整数解.【专题】计算题.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.12.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k ﹣的算术平方根为.【考点】二元一次方程组的解;算术平方根.【分析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=﹣6中可得k的值,最后根据算术平方根求解即可.【解答】解:方程组解得:,把x,y代入二元一次方程2x+3y=6,得:2×7k+3×(﹣2k)=6,解得:k=,则k﹣=,的算术平方根为,故答案为:.【点评】此题考查的知识点是二元一次方程组的解,先用含k的代数式表示x,y,即解关于x,y的方程组,再代入2x+3y=6中可得.其实质是解三元一次方程组.13.若关于x的不等式组无解,则a的取值范围是a≥﹣2.【考点】解一元一次不等式组.【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=30°.【考点】平行线的性质.【专题】计算题.【分析】先利用三角形外角性质得∠1+∠3=125°,∠2+∠4=85°,把两式相加得到∠1+∠3+∠2+∠4=210°,再根据平行线的性质,由l1∥l2得到∠3+∠4=180°,然后通过角度的计算得到∠1+∠2的度数.【解答】解:如图,∵∠1+∠3=125°,∠2+∠4=85°,∴∠1+∠3+∠2+∠4=210°,∵l1∥l2,∴∠3+∠4=180°,∴∠1+∠2=210°﹣180°=30°.故答案为30°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.15.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(10,0);点A4n的坐标为(2n,0)(n是正整数).【考点】规律型:点的坐标.【分析】观察图形可知,A4,A8都在x轴上,求出OA4、OA8以及OA20的长度,然后写出坐标即可;根据以上规律写出点A4n的坐标即可.【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.【点评】本题主要考查了点的变化规律,比较简单,仔细观察图形,确定出A4n都在x轴上是解题的关键.三、解答题(共75分)16.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【点评】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.17.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG 交CD于G,求∠MGC的度数.【考点】平行线的性质.【分析】先根据补角的定义得出∠BMF的度数,再由MG平分∠BMF得出∠BMG的度数,根据平行线的性质即可得出结论.【解答】解:∵∠EMB=50°,∴∠BMF=180°﹣50°=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°.∵AB∥CD,∴∠MGC=∠BMG=65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.18.已知关于x、y的方程组的解满足不等式x<2y﹣3,求实数a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【分析】先求出二元一次方程组的解,再带入不等式,即可解答.【解答】解:方程组,解得:.∵x<2y﹣3,∴2a+1<2(2a﹣2)﹣3,解得a>4.∴a的取值范围是a>4.【点评】本题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.19.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.【考点】立方根;非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】根据非负数的性质求出x,y的值,根据相反数求出z的值,再代入代数式求值.【解答】解:∵ +|y﹣2|=0,∴x+1=0,y﹣2=0,∴x=﹣1,y=2.∵且与互为相反数,∴1﹣2z+3z﹣5=0,解得z=4.∴yz﹣x=2×4﹣(﹣1)=9,∴yz﹣x的平方根是±3.【点评】本题考查了非负数的性质、相反数、立方根,解决本题的关键是熟记立方根的定义.20.已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.【考点】平行线的判定与性质.【专题】证明题.【分析】推出∠1=∠3,根据平行线判定推出BD∥CE,推出∠D=∠DBA,推出DF∥AC,即可得出答案.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴DF∥AC,∴∠A=∠F.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力.21.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;(2)求三角形ABC的面积.【考点】作图-平移变换.【专题】计算题;作图题.【分析】(1)根据题意画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标即可;(2)根据图形求出三角形ABC面积即可.【解答】解:(1)如图所示,△A′B′C′为所求三角形,且,B′(﹣4,1),C′(﹣1,﹣1);(2)三角形ABC的面积S=3×3﹣×2×1﹣×2×3﹣×1×3=9﹣1﹣3﹣1.5=4.5.【点评】此题考查了作图﹣平移变换,作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.22.教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a=25%,该校初一学生总人数为200人;(2)根据图中信息,补全条形统计图;(3)扇形统计图中“活动时间为4天”的扇形所对圆心角的度数为108°;(4)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有4500人.【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用活动时间为2天的人数除以它所占的百分比,即可求出该校初一学生总人数.(2)求出总人数后乘以活动时间为5天的人数所占的百分比求出活动时间为5天的人数,即可补全直方图;(3)用360°乘以活动时间为4天的人数所占的百分比即可求出活动时间为4天的扇形所对圆心角的度数.(4)用总人数乘以活动时间不少于4天的人数所占的百分比即可求出答案.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣5%﹣15%=25%,该校初一学生总人数20÷10%=200(人)(2)根据题意得活动时间为5天的人数是50人,即可画出图形;(3)“活动时间为4天”的扇形所对圆心角的度数为360°×30%=108°;(4)“活动时间不少于4天”的大约有6000×(1﹣25%)=4500(人);故答案为:25%,200,108°,4500.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【考点】二元一次方程组的应用.【专题】方程思想.【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.24.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?【考点】一元一次不等式组的应用.【专题】应用题;图表型.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.(2)计算出每种方案的花费,然后即可判断出答案.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一种方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算四种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低为70000元.【点评】此题考查了一元一次不等式组的应用,是一道实际问题,有一定的开放性,(1)根据图表信息,利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.21 / 21。
2019-2020学年北京市海淀区七年级(下)期末数学试卷(含解析)
![2019-2020学年北京市海淀区七年级(下)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/bf944006524de518974b7d37.png)
2019-2020学年北京市海淀区七年级(下)期末数学试卷1.放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风笋剪紙作品中,不是轴对称图形的是( )A. B.C. D.2.代数式√x+1x−1有意义,则x的取值范围是( )A. x≥−1且x≠1B. x≠1C. x≥1且x≠−1D. x≥−13.如图,在△ABC中,AB=AC,∠A=42∘,DE垂直平分AC,则∠BCD的度数为( )A. 23∘B. 25∘C. 27∘D. 29∘4.若“存在x>1.使x+a=1成立“是真命题,则a的取值范围是( )A. a<0B. a≤0C. a>0D. a≥05.“1a<1”是“a>1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.在平面直角坐标系中,以A(0,2),B(−1,−1),C(3,0),D为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是( )A. (2,−3)B. (−4,1)C. (4,3)D. (−4,0)7.已知x+y=−5,xy=4,则x√yx +y√xy的值是( )A. 4B. −4C. 2D. −28.小殷设计了一个随机碰撞模拟器:在模拟器中有A、B、C三种型号的小球,它们随机运动,当两个小球相遇时会发生碰撞(不考虑多个小球同时相撞的情况).若相同型号的两个小球发生碰撞,会变成一个C型小球;若不同型号的两个小球发生碰撞,则会变成另外一种型号的小球.例如,一个A型小球和一个C型小球发生碰撞,会变成一个B型小球.初始,模拟器中有A型小球6个,B型小球5个,C型小球8个,若经过各种两两碰撞后,最后只剩一个小球.以下判断:①最后剩下的小球可能是A型小球;②最后剩下的小球一定是B型小球:③最后剩下的小球一定不是C型小球.其中,正确的判断是( )A. ①B. ②③C. ③D. ①③9.在如图所示的正方形网格中,△ABC的顶点均格点上,画出△ABC的一条中位线DE(非尺规作图,保留所有画图痕迹).10.为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是______ .11.如果点P(m,1−2m)在第四象限,那么m的取值范围是______ .12.在平面直角坐标系中,已知P(0,2),Q(−3,0).将线段PQ绕点P逆时针旋转90∘得到线段PM,点Q的对应点为M,则点M的坐标为______ .13.某直角三角形的周长为24,斜边上的中线长为5,则该三角形的面积等于______.14.如图,在矩形ABCD中,点E、F分别在边AB、BC上,AB,将矩形沿直线EF折叠,点B恰好落在且AE=13AD边上的点P处.重新展开,连接BP交EF于点Q,对于下列结论:①PE=2AE;②PF=2PE;③FQ=3EQ;④四边形PBFD是菱形.其中,正确的结论是______ .(写出所有正确结论的序号)15.如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程:______.16.如图,在Rt△ABC中,∠C=90∘,BC=4,AB=8,点D是BC上一个动点,以AD、DB为邻边的所有平行四边形ADBE中,对角线DE的最小值是______ .17. 计算与化简: (1)√12−2√3+1+(3−π)0+|1−√3|(2)1x −1x +y ⋅(x +y 2x−x −y)18. 解下列关于x 的方程或不等式(组).(1)4x 2−1−x x+1=−1;(2){4(x +1)+3>x x−42≤x−53; (3)|2x +1|<1−x ;(4)a(x −2a)(x −3)<0.19. 国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?20.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?21.如图,在▱ABCD中,∠ABC=60∘,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.22.已知,如图,点A(0,4),B(3,0),点C在坐标轴上,使得△ABC是等腰三角形,计算点C的坐标.23.定义:在平面直角坐标系xOy中,由某点分别向两坐标轴作垂线,称两垂足之间的线段长度为该点的轴垂距.比如点P(3,4)的轴垂距为5.并规定,坐标轴上的点在该轴上的垂足为自己,在另一轴上的垂足为原点.比如点Q(0,2)的轴垂距为2.(1)①点A(−3,0)的轴垂距为______ ,点B(4,−3)的轴垂距为______ .②若一个非坐标轴上的点C的轴垂距为4,请写出满足条件的点C的一个坐标______ .(写出一个即可)(2)设点M(−6,0),点N(0,2√3),点D是线段MN上的一个动点(含端点),求点D的轴垂距的取值范围.24.如图,已知在菱形ABCD中,∠ABC=120∘,点E是边BC上的动点,点C关于直线DE的对称点为F,F在直线BC的下方,连结AF,取AF的中点为M,连结DM.设∠BCF=α.(1)①补全图形;②求∠FAD的大小(用含α的式子表示);(2)探究AF、BF、CF之间的等量关系,并证明你的结论.答案和解析【答案】1. B2. A3. C4. A5. A6. D7. B8. D9. 解:如图,线段DE或DE′即为所求(答案不唯一).10. SSS11. m>1212. (2,−1)13. 2414. ①③15. 将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD16. 4√317. 解:(1)√12−√3+1(3−π)0+|1−√3|=2√3−√3+1+1+√3−1=2√3+1;(2)1x−1x+y⋅(x+y2x−x−y)=1x−1x+y⋅x+y2x+1x+y⋅(x+y)=1x−12x+1=12x+1.18. 解:(1)去分母得:4−x(x−1)=1−x2,解得:x=−3,经检验x=−3是分式方程的解;,由①得:x >−74,由②得:x ≤2,则不等式组的解集为−74<x ≤2; (3)∵|2x +1|<1−x 等价于2x +1<1−x 或2x +1>x −1,解2x +1<1−x 得,x <0;解2x +1>x −1得,x >−2,∴不等式的解集为−2<x <0;(4)当a >0时,则有{x −2a >0x −3<0或{x −2a <0x −3>0, 当0<a <32时,解得2a <x <3,当a >32时,解得3<x <2a ;当a <0时,则有{x −2a >0x −3>0或{x −2a <0x −3<0, 解得x >3或x <2a. 19. 解:设该款空调补贴前的售价为每台x 元,由题意,得:60000x ×(1+20%)=60000x−500,解得:x =3000,经检验得:x =3000是原方程的根,答:该款空调补贴前的售价为每台3000元.20. 解:(1)设公司购买x 辆轿车,则购买(10−x)辆面包车,依题意,得:{x ≥312x +8(10−x)≤100, 解得:3≤x ≤5,又∵x 为正整数,∴x 可以取3,4,5,∴该公司共有3种购买方案,方案1:购买3辆轿车,7辆面包车;方案2:购买4辆轿车,6辆面包车;方案3:购买5辆轿车,5辆面包车.(2)依题意,得:250x +150(10−x)≥2000,解得:x ≥5,又∵3≤x ≤5,∴x=5,∴公司应该选择购买方案3:购买5辆轿车,5辆面包车.21. (1)证明:∵四边形ABCD是平行四边形,∴BC//AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=12BC,AF=12AD,∴CE=AF,CE//AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60∘,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90∘−∠ABC=30∘,∴AG=12AB=1,BG=√3AG=√3,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD=√BG2+DG2=√(√3)2+52=2√7.22. 解:如图所示:AB=√32+42=5,①AB=AC时,点C的坐标为(0,9),(0,−1),(−3,0);,0);②AC=BC时,点C的坐标为(0,0.875),(−76③AB=BC时,点C的坐标为(0,−4),(8,0),(−2,0).,0);(0,−4),(8,0),综上所述,点C的坐标为(0,9),(0,−1),(−3,0);(0,0.875),(−76(−2,0).23. 35(2√2,2√2)(答案不唯一)24. 解:(1)①如图1所示:②∵四边形ABCD是菱形,∠ABC=120∘,∴∠ADC=120∘,∠BAD=∠BCD=60∘,AD=CD=AB=BC,∵点C关于直线DE的对称点为F,∴EF=EC,DF=DC,∴∠EFC=∠ECF=α,∠DCF=∠DFC=∠BCD+∠BCF=60∘+α,∵AD=DF=DC,∴∠DAF=∠DFA,∵∠DAF+∠DFA+∠ADC+∠DCF+∠DCF=360∘,∴2∠DAF+120∘+120∘+2α=360∘,∴∠DAF=60∘−α;(2)AF=CF+√3BF,理由如下:如图2,在AF上截取AH=CF,连接BH,过点B作BN⊥AF于N,∵∠BAF=∠BAD−∠DAF=60∘−(60∘−α)=α,∴∠BAF=∠BCF,又∵AB=BC,AH=CF,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∴∠ABC=∠HBF=120∘,∴∠BHF=∠BFH=30∘,∵BN⊥AF,∴HN=NF,BF=2BN,NF=√3BN,∴NF=√3BF,2∴HF=√3BF,∴AF=AH+HF=CF+√3BF.【解析】1. 解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2. 解:依题意,得x+1≥0且x−1≠0,解得x≥−1且x≠1.故选:A.此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3. 解:∵AB=AC,∠A=42∘,∴∠ABC=∠ACB=69∘,∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=42∘,∴∠BCD=∠ACB−∠ACD=27∘.故选:C.首先根据等腰三角形的性质可求出∠ABC=∠ACB,利用线段垂直平分线的性质推出∠A=∠DCA,易求∠BCD的度数.本题考查的是等腰三角形的性质,线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.4. 解:若“存在x>1.使x+a=1成立“是真命题,则a的取值范围是a<0,故选:A.根据不等式的性质解答即可.本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.5. 解:a>1⇒1<1,a<1不能推出a>1,而1a<1是a>1的充分不必要条件,所以1a故选:A.根据推理和论证的条件判断即可.此题考查推理和论证,关键是根据推理和论证的条件解答.6. 解:若以AB为对角线,则D(−4,1),若以BC为对角线,则D(2,−3),若以AC为对角线,则D(4,3),因此不能作为顶点D的坐标是选项D,故选:D.根据平行四边形的性质结合平面直角坐标系可以解决问题.此题主要考查了平行四边形的性质,关键是掌握平行四边形两组对边分别相等.7. 解:∵x+y=−5<0,xy=4>0,∴x<0,y<0,∴原式=x√xyx +y√y=−x⋅√xyx−y⋅√xyy=−2√xy,∵xy=4,∴原式=−2√4=−2×2=−4.故选:B.先确定x<0,y<0,再利用二次根式的性质化简得到原式=−2√xy,然后把xy=4代入计算即可.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.8. 解:假设6个A球中每两个A球进行碰撞,则可以得到3个C球,5个B球中让其中4个B球每两个进行碰撞,则可以得到2个C球,加上原来的C球,共13个C球,让这13个C球互相碰撞,重复进行直至剩下一个C球,再和剩下的B球碰撞,可以得到一个A球,由此可知①正确,②错误.事实上,无论怎么碰撞,A球数量与B球数量奇偶性总是不一样(一奇一偶).(AA)→C,A与B一奇一偶;(BB)→C,A与B一奇一偶;(CC)→C,A与B一奇一偶;(AB)→C,A与B一奇一偶;(AC)→B,A与B一奇一偶;(BC)→A,A与B一奇一偶.由此可知,A与B的数量不可能同时为0,所以最后剩下的小球一定不是C型小球,③正确.故选:D.①和②可以举一个特例进行判定.通过分析所有可能碰撞所导致的A、B数量的奇偶性来判断③的正确与否.本题是一个推理与论证的题目,主要考查对实际问题中数据变化的分析能力和综合推理能力,发现A、B数量的奇偶性始终不一样是解答本题的关键.9. 取AB的中点D,格点M,N,连接DM交AC于E,连接DN交BC于E′,线段DE 或线段DE′即为所求(答案不唯一).本题考查作图-复杂作图,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10. 解:如图,连接PM,PQ.∵OP=OQ,PM=QM,OM=OM,∴△POM≌△QOM(SSS),∴∠POM=∠QOM,即OM是∠AOB的角平分线.故答案为SSS.根据SSS判断三角形全等即可.本题考查作图-基本作图,全等三角形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.11. 解:∵P(m,1−2m)在第四象限,∴m>0,1−2m<0..解得m>12点在第四象限的条件是:横坐标是正数,纵坐标是负数.本题主要考查了平面直角坐标系中各象限内点的坐标的符号根据条件可以转化为不等式或不等式组的问题.12. 解:如图,由作图可知,M(2,−1).故答案为(2,−1).利用旋转变换的性质作出图形即可解决问题.本题坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题.13. 解:∵CD是直角三角形ABC斜边上的中线,∴AB=2CD=10,∵直角三角形ABC的周长是24,∴AC+BC=14,两边平方得:AC2+2AC⋅BC+BC2=196,由勾股定理得:AC2+BC2=AB2=100,∴2AC⋅BC=96,∴AC×BC=48,∴S△ABC=12AC×BC=12×48=24.故答案为24.根据直角三角形斜边上的中线求出AB,求出AC+BC,两边平方后代入AB求出AC×BC 的值,即可求出答案.本题主要考查对三角形的面积,勾股定理,直角三角形斜边上的中线,完全平方公式等知识点的理解和掌握,能根据性质求出AC×BC的值是解此题的关键.14. 解:∵AE=13AB,∴BE=2AE,由翻折的性质得,PE=BE,∴PE=2AE,故①正确;∴∠APE=30∘,∴∠AEP=90∘−30∘=60∘,∴∠BEF=12(180∘−∠AEP)=12(180∘−60∘)=60∘,∴∠EFB=90∘−60∘=30∘,∴EF=2BE,∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30∘,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;如图,连接DF,由折叠的性质可得:BF=PF,∠BFE=∠PFE=30∘,∴∠BFP=60∘,∴△BFP是等边三角形,∵AD长度无法确定,∴无法判断四边形PBFD是菱形,故④错误,故答案为①③.求出BE=2AE,判断出①正确;根据翻折的性质可得PE=BE,再根据直角三角形30∘角所对的直角边等于斜边的一半求出∠APE=30∘,然后求出∠AEP=60∘,再根据翻折的性质求出∠BEF=60∘,根据直角三角形两锐角互余求出∠EFB=30∘,然后根据直角三角形30∘角所对的直角边等于斜边的一半可得EF=2BE=2PE,由直角三角形的性质,可得EF>PF,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;由题意无法证明PB=PD,可判断④错误,即可求解.本题考查了翻折变换的性质,直角三角形30∘角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.15. 【分析】本题考查了坐标与图形变化-轴对称,坐标与图形变化-平移,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线.根据轴对称的性质,平移的性质即可得到由△ABO得到△OCD的过程.【解答】解:将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD.16. 解:设AB、DE交于点O,如图:∵在Rt△ABC中,∠C=90∘,∴BC⊥AC.∵四边形ABCD是平行四边形,∴OD=OE,OA=OB.∴当OD取得最小值时,对角线DE最小,此时OD⊥BC,∴OD//AC.又∵点O是AB的中点,∴OD是△ABC的中位线,∴OD=12 AC.在Rt△ABC中,∠C=90∘,BC=4,AB=8,∴由勾股定理得:AC=√AB2−BC2=√82−42=4√3.∴OD=12×4√3=2√3.∴DE=2OD=4√3.故答案为:4√3.由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值;由勾股定理可求得AC的长;由三角形的中位线定理可求得OD的最小值,再乘以2即可得出DE的最小值.本题考查了平行四边形的性质、垂线段最短、三角形的中位线定理及勾股定理等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.17. (1)先进行二次根式的化简、零指数幂的运算,去绝对值,然后合并即可得到答案;(2)原式第二项利用乘法分配律计算,再根据异分母分式减法法则进行计算即可得到答案.本题考查了二次根式以及分式的混合运算,掌握运算法则是解答本题的关键.18. (1)去分母化成整式方程,然后解整式方程,把解得的整式方程的解代入最简公分母检验即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(3)不等式等价于2x+1<1−x或2x+1>x−1,解得即可;(4)分类讨论,列出不等式组,解不等式组即可.本题考查了解分式方程,解不等式组,解绝对值方程以及含字母系数的不等式等,熟练掌握运算法则是解题的关键.19. 设该款空调补贴前的售价为每台x元,根据补贴后可购买的台数比补贴前前多20%,可建立方程,解出即可.本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20. (1)设公司购买x辆轿车,则购买(10−x)辆面包车,根据“轿车至少要购买3辆,且公司可投入的购车款不超过100万元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数,即可得出各购买方案;(2)根据这10辆车的日租金不低于2000元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合3≤x≤5,即可得出应该选择的购买方案.本题考查了一元一次不等式组的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)根据各数量之间的关系,正确列出一元一次不等式.21. (1)先证四边形AECF是平行四边形,再证△ABE是等边三角形,得AE=BE=CE,即可得出结论;AB=1,BG= (2)作BG⊥AD于G,则∠ABG=30∘,由直角三角形的性质得AG=12√3AG=√3,求出DG=AG+AD=5,由勾股定理求出BD即可.本题考查平行四边形的性质、菱形的判定和性质、直角三角形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的判定和直角三角形的性质,属于中考常考题型.22. 分为三种情况:①AB=AC,②AC=BC,③AB=BC,即可得出答案.本题考查了坐标与图形性质,等腰三角形的判定,关键是用了分类讨论思想解答.23. 解:(1)①∵(−3−0)2+(0−0)2=32,∴点A(−3,0)的轴垂距为:3,∵(4−0)2+(0+3)2=52,∴点B(4,−3)的轴垂距为:5,故答案为:3,5;②∵(2√2)2+(2√2)2=42,∴非坐标轴上的点C的轴垂距为4,点C的一个坐标为:(2√2,2√2),故答案为:(2√2,2√2);(2)∵点M(−6,0),点N(0,2√3),∴MN2=(−6−0)2+(0−2√3)2=(4√3)2,∴MN=4√3,过点O作OH⊥MN于H,如图所示:则点H的轴垂距等于线段OH的长,此时线段MN上H点的轴垂距最小,∵点M(−6,0),点N(0,2√3),∴OM=6,ON=2√3,∴线段MN上点的轴垂距最大为6,∵S△MON=12OM⋅ON=12MN⋅OH,∴12×6×2√3=12×4√3×OH,∴OH=3,∴点D的轴垂距的取值范围为:3≤点D的轴垂距≤6.(1)①由轴垂距的定义即可得出答案;②由(2√2)2+(2√2)2=42,即可得出结论;(2)求出MN=4√3,过点O作OH⊥MN于H,则点H的轴垂距等于线段OH的长,此时线段MN上H点的轴垂距最小,求出线段MN上点的轴垂距最大为6,由三角形面积求出OH=3,即可得出结论.本题是三角形综合题目,考查了新定义“点的轴垂距”、坐标与图形性质、两点间的距离公式、三角形面积等知识;熟练掌握新定义“点的轴垂距”和三角形面积公式是解题的关键.24. (1)①依照题意画出图形;②由菱形的性质可得∠ADC=120∘,∠BCD=60∘,AD=CD=AB=BC,由轴对称的性质可得EF=EC,DF=DC,由等腰三角形的性质和四边形内角和定理可求解;(2)如图2,在AF上截取AH=CF,连接BH,过点B作BN⊥AF于N,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由等腰三角形的性质和直角三角形的性质可求HF=√3BF,可得结论.本题是四边形的综合题,考查了菱形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下学期期末水平测试试卷题号 一二三四 五 总 分 11 12 13 14 15 16 17 18 19 20 21 22 得分一、单项选择题(共5个小题,每小题3分,满分15分)1.在平面直角坐标系中,点P (2,3)在 ( )A .第一象限B .第二象限C .第二象限D .第二象限 2.下列长度的三条线段能组成三角形的是( )A .1、2、3B .4、5、9C .20、15、8D .5、15、83.不等式32 x ≥5的解集在数轴上表示正确的是 ( )4. 将题图所示的图案通过平移后可以得到的图案是 ( )5. 下列调查中,适宜采用全面调查(普查)方式的是 ( )A .对全国中学生心理健康现状的调查B .对我国首架大型民用飞机零部件的检查C .对我市市民实施低碳生活情况的调查D .对市场上的冰淇淋质量的调查二、填空题(共5个小题,每小题3分,满分15分) 6. 十边形的外角和是_____________度.A .B .C .D .第4题图A B C D78. 如图,B 、A 、E 三点在同一直线上,请你添加一个条件,使AD //BC .你所添加的条件是______________(不允许添加任何辅助线).9. 若不等式组⎩⎨⎧>->024x ax 的解集21<<-x 是,则a = .10.线段AB 两端点的坐标分别为A (2,4),B (5,2),若将线段AB 平移,使得点B 的对应点为点C (3,-1).则平移后点A 的对应点的坐标为 . 三、解答题(每小题5分,共5个小题,满分25分) 11.(5分)解方程组:⎩⎨⎧-==+1422x y y x12.(5分)解方程组:⎩⎨⎧=--=+1923932y x y x13.(5分)解不等式312-x ≤643-x ,并把它的解集在数轴上表示出来.14.(5分)直线AB ,CD 相交于点O ,∠BOC =40º,(1)写出∠BOC 的邻补角;(2)求∠AOC ,∠AOD ,∠BOD 度数.15.(5分)某农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm ).对样本数据适当分组后,列出了如下频数分布表:(1)分组的组距是______________,组数是_____________;(2)估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比.四、解答题(共5个小题,每小题6分,满分30分)16.(5分)解不等式组⎪⎩⎪⎨⎧>--<+5)1(32)4(21x x x17.(6分)如图,已知∠1=∠2=∠3=62º,求∠4.18.(6分)已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向 右平移6个单位长度,再向下平移6 个单位长度得到△A 1B 1C 1.(图中每 个小方格边长均为1个单位长度) . (1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标.19.(6分)如图,在△ABC 中,CD 是∠ACB 的平分线,∠A=80º,∠B=40º,求∠BDC 的度数.4132abDABC20.(6分)某中学计划对本校七年级480名学生按“学科”、“文体”、“手工”三个项目安排课外兴趣小组,小明从所有学生中随机抽取50名学生进行问卷调查,并将统计结果制成如下的统计表和统计图.(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级学生参加“手工”的人数.学科文体手工项目五.解答题(共2个小题,满分15分)21.(7分)老师布置了一个探究活动:用天平和砝码测量壹元硬币和伍角硬币的质量.(注:同种类的每枚硬币质量相同).聪明的孔明同学经过探究得到以下记录:请你用所学的数学知识计算出一枚壹元硬币多少克,一枚伍角硬币多少克.22.(8分)如图,六边形ABCDEF 的内角都相等,∠DAB =60º. (1)证明:AB //DE ;(2)写出图中其它平行的线段(不要求证明).1. A ;2.C ;3.D ;4.A ;5.B.6.360;7.140;8.∠EAD=∠B 或∠DAC=∠C 或∠B+∠DAB=180°; 9.-1;10.(0,1).11.解:把②代入①得:2142=-+x x …………………………1分解得:21=x . ………………………………………………………3分把21=x 代入②得:11214=-⨯=y ………………………………4分∴方程组的解为⎪⎩⎪⎨⎧==121y x . …………………………………………………………5分12.解:①×2得:1864-=+y x ③……………………………………1分②×3得:5769=-y x ④ ………………………………………………2分 ③+④得:3913=x∴3=x ……………………………………………………………………3分 把3=x 代入①得:9332-=+⨯y ∴5-=y………………………………………………………………4分∴原方程组的解是⎩⎨⎧-==53y x………………………………………………5分13.解:原不等式可以化为22134()x x -≤- ……………………………1分即4324-≤-x x …………………………………………2分∴2-≤x……………………………………………………3分(数轴上表示正确得2分)14.解:(1)∠BOC 的邻补角是∠BOD 与∠AOC.……………2分(2)∵∠BOC=40°∴∠AOD=∠BOC=40° ………………………………………………3分 ∵∠BOC+∠AOC=180°∴∠AOC=180°-∠BOC=180°-40°=140°………………………4分 ∴∠BOD=∠AOC=140°. …………………………………………5分 ∴∠AOC 、∠AOD 、∠BOD 的度数分别为140°、40°、140°.15.解:(1)0.5cm ;6.……………………………………………2分(2)(12+13+10)÷50=70%.………………………………………4分答:估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比为70%.……………………………………………5分 16.解:由①得:0<x……………………………………………2分 由②得:1-<x………………………………………4分 ∴不等式组的解集为1-<x .………………………………………6分17.解:∵∠1=∠3∴a ∥b………………………2分 ∴∠5=∠2=62°…………………4分∴∠4=180°-∠5=180°-62°=118°……6分18.解:(1)(图略)………………………………………3分(2)A 1(4,-2),B 1(1,-4),C 1(2,-1). …………………6分 (每写对1个顶点坐标得1分)19.解:∵∠A+∠B+∠ACB=180°∴∠ACB=180°-∠A -∠B=180°-80°-40°=60° ……………2分∵CD 是∠ACB 的平分线 ∴0011603022ACD ACB ∠=∠=⨯= …………………………………4分∴∠BDC=∠ACD+∠A=30°+80°=110°………………………6分5a b20.解:(1)统计表2分,统计图2分.(2)480×30%=144(人)答:参加 “手工”的人数144人.…………………………………6分21.解:设一枚壹元硬币x 克,一枚伍角硬币y 克,……………1分依题意得:10152010154x yx y +=⎧⎨=+⎩……………………………………………4分解得:⎩⎨⎧==8.31.6y x…………………………………………………6分答:一枚壹元硬币6.1克,一枚伍角硬币3.8克. ………………………7分22.(1)证明:六边形的内角和为:00720180)26(=⨯-……………1分∵六边形ABCDEF 的内角都相等 ∴每个内角的度数为:720°÷6=120°……………………………2分又∵∠DAB =60°,四边形ABCD 的内角和为360°∴∠CDA =360°-∠DAB -∠B -∠C =360°-60°-120°-120°=60°……………………………………………………………………………4分∴∠EDA =120°-∠CDA =120°-60°=60° ∴∠EDA =∠DAB=60°……………………………………………5分∴AB DE //(内错角相等,两直线平行) ……………………………6分 (2)EF ∥BC ,AF ∥CD ,EF ∥AD ,BC ∥AD.……………………………8分(写出2对平行线得1分,写出4对平行线得2分)。