八年级数学下册二次根式的乘法练习题及解析
八年级下册二次根式计算题
![八年级下册二次根式计算题](https://img.taocdn.com/s3/m/ae007b84a48da0116c175f0e7cd184254b351bdf.png)
八年级下册二次根式计算题一、二次根式计算题20题及解析。
1. 计算:√(12) - √(3)- 解析:- 先将√(12)化简,√(12)=√(4×3)=2√(3)。
- 则原式= 2√(3)-√(3)=√(3)。
2. 计算:√(27)+√(48)- 解析:- 化简√(27)=√(9×3)=3√(3),√(48)=√(16×3)=4√(3)。
- 原式= 3√(3)+4√(3)=7√(3)。
3. 计算:√(18)-√(8)- 解析:- √(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 原式= 3√(2)-2√(2)=√(2)。
4. 计算:√(50)-√(32)- 解析:- √(50)=√(25×2)=5√(2),√(32)=√(16×2)=4√(2)。
- 原式= 5√(2)-4√(2)=√(2)。
5. 计算:√(frac{1){2}}+√(frac{1){8}}- √(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2),√(frac{1){8}}=(√(1))/(√(8))=(√(2))/(4)。
- 原式=(√(2))/(2)+(√(2))/(4)=(2√(2)+ √(2))/(4)=(3√(2))/(4)。
6. 计算:√(12)+√(frac{1){3}}- 解析:- √(12)=2√(3),√(frac{1){3}}=(√(1))/(√(3))=(√(3))/(3)。
- 原式= 2√(3)+(√(3))/(3)=(6√(3)+√(3))/(3)=(7√(3))/(3)。
7. 计算:(√(3)+1)(√(3)-1)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1。
- 原式=(√(3))^2-1^2=3 - 1=2。
8. 计算:(√(5)+√(2))^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=√(5),b=√(2)。
(完整版)八年级二次根式综合练习题及答案解析
![(完整版)八年级二次根式综合练习题及答案解析](https://img.taocdn.com/s3/m/a4dd2f46b9f3f90f77c61b75.png)
填空题1. 有意义的条件是 。
【答案】x ≥4【分析】二次根号内的数必须大于等于零,所以x-4≥0,解得x ≥42. 当__________【答案】-2≤x ≤21【分析】x+2≥0,1-2x ≥0解得x ≥-2,x ≤213. 11m +有意义,则m 的取值范围是 。
【答案】m ≤0且m ≠﹣1【分析】﹣m ≥0解得m ≤0,因为分母不能为零,所以m +1≠0解得m ≠﹣14. 当__________x 是二次根式。
【答案】x 为任意实数【分析】﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
【答案】﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,﹙x -2﹚2【分析】运用两次平方差公式:x 4-9=﹙x 2+3﹚﹙x 2-3﹚=﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,运用完全平方差公式:x 2-22x +2=﹙x -2﹚26. 2x =,则x 的取值范围是 。
【答案】x ≥0【分析】二次根式开根号以后得到的数是正数,所以2x ≥0,解得x ≥07. 2x =-,则x 的取值范围是 。
【答案】x ≤2【分析】二次根式开根号以后得到的数是正数,所以2-x ≥0,解得x ≤28. )1x p 的结果是 。
【答案】1-x【分析】122+-x x =2)1(-x ,因为()21-x ≥0,x <1所以结果为1-x9. 当15x ≤p 5_____________x -=。
【答案】4【分析】因为x ≥1所以()21-x =1-x ,因为x <5所以x -5的绝对值为5-x ,x -1+5-x =410. 把的根号外的因式移到根号内等于 。
【答案】﹣a -【分析】通过a a 1-有意义可以知道a ≤0,a a 1-≤0,所以a a 1-=﹣⎪⎭⎫ ⎝⎛-⨯a a 12=﹣a -11. =成立的条件是 。
初二数学二次根式试题答案及解析
![初二数学二次根式试题答案及解析](https://img.taocdn.com/s3/m/6407b1de7e192279168884868762caaedd33ba75.png)
初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。
初二数学二次根式试题答案及解析
![初二数学二次根式试题答案及解析](https://img.taocdn.com/s3/m/bfe44e19a66e58fafab069dc5022aaea998f4172.png)
初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
八年级初二数学 二次根式练习题及解析
![八年级初二数学 二次根式练习题及解析](https://img.taocdn.com/s3/m/b5a227bc7e21af45b207a8bc.png)
一、选择题1.5﹣x,则x的取值范围是()A.为任意实数B.0≤x≤5C.x≥5D.x≤52.下列二次根式中是最简二次根式的为()A B C D3.下列运算中,正确的是 ( )A. 3 B.×=6C. 3 D.4.有意义,则x的取值范围是()A.x≠2B.x>-2 C.x<-2 D.x≠-25.下列算式:(1=2)3)=7;(4)+=)A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)6.下列各式中,正确的是()A.B.a3• a2=a6C.(b+2a) (2a -b) =b2 -4a2D.5m + 2m = 7m27.)B.C D.A.308.下列计算正确的是()A=B=C6==-D1x-=成立的x的值为()9.30A.-2 B.3 C.-2或3 D.以上都不对10.下列计算正确的是()A.=B C3=D3=-二、填空题m3﹣m2﹣2017m+2015=_____.11.若m12.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f x x ,那么21f _____.15.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.16.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a c b=___________ 17.已知1<x <2,171x x +=-,则11x x ---的值是_____. 18.观察下列等式:11122323-=,11113-23438⎛⎫= ⎪⎝⎭,11114-345415⎛⎫= ⎪⎝⎭,根据上述各等式反映的规律,请写出第5个等式:___________________________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.先观察下列等式,再回答问题:2211+2+()1 =1+1=2;2212+2+()212=2 12; 2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n ++=,证明见解析.【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式==2x ==- 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=223.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=;故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.26.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,x x|5|5∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.B解析:B【分析】利用最简二次根式定义判断即可.【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;=D2故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.3.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误;故选:C .【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.4.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得: 20x +>,解得:2x >-.故选:B .【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3)2=22=,错误;(4)==故选:B .【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.C解析:C【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题. 8.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A 选项错误;===B 选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.9.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键. 10.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;D3=,故选项D错误;故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题11.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.16.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2 =4,又∵1<x<2,∴,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.19.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学二次根式试题答案及解析
![初二数学二次根式试题答案及解析](https://img.taocdn.com/s3/m/313e87f0bb0d4a7302768e9951e79b8968026888.png)
初二数学二次根式试题答案及解析1.与﹣2的乘积是有理数的是()A.﹣2B.C.2﹣D.+2【答案】D.【解析】∵-2的有理化因式为+2,∴与-2的乘积是有理数的是+2,故选D.【考点】分母有理化.2.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤﹣1D.x>1【答案】B.【解析】根据二次根式的性质,被开方数大于等于0,所以x﹣1≥0,即x≥1时,二次根式有意义.故选B.【考点】二次根式有意义的条件.3.下列计算中正确的是()A.B.C.D.【答案】C.【解析】根据二次根式的性质化简即可:A.,计算错误;B.,计算错误;C.,计算正确;D.,计算错误.故选C.【考点】二次根式化简.4.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.5.计算:(1);(2)【答案】(1)4;(2).【解析】(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=【考点】二次根式的计算.6.化简的结果 .【答案】【解析】写成分式的形式,然后分子、分母都乘以(1+),化简整理即可..【考点】分母有理化.7.方程的解是 .【答案】1【解析】先进行分母有理化,把所给方程化为一元一次方程,求出方程的解即可.分母有理化得:去分母整理得:;解得x=1.【考点】解一元一次方程.8.是整数,则最小的正整数a的值是。
【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.10.比较下列各组数的大小:(1)与; (2)与.【答案】(1)>(2)小于【解析】解:(1)因为,,所以.(2)因为,,所以.11.计算:______.【答案】13【解析】12.已知正数的两个平方根是和,则=【答案】49.【解析】∵正数x的两个平方根是m+3和2m-15,∴m+3+2m-15=0,∴3m=12,m=4,∴m+3=7,即x=72=49.【考点】平方根.13. 9的平方根是()A.3B.C.D.【答案】B.【解析】此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a,那么这个数就是数a的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.【考点】平方根的定义.14.以下说法正确的是()A.B.C.16的算术平方根是±4D.平方根等于本身的数是1.【答案】A.【解析】A.,正确;B.,故本选项错误;C.16的算术平方根是4,故本选项错误;D.平方根等于本身的数是1和0,故本选项错误.故选A.【考点】1.平方根;2.算术平方根.15.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.16.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.17.已知是实数,且,则()A.31B.21C.13D.13或21或31【答案】C【解析】由可得,再结合二次根式有意义的条件即可求得x的值,最后代入代数式计算即可.∵∴解得∵即∴∴故选C.【考点】解一元二次方程,二次根式有意义的条件,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可. (1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 19.下列实数:,3.14,,,,,,无理数有( )A.2个B.3个C.4个D.5个【答案】B【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.∵∴无理数有,,共3个,故选B.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.20.请写出一个介于1与2之间的无理数: .【答案】【解析】此题答案不唯一,,,即此无理数只要存在于和之间即可【考点】无理数的定义点评:答案不唯一,此题考查学生对无理数概念的掌握,无理数,即无限不循环小数,且不能化成整数之比21.观察下面的等式:=7,=67,=667,则=6667。
二次根式乘除练习题带答案
![二次根式乘除练习题带答案](https://img.taocdn.com/s3/m/88571648ba68a98271fe910ef12d2af90242a8bf.png)
二次根式乘除练习题带答案二次根式乘除练习题带答案二次根式是数学中的一个重要概念,也是我们在学习代数时经常遇到的一个知识点。
在解决实际问题或进行数学推理时,我们经常需要对二次根式进行乘除运算。
为了帮助大家更好地理解和掌握二次根式的乘除运算,下面将给出一些练习题,并附带答案供大家参考。
练习题一:计算下列二次根式的乘积,并将结果化简为最简形式:1. √3 * √52. √6 * √83. √10 * √12答案:1. √3 * √5 = √(3 * 5) = √152. √6 * √8 = √(6 * 8) = √48 = √(16 * 3) = 4√33. √10 * √12 = √(10 * 12) = √120 = √(10 * 12) = √(4 * 3 * 10) = 2√30练习题二:计算下列二次根式的商,并将结果化简为最简形式:1. √20 / √42. √27 / √93. √50 / √10答案:1. √20 / √4 = √(20 / 4) = √52. √27 / √9 = √(27 / 9) = √33. √50 / √10 = √(50 / 10)= √5练习题三:计算下列二次根式的乘积或商,并将结果化简为最简形式:1. (√2 + √3) * (√2 - √3)2. (√5 - √7) * (√5 + √7)3. (√8 + √12) / (√2 + √3)答案:1. (√2 + √3) * (√2 - √3) = (√2)^2 - (√3)^2 = 2 - 3 = -12. (√5 - √7) * (√5 + √7) = (√5)^2 - (√7)^2 = 5 - 7 = -23. (√8 + √12) / (√2 + √3)= (√4 * 2 + √4 * 3) / (√2 + √3) = (2√2 + 2√3) / (√2 + √3) = 2通过以上练习题的解答,我们可以看到二次根式的乘除运算并不复杂。
浙教版八年级数学下册专题1.3二次根式的乘除(知识解读)(原卷版+解析)
![浙教版八年级数学下册专题1.3二次根式的乘除(知识解读)(原卷版+解析)](https://img.taocdn.com/s3/m/7c646e4f11a6f524ccbff121dd36a32d7375c7b4.png)
专题1.3 二次根式的乘除(知识解读)【学习目标】1.并能逆用法则进行化简2.逆用法则进行化简。
3.理解最简二次根式的概念,会进行二次根式的乘除法混合运算,并能将二次函数化为最简形式。
【知识点梳理】知识点1:二次根式的乘法法则1.(二次根式相乘,把被开方数相乘,根指数不变)2.二次根式的乘法法则的推广(1(2项式乘单项式的法则进行计算,即将系数之积作为系数,被开方数之积作为被开方数。
知识点2:二次根式的乘法法则的逆用1.二次根式的乘法法则的逆用质)2.二次根式的乘法法则的逆用的推广知识点3:二次根式的除法法则1.二次根式的除法法则2.二次根式的除法法则的推广注意:知识点4:最简二次根式1.最简二次根式的概念(1)被开方数不含分母(2)被开方数中不含能开方开得尽得因数或因式2.化简二次根式的一般方法母化成能转化为平方的形式,再进行开方运算(a >0,b >0,c >0) 被开方数时多项式的要先因式分解y x y x y +==+++)(x222xy 2(x ≥0,y ≥0)3.分母有理化(1)分母有理化:当分母含有根式时,依据分式的基本性质化去分母中的根号。
方法:根据分式的基本性质,将分子和分母都乘上分母的“有理化因式”,化去分母中的根号。
【典例分析】【考点1:二次根式乘法法则】【典例1】计算: (1)×; (2)4×;(3)6×(﹣3); (4)3×2.【变式1-1】(2022秋•嘉定区期中)化简:= . 【变式1-2】(2022秋•社旗县期中)计算的结果是( )A .16B .±16C .4D .±4 【变式1-3】(2022春•防城区期中)化简:= .【变式1-3】计算:(1)×3(2)2×【考点2:二次根式乘法法则的逆用】【典例2】计算:(1).(2).(3).【变式2】(秋•新郑市校级月考).【考点3:二次根式除法运算】【典例3】计算:(1);(2)4÷2.(3)(4).【变式3-1】(2021秋•徐汇区校级月考)计算:÷=.【变式3-2】(2021秋•宝山区校级月考)计算:÷=.【变式3-3】计算:(1)÷(2)÷(3)(4).【考点4:最简二次根式】【典例4】(2022秋•平阴县期中)下列二次根式中是最简二次根式的是()A.1B.C.D.(2022秋•兰考县月考)下列二次根式中,是最简二次根式的是()【变式4-1】A.B.C.D.【变式4-2】(2021春•饶平县校级期末)将二次根式化为最简二次根式为.【变式4-3】下列二次根式化为最简二次根式:(1)=;(2)=;(3)=;(4)=.【考点5:分母有理化】【典例5】(2021秋•永丰县期末)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.【变式5-1】(2022秋•长宁区校级期中)分母有理化:=.【变式5-2】(2022秋•宝山区期中)“分母有理化”是我们常用的一种化简方法,化简:=.【变式5-3】(2021春•饶平县校级期末)已知a=,b=,(1)求ab,a+b的值;(2)求的值.专题1.3 二次根式的乘除(知识解读)【学习目标】3.并能逆用法则进行化简4.逆用法则进行化简。
16.2 二次根式的乘除 人教版数学八年级下册堂堂练(含答案)
![16.2 二次根式的乘除 人教版数学八年级下册堂堂练(含答案)](https://img.taocdn.com/s3/m/9a5ca5b4900ef12d2af90242a8956bec0875a578.png)
C.3
D.5
6. ___________.
7.计算: 8.计算: (1)
的结果为________. ;
(2)
.
1.答案:D 解析:A、 B、 C、 D、 故选:D. 2.答案:B 解析: 3.答案:A 解析: 4.答案:B
解析:
5.答案:B 解析: 是 2.故选 B. 6.答案:2
答案以及解析
为无理数,不符合题意; 为无理数,不符合题意; 为无理数,不符合题意; 为有理数,符合题意.
. .故选 A. .故选 B.
.因为
的值是一个整数,所以正整数 a 的最小值
解析:
,
故答案为 2. 7.答案:1 解析:
8.答案:(1)原式 (2)原式 解析:(1)
. (2)
.
16.2 二次根式的乘除——2022-2023 学年人教版数学八年级下册 堂堂练
1.下列各数中,与 的乘积为有理数的是( )
A.
B.
C.
D.
2.计算:
()
A.
B.
C.
D.
3.计算:
()
A.
B.5
C.
D.
4.计算
的结果是( )
A.
B.
C.
D.
Hale Waihona Puke 5.的值是一个整数,则正整数 a 的最小值是( )
A.1
B.2
部编数学八年级下册专题4二次根式的运算与应用(解析版)含答案
![部编数学八年级下册专题4二次根式的运算与应用(解析版)含答案](https://img.taocdn.com/s3/m/fd1cdba37d1cfad6195f312b3169a4517623e51b.png)
专题4 二次根式的运算与应用(解析版)第一部分典例精析+变式训练类型一二次根式的计算典例1(2022秋•渠县校级期末)化简:(1)(2.思路引领:(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减法,即可解答.解:(1)×―=―=6﹣=6﹣―(2=2﹣3=3+4+2﹣3=6.总结提升:本题考查了二次根式的混合运算,平方差公式,准确熟练地进行计算是解题的关键.变式训练1.(2022秋•长安区期中)下列计算正确的是( )A.=B.×=C.=D÷=思路引领:先根据二次根式的加减法法法则,二次根式的除法法则和二次根式的乘法法则进行计算,再得出选项即可.解:A.B.(2×3C.D+故选:B.总结提升:本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.2.(2022秋•2)20212)2020的结果是( )A.﹣1B2C.2D.1思路引领:先根据积的乘方进行变形,再根据平方差公式进行计算,最后求出答案即可.解:―2)2021+2)2020=[―2)×+2)]2020×―2)=(﹣1)2020×―2)=1×2)=―2,故选:B.总结提升:本题考查了二次根式的混合运算,平方差公式和积的乘方等知识点,能灵活运用平方差公式进行计算是解此题的关键,注意:(a+b)(a﹣b)=a2﹣b2.类型二与二次根式有关的化简求值例2 (2022秋•商水县校级月考)问题:先化简,再求值:2a+a=3.小宇和小颖在解答该问题时产生了不同意见,具体如下.小宇的解答过程如下:解:2a+=2a+(第一步)=2a+a﹣5……(第二步)=3a﹣5.……(第三步)当a=3时,原式=3×3﹣5=4.……(第四步)小颖为验证小宇的做法是否正确,她将a=3直接代入原式中:2a=6=6+2=8.由此,小颖认为小宇的解答有错误,你认为小宇的解答错在哪一步?并给出完整正确的解答过程.思路引领:根据二次根式的性质将二次根式进行化简后,再代入求值即可.解:错在第二步,原式=2a+2a+|a﹣5|,∵a=3<5,∴a﹣5<0,∴原式=2a+(5﹣a)=a+5,当a=3时,原式=3+5=8.总结提升:=|a|,是正确解答的关键.变式训练1.(2022春•藁城区校级月考)先化简,再求值:2―+(a+1)(a―1),其中a=思路引领:利用二次根式的相应的运算法则对式子进行化简,再代入相应的值运算即可.解:2―a+1)(a―1)=2﹣|a﹣2|+a2﹣1=a2+1﹣|a﹣2|,当a2+1﹣(2―=2+1﹣2+=1总结提升:本题主要考查二次根式的化简求值,解答的关键是对相应的运算法则的掌握.2.(2022秋•静安区校级期中)先化简,再求值,如果a=2―b=思路引领:直接利用二次根式的性质分母有理化,进而化简二次根式得出答案.解:∵b ===2+a =2―∴a ﹣b =2――(2+2―2――0,=总结提升:此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.典例3 (2022秋•x =y =13.思路引领:根据平方差公式、完全平方公式把原式的分子、分母变形,再根据约分法则化简,利用分母有理化法则把x 、y 化简,代入计算即可.解:原式2•=x ﹣y ,当x(3=3﹣y ==原式=(3﹣总结提升:本题考查的是二次根式的化简求值,掌握二次根式的乘法法则、平方差公式、完全平方公式是解题的关键.变式训练1.(2022秋•虹口区校级月考)先化简,再求值:4a b a =1,b =2.思路引领:利用二次根式的相应的法则对式子进行化简,再代入相应的值运算即可.解:4a b +=4a b +=4+∵a =1,b =2,∴原式=2―2.总结提升:本题主要考查了二次根式的化简求值,熟练掌握二次根式的化简求值的方法是解决本题的关键.典例4(2022春•邹城市校级月考)先化简,再求值:(1)2(a +(a ―a (a ﹣6)+6,a 1.(2)已知a =2+b =2―,求a b ―b a的值.思路引领:(1)利用乘法公式展开,然后合并同类项,再把a 的值代入计算;(2)先计算出a +b 、a ﹣b 和ab 的值,再通分和平方差公式得到原式=(a b )(a b )ab,然后利用整体代入的方法计算.解:(1)原式=2(a 2﹣3)﹣a 2+6a +6=2a 2﹣6﹣a 2+6a +6=a 2+6a ,当a 1―1)2+61)=2﹣―6=―3;(2)∵a =2b =2∴a +b =4,ab =4﹣3=1,a ﹣b =∴a b ―b a =a 2b 2ab =(a b )(a b )ab =总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.利用整体代入的方法可简化计算.变式训练1.已知x =2―(7+x 2+(2+x +思路引领:先根据完全平方公式求出x 2,再根据二次根式的乘法法则计算即可;解:∵x =2―∴x 2=(2―2=4﹣3=7﹣则原式=((7﹣+(2(2―+=49﹣48+4﹣3+=2总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.利用整体代入的方法可简化计算.类型三与二次根式有关的规律探究典例5(2022秋•新蔡县校级月考)发现①2= ,2= ;② ;= ;总结通过①②2(a≥0)与a a的数量关系规律,请用自己的语言表述出来;应用2的值.思路引领:发现:①利用有理数的乘方的计算方法进行计算即可;②利用算术平方根的定义进行计算即可;总结:根据有理数的乘方的计算方法以及算术平方根的定义进行总结即可;应用:根据数m在数轴上的位置,确定m+2,m﹣1的符号,再根据上述结论进行解答即可.解:发现:①2=2,2=2 3,故答案为:2,2 3;|2|=2|―23|=23,故答案为:2,2 3;总结:2=a(a≥0)=|a|=a(a≥0)―a(a<0);应用:由数m在数轴上的位可知,﹣2<m<﹣1,∴m+2>0,m﹣1<0,3﹣m>0,∴原式=2(m+2)+1﹣m+3﹣m=8,2=8.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,掌握二次根式的性质以及乘除法的计算法则是正确解答的前提.变式训练1.(2022秋•忻州月考)综合与实践小丽根据学习“数与式”积累的经验,想通过“由特殊到一般”的方法探究下面二次根式的运算规律,下面是小丽的探究过程,请补充完整:(1)具体运算,发现规律.等式1等式2等式3等式4: .(2)观察、归纳,得出猜想.n为正整数,猜想等式n可表示为 ,并证明你的猜想.(3)应用运算规律.①×②=n>0),若该等式符合上述规律,则m﹣n的值为 .思路引领:(1)根据所给的特例的形式进行求解即可;(2)分析所给的等式的形式进行总结即可;对等式的左边进行整理,即可求证;(3)①②利用(2)中的规律进行求解即可.解:(1==(2)猜想等式n=(n+1(n+1证明:等式左边==(n+1右边,故猜想成立;(3)①原式=××=100×200×××=②n >0),符合上述规律,∴m 2﹣2m +1=9,n =11,解得m =﹣2或4,∴m ﹣n =﹣13或﹣7.故答案为:﹣13或﹣7.总结提升:本题主要考查二次根式混合运算,数字的变化规律,解答的关键是由所给的式子总结出存在的规律.典例6 (2022秋•浦东新区期中)观察下列运算:(1)由―1)=11(2)由―=1,得1……问题:(1)通过观察你得出什么规律?用含n 的式子表示出来;(2)利用(1)中发现的规律计算:1⋯+1).思路引领:(1)根据已知算式得出规律即可;(2)根据(1)中得出的规律进行变形,再根据二次根式的加法法则进行计算,最后根据平方差公式求出答案即可.解:(1)1n 为正整数);(2―1++•+―1)―1)1)=2019﹣1=2018.总结提升:本题考查了二次根式的混合运算,分母有理化和平方差公式等知识点,能根据已知算式得出规律是解此题的关键.变式训练1.(2022秋•南山区校级期中)著名数学教育家G •波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.==1+解决问题:(1=③①: ,②: ,③ .(2思路引领:(1)模仿样例进行解答便可;(2)把28看成522,7看成222,借助完全平方公式将每个根号内化成完全平方数的形式,便可开方计算得结果.解:(13则①=5,②=③=3+故答案为:①5;③3(2===5+2+=7.总结提升:本题考查了二次根式的性质,完全平方式的应用,关键是把被开方数化成完全平方数.类型四二次根式的应用典例1(2022秋•新蔡县校级月考)如图,有一张面积为50cm2的正方形纸板,现将该纸板的四个角剪掉,.(1)求长方体盒子的容积;(2)求这个长方体盒子的侧面积.思路引领:(1)结合题意可知该长方体盒子的长、宽都为,而长方体的容积为长×宽×高,即可得答案;(2)该长方体盒子的侧面为长方形,长为,共4个面,即可得答案.解:(1)由题意可知:长方体盒子的容积为:2=cm3),答:长方体盒子的容积为3;(2)长方体盒子的侧面积为:×4=24(cm2),答:这个长方体盒子的侧面积为24cm2.总结提升:本题考查了二次根式的应用,关键是结合图形,结合二次根式的乘法法则求解.变式训练1.(2022秋•洛宁县月考)如图,有一张长为,宽为的长方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形.(1,则制作成的无盖长方体盒子的体积是多少?(2)求这个长方体盒子的侧面积.思路引领:(1)利用长方体的体积公式计算即可;(2)大长方形的面积减去4个小正方形的面积,再减去底面面积就是盒子的侧面积.(两个小长方形面积和两个大长方形面积和)解:(1)无盖长方体盒子的体积为:(―×(×=××=cm3);答:制作成的无盖长方体盒子的体积是3.(2)方法一,长方体盒子的侧面积为:×4××((=256﹣8﹣168=80(cm 2);答:这个长方体盒子的侧面积为80cm 2.方法二,长方体盒子的侧面积为:(―×2+(―×2=×××2=24+56=80cm 2.答:这个长方体盒子的侧面积为80cm 2.总结提升:本题考查了二次根式的应用,做题关键是读懂题意列出正确的算式.典例2 (2022春•锦江区校级期中)阅读材料:我们已经学习了《二次根式》和《乘法公式》,可以发现;当a >0,b >0时,有2=a ﹣b ≥0,∴a +b ≥a =b 时取等号.请利用上述结论解决以下问题:(1)当x >0时,x +1x 的最小值为 ;当x <0时,x +1x 的最大值为 .(2)当x >0时,求y =x 23x 25x的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为12和27,求四边形ABCD 面积的最小值.思路引领:(1)当x >0时,直接根据公式a +b ≥当x <0时,先将x +1x 变形为﹣(﹣x ―1s),再根据公式a +b ≥(2)将原式的分子分别除以分母,变形为可利用公式a +b ≥(3)根据等高三角形的性质计算即可.解:(1)当x >0时,x +1x≥=2;当x <0时,x +1x =―(﹣x ―1x),∵﹣x ―1x ≥2,∴﹣(﹣x ―1x )≤﹣2,即x +1x≤―2.故答案为:2;﹣2;(2)当x >0时,y =x 23x 25x=x+25x +3≥3=13,∴当x >0时,y 的最小值13;(3)设S △BOC =x ,∵S △AOB =12,S △COD =27,∴由等高三角形可得:S △BOC :S △COD =S △AOB :S △AOD ,∴x :27=12:S △AOD ,∴S △AOD =324x,∴四边形ABCD 面积=12+27+x +324x =39+x +324x≥75.总结提升:本题是四边形综合题,考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,读懂阅读材料中的方法并正确运用是解题的关键.针对训练1.(2021秋•武陵区校级期末)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b >0时,∵2=a ―+b ≥0,∴a +b ≥a =b 时取等号.请利用上述结论解决以下问题:(1)当x >0时,x +1x 的最小值为 .(2)当m >0时,求m 25m 12m的最小值.(3)请解答以下问题:如图所示,某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成,设垂直于墙的一边长为x 米.若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?思路引领:(1)根据阅读中的公式计算即可;(2)先配方,化简,运用公式计算即可;(3)设所需的篱笆长为L 米,由题意得L =2x +200x,再阅读中的公式计算即可.解:(1)当x >0时,1x>0,∴x +1x≥=2,∴x +1x的最小值为2.故答案为:2;(2)m 25m 12m=m +5+12m ,∵m >0,∴m +5+12m≥+5,∴m +5+12m ≥+5,即m 25m 12m ≥+5,∴m 25m 12m的最小值为+5;(3)设所需的篱笆长为L 米,由题意得L =2x +200x,由题意可知:2x +200x≥又∵=40,∴2x +200x≥40,∴需要用的篱笆最少是40米.总结提升:本题考查了配方法的应用,解答本题的关键是明确题意,利用题目中阅读内容解答.第二部分 专题提优训练1.下列计算正确的是( )AB =4C D .25思路引领:应用分母有理化及二次根式的乘除法法则进行计算即可得出答案.解:A ==A 选项计算不正确,故A 选项不符合题意;B2,∴B 选项计算不正确,故B 选项不符合题意;C =C 选项计算正确,故C 选项符合题意;D .∵255=D 选项计算不正确,故D 选项不符合题意;故选:C .总结提升:本题主要考查了分母有理化及二次根式的乘除法,熟练掌握分母有理化及二次根式的乘除法法则进行求解是解决本题的关键.2.(2022春•+4x =13,y =4.思路引领:先把各二次根式化为最简二次根式,再合并得到原式=x 、y 的值代入计算.解:∵x =13>0,y =4>0,∴原式=+―=当x =13,y =4时,原式总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.3.(2022春•呼和浩特期末)(12)0;(2)先化简,再求值:(3―2x 1)÷3x 2xx 1,其中x =+1.思路引领:(1)根据二次根式的加减法法则、零指数幂的性质计算;(2)根据分式的混合运算法则把原式化简,把x 的值代入计算即可.解:(1)原式=11(2)原式=(3x 3x 1―2x 1)•x 1x (3x 1)=3x 1x 1•x 1x (3x 1)=1x,当x +1时,原式=1=总结提升:本题考查的是二次根式的混合运算,分式的化简求值,掌握二次根式的混合运算法则、分式的混合运算法则是解题的关键.4.(2022春•金华月考)在一节数学课上,李老师出了这样一道题目:先化简,再求值:|x ﹣1|+x =9.小明同学是这样计算的:解:|x ﹣1|+=x ﹣1+x ﹣10=2x ﹣11.当x =9时,原式=2×9﹣11=7.小荣同学是这样计算的:解:|x ﹣1|+=x ﹣1+10﹣x =9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?思路引领:根据二次根式的性质判断即可.解:小荣的计算结果正确,小明的计算结果错误,错在去掉根号:|x ﹣1|+=x ﹣1+x ﹣10(应为x ﹣1+10﹣x ).总结提升:本题考查了二次根式的性质与化简,能熟记二次根式的性质是解此题的关键,|a |=a (a ≥0)―a (a <0).5.(2022春•闵行区校级期中)先化简,再求值:已知x =13,求(1x )2x 1思路引领:原式利用二次根式化简,约分得到最简结果,由x 的值求出x ﹣1与1x的值,分别代入计算即可求出值.解:∵x =133﹣∴x ﹣1=3﹣―1=2﹣0,1x =则原式=(x 1)2x 1+|x 1|x (x 1)=x ﹣1+(x 1)x (x 1)=(x﹣1)―1 x=2﹣(=2﹣3﹣=﹣1﹣总结提升:此题考查了二次根式的化简求值,分式的化简求值,以及分母有理化,熟练掌握运算法则是解本题的关键.6.(2021春•霍邱县期中)观察与思考:①式①验证:式②验证:(1)仿照上述式①、式②的验证过程,请写出式③的验证过程;(2)猜想 ;(3)试用含n(n为自然数,且n≥2)的等式表示这一规律,并加以验证.思路引领:(1)根据已知算式和二次根式的性质进行变形即可;(2)根据已知算式得出规律,再根据得出的规律得出答案即可;(3)根据已知规律得出算式,再根据二次根式的性质进行计算即可.解:(1)=(2)(3)证明:===总结提升:本题考查了二次根式的性质与化简,能根据已知算式得出规律是解此题的关键.7.(2021秋•鄞州区期中)先阅读材料,再解决问题.=1;=3;=6;=10;…根据上面的规律,解决问题:(1 = ;(2n的代数式表示).思路引领:(1)观察各个等式中最左边的被开方数中各个幂的底数的和与最右边的结果的关系即可得到结论;(2)利用(1)发现的规律解答即可.3中,1+2=3,=6中,1+2+3=6,=10中,1+2+3+4=10,∴等式中最左边的被开方数中各个幂的底数的和=右边的结果.∵1+2+3+4+5+6=21,∴(1=21.21;(2)由(1)中发现的规律可得:1+2+3+•+n=n(n1)2.总结提升:本题主要考查了二次根式的性质与化简,本题是规律型题目,发现数字间的变化的规律是解题的关键.8.(2022秋•中原区校级月考)小明同学在学习的过程中,看到北师大版八年级上册数学课本43页有这样小明想了想做出如下解答过程:“如图,大正方形的面积为82,2=2”=的图形并借助图形帮助小明解答这个问题.思路引领:根据正方形的面积公式得到2个正方形的边长,利用图形得出边长的关系,进而得出答案.解:如图,大正方形的面积为2小正方形的面积为12,则小正方形的边长为观察图形可以得到大正方形边长是小正方形边长的2倍,总结提升:此题主要考查了算术平方根,正方形的面积,利用已知结合相似图形的性质得出是解题关键.9.(2022春•周至县期末)在一个长为求剩余部分的面积.思路引领:根据矩形的面积﹣正方形的面积即可得到剩余部分的面积.解:×―(2=60﹣(60﹣5)=60﹣―5=(5)平方米,答:剩余部分的面积为(5)平方米.总结提升:本题考查了二次根式的应用,掌握(a ±b )2=a 2±2ab +b 2是解题的关键.10.(2022春•济源期末)【再读教材】:我们八年级下册数学课本第16页介绍了“海伦﹣秦九韶公式”:如果一个三角形的三边长分别为a ,b ,c ,记p =a b c2,那么三角形的面积为S =【解决问题】:已知在△ABC中,AC=4,BC=7.5,AB=8.5.(1)请你用“海伦﹣秦九韶公式”求△ABC的面积.(2)除了利用“海伦﹣秦九韶公式”求△ABC的面积外,你还有其它的解法吗?请写出你的解法.思路引领:(1)直接代入海伦﹣秦九韶公式求解;(2)先利用勾股定理的逆定理证明△ABC为直角三角形,再用两直角边的积除以2求出面积即可.解:(l)∵AC=4,BC=7.5,AB=8.5,∴p=47.58.52=10,∴S△ABC=15.即△ABC的面积为15;(2)∵AC=4,BC=7.5,AB=8.5,∴AC2=42=16=644,BC2=(152)2=2254,AB2=(172)2=2894,∴AC2+BC2=644+2254=2894=AB2,∴∠C=90°,∴S△ABC=12AC⋅BC=12×4×7.5=15.总结提升:本题考查了二次根式的应用,代数式求值,勾股定理的逆定理,准确计算是解题关键.11.(2022春•西城区校级期中)(1)用“=”、“>”、“<”填空:4+3 21+16 25+5 2(2)由(1)中各式猜想m+n与m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要 m.思路引领:(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m+n≥m+n﹣联想到完全平方公式,问题得证;(3)设花圃的长为a 米,宽为b 米,需要篱笆的长度为(a +2b )米,利用第(2)问的公式即可求得最小值.解:(1)∵4+3=7,=∴72=49,(2=48,∵49>48,∴4+3>∵1+16=76>1,1,∴1+16>∵5+5=10,=10,∴5+5=故答案为:>,>,=.(2)m +n ≥m ≥0,n ≥0).理由如下:当m ≥0,n ≥0时,2≥0,2﹣2≥0,∴m ﹣n ≥0,∴m +n ≥(3)设花圃的长为a 米,宽为b 米,则a >0,b >0,S =ab =200,根据(2)的结论可得:a +2b ≥2×20=40,∴篱笆至少需要40米.故答案为:40.总结提升:本题主要考查了二次根式的计算,体现了由特殊到一般的思想方法,解题的关键是联想到完全平方公式,利用平方的非负性求证.。
人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案
![人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案](https://img.taocdn.com/s3/m/294c95d5daef5ef7bb0d3c03.png)
人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。
二次根式的乘除法练习题
![二次根式的乘除法练习题](https://img.taocdn.com/s3/m/f643c9ad5ff7ba0d4a7302768e9951e79a896943.png)
二次根式的乘除法练习题二次根式是数学中的一个重要概念,它在代数学和几何学中都有广泛的应用。
掌握二次根式的乘除法是学好数学的基础,下面将给大家提供一些练习题,帮助大家巩固和提高这方面的能力。
1. 计算下列二次根式的乘法:(√3 + √5) × (√3 - √5)解析:使用公式(a + b) × (a - b) = a^2 - b^2,其中a = √3,b = √5。
根据这个公式,我们可以得到:(√3 + √5) × (√3 - √5) = (√3)^2 - (√5)^2 = 3 - 5 = -2答案:-22. 计算下列二次根式的乘法:(2√2 + 3√3) × (2√2 - 3√3)解析:使用公式(a + b) × (a - b) = a^2 - b^2,其中a = 2√2,b = 3√3。
根据这个公式,我们可以得到:(2√2 + 3√3) × (2√2 - 3√3) = (2√2)^2 - (3√3)^2 = 8 × 2 - 9 × 3 = 16 - 27 = -11答案:-113. 计算下列二次根式的乘法:(√7 + √2) × (√7 - √2)解析:使用公式(a + b) × (a - b) = a^2 - b^2,其中a = √7,b = √2。
根据这个公式,我们可以得到:(√7 + √2) × (√7 - √2) = (√7)^2 - (√2)^2 = 7 - 2 = 5答案:54. 计算下列二次根式的除法:(√10 + √5) ÷ √5解析:我们可以将分子和分母都乘以√5,得到:(√10 + √5) ÷ √5 = (√10 + √5) × (√5 ÷ √5) = (√10 + √5) × 1 = √10 + √5答案:√10 + √55. 计算下列二次根式的除法:(4√6 - 2√3) ÷ 2√3解析:我们可以将分子和分母都乘以2√3,得到:(4√6 - 2√3) ÷ 2√3 = (4√6 - 2√3) × (2√3 ÷ 2√3) = (4√6 - 2√3) × 1 = 4√6 - 2√3答案:4√6 - 2√3通过以上的练习题,我们可以看到,掌握二次根式的乘除法并不难,只需要熟练掌握相关的公式和技巧,就能够快速准确地计算出结果。
八年级数学下册《二次根式的乘除》练习题(附答案解析)
![八年级数学下册《二次根式的乘除》练习题(附答案解析)](https://img.taocdn.com/s3/m/83cd00ad03d276a20029bd64783e0912a3167c7b.png)
八年级数学下册《二次根式的乘除》练习题(附答案解析)一、选择题1. 下列二次根式是最简二次根式的是( )A. √13B. √8C. √14D. √122. 估计2√3×√12的值应在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间3. 若xy<0,则√x2y化简后的结果是( )A. x√yB. x√−yC. −x√−yD. −x√y4. 若x=√a−√b,y=√a+√b,则xy的值为( )A. 2√aB. 2√bC. a−bD. a+b5. a、b在数轴上的位置如图所示,那么化简|a−b|−√a2的结果是( )A. 2a−bB. bC. −bD. −2a+b6. 下列各式中,计算正确的是( )A. √27√3=9 B. √48√16=√3C. √20÷√4=4D. √43÷√19=3√27. 已知m=(−√33)×(−2√21),则有( )A. 5<m<6B. 4<m<5C. −5<m<−4D. −6<m<−58. 设√2=a,√3=b,用含a、b的式子表示√0.54,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1ab2D. 0.1a2b9. 计算√ba ÷√ab×√1ab(a>0,b>0)的值为( )A. 1ab2√ab B. 1a2b√ab C. 1b√ab D. b√ab10. 下列等式中成立的是( )A. √4+45=4√45B. √3+34=3√34C. √2+23=2√23D. √1+12=√12二、填空题11. 化为最简二次根式:√24=.12. 若√x−23−x =√x−2√3−x成立,则x满足.13. 计算√5×√15√3的结果是.14. 已知最简二次根式√4a+3b与√2a−b+6b+1可以合并,则a+b的值为.三、解答题15. 若二次根式√4m2=5,求m的值.16.计算:2√23m ÷16√6m⋅√8m3.17. 已知y =√x −2+√2−x +38,求√xy 的值.18.实数a ,b 在数轴上的位置如图所示,化简√a 2−√b 2+√(a −b)2.19. 已知a ,b ,c 为△ABC 三边的长,化简:√(a +b −c)2+√(a −b −c)2.20. 已知a =√3−√2,b =1√3+√2,(1)求ab ,a +b 的值;(2)求b a +a b 的值.参考答案与解析1.【答案】C【解析】解:√13=√33不是最简二次根式;√8=2√2不是最简二次根式;√14是最简二次根式;√12=2√3不是最简二次根式;故选:C.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.2.【答案】B【解析】【分析】此题主要考查了估算无理数的大小,正确进行二次根式的计算是解题关键.直接利用二次根式的乘法运算法则化简,进而估算无理数的大小即可.【解答】解:∵2√3×√12=√12×12=√6,4<6<9,∴2<2√3×√12<3,故选:B.3.【答案】D【解析】【分析】本题考查了二次根式的性质和化简,是基础知识要熟练掌握.根据二次根式有意义可得出y≥0,再由xy<0,得出x<0,y>0,从而化简即可.【解答】解:∵x2y≥0,∴y≥0,∵xy<0,∴x<0,y>0,∴√x2y=−x√y.故选D.4.【答案】C【解析】【分析】本题考查二次根式的乘法,根据二次根式的乘法法则运算即可解决.【解答】解:∵x=√a−√b,y=√a+√b,∴xy=(√a−√b)(√a+√b)=a−b.故选C.5.【答案】B【解析】【分析】本题考查了实数与数轴,绝对值和二次根式的性质.根据数轴得出a<0<b,推出a−b<0,再根据绝对值和二次根式的性质化简即可.【解答】解:∵a<0<b∴a−b<0∴|a−b|−√a2=b−a+a=b.故选B.6.【答案】B【解析】【分析】本题主要考查的是二次根式的乘除的有关知识,利用二次根式的除法法则将给出的各个选项中的式子进行逐一计算即可求解.【解答】解:A.√27√3=3,故A错误;B√48√16=√3,故B正确;C.√20÷√4=√5,故C错误;D.√43÷√19=√43÷19=√43×9=2√3,故D错误.故选B.7.【答案】A【解析】略8.【答案】A【解析】【分析】此题主要考查了二次根式的化简以及二次根式的乘除的逆用.先把√0.54化为√2、√3的形式,再把a、b代入计算即可.【解答】解:√0.54=√54100=√2×3×32100=310×√2×√3=0.3ab,故选A.9.【答案】B【解析】【分析】本题考查了二次根式的乘除法,解决本题的关键是熟记二次根式的乘除法.根据二次根式的乘除法,即可解答.【解答】解:√ba ÷√ab×√1ab=√ba×1ab×1ab=√1a3b=√aba2b.故选:B.10.【答案】C【解析】【分析】本题考查的是二次根式的性质,掌握二次根式的性质是关键.根据最简二次根式的性质进行化简即可判断.【解答】解:A、√4+45≠4√45,不成立;B、√3+34≠3√34,不成立;C、√2+23=√83=2√23,成立;D、√1+12=√32≠√12,不成立.11.【答案】2√6【解析】【分析】本题考查的是最简二次根式,掌握二次根式的乘法法则是解题的关键.根据二次根式的乘法法则化简即可.【解答】解:√24=√4×6=2√6,故答案为:2√6.12.【答案】2≤x<3【解析】解:要使√x−23−x =√x−2√3−x成立,必须{x−2≥0 3−x>0,解得:2≤x<3,故答案为:2≤x<3.根据二次根式有意义的条件得出不等式组,求出不等式组的解集即可.本题考查了二次根式的除法,二次根式有意义的条件和解一元一次不等式组等知识点,能根据题意得出不等式组是解此题的关键.13.【答案】5【解析】【分析】本题主要考查了二次根式的乘除的应用,解题的关键是熟练掌握二次分式的乘除的法则, √5×√15√3的值. √5×√15√3=√5×15√3=√753=√25=5.14.【答案】2【解析】【分析】根据同类二次根式的概念列出方程组,解方程组求出a 、b ,再计算即可.本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.【解答】解:由题意得,{b +1=24a +3b =2a −b +6, 解得,{a =1b =1, 则a +b =1+1=2,故答案为:2.15.【答案】解:∵二次根式√4m 2=5,∴4m 2=25,∴m 2=254,∴m =±52【解析】本题主要考查的是二次根式的性质的有关知识,根据二次根式的运算法则即可求出答案.16.【答案】解:原式=2×6√23m ×16m×8m 3 =12√8m 9=8√2m .【解析】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.直接利用二次根式的乘除运算法则化简求出答案.17.【答案】解:根据题意知,{x −2≥02−x ≥0, 解得:x =2,当x =2时,y =38,则√xy =√2×38=√32. 【解析】根据二次根式有意义的条件可得关于x 的不等式组,解不等式组可得x 的值,代入等式得y 的值,继而可得答案.本题考查了二次根式的有意义的条件.二次根式中的被开方数必须是非负数,否则二次根式无意义.18.【答案】解:由数轴知,a <0,且b >0,∴a −b <0,∴√a 2−√b 2+√(a −b)2=|a|−|b|+|a −b|=−a −b +(b −a)=−a −b +b −a =−2a .【解析】本题主要考查二次根式的性质:当a >0时,√a 2=a ;当a <0时,√a 2=−a ;当a =0时,√a 2=0.首先利用数轴确定a ,b ,a −b 的取值范围,然后利用二次根式的性质化简即可.19.【答案】2b【解析】略20.【答案】解:(1)∵a=√3−√2=√3+√2(√3−√2)(√3+√2)=√3+√2,b=√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,∴ab=(√3+√2)×(√3−√2)=1,a+b=√3+√2+√3−√2=2√3;(2)ba+ab=√3−√2√3+√2+√3+√2√3−√2=(√3−√2)2+(√3+√2)2=5−2√6+5+2√6=10.【解析】此题主要考查了分母有理化,正确得出有理化因式是解题关键.(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.。
2020—2021年人教版初中数学八年级下册二次根式的乘除例题解析+巩固练习及答案(精品试题).docx
![2020—2021年人教版初中数学八年级下册二次根式的乘除例题解析+巩固练习及答案(精品试题).docx](https://img.taocdn.com/s3/m/c52da862fad6195f302ba65f.png)
二次根式乘除四、典题探究例1 计算:(1)-12×6;(2)3x ×6y ;(3)2x y +×24x y +;(4)32x y ×318xy .例2 计算:(1)72÷6;(2)112÷16.(3)263x y xy;(4)56214- 例3 计算:(1)75÷(6×12);(2)2×5÷50.例4 阅读理解题型222233=+,333388=+ 验证:2233322222321-+==-2222(21)2222221213-+==+=+--; 332222333333(31)333333883131318-+-+====+=+---. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且2n ≥)表示的等式,并给出证明. 五、演练方阵A 档(巩固专练)1. 直接填写计算结果: (1)805=_________;(2)3590710÷=___________;(3)32111273103÷⨯=_________;(4)7623483x y x y=__________. 2. 计算24812⨯⨯=_______;224024-=_________.3. 把根号外的因式移到根号内:1(1)1a a --=-__________ 4..下列二次根式中不是最简二次根式的是( ) A. 21a + B. 21x + C.24b D. 0.1y5. 计算341843÷⨯;结果为( )A.32B.42 C.52D.626. 给出下列四道算式: (1)2(4)44ab ab-=-(2)22223411453+=- (3)2847xx x=(4)2()()b a a b a b a b-=->-其中正确的算式是( ) A.(1)(3) B.(2)(4) C.(1)(4)D.(2)(3)7. 化简二次根式2(5)3-⨯得()A.53-B.53 C.53±D.308. 计算:(1)2222414034-+ (2)521000.5x y x y(3)23314525÷(4)1a b b a b ⎛⎫÷ ⎪ ⎪⎝⎭9. 计算:(1)325(3)23⨯-;(2)18502⨯(3)213215 38⎛⎫⨯- ⎪⎝⎭. 10. 一个三角形一边长为23cm ,这边上的高是6cm ,求这个三角形的面积B 档(提升精练)11. 若6 2.449=,则54=(精确0.01).12. 计算188⨯=.13. 计算:25(4)(169)9-⨯⨯-=,计算:0.04640.25169⨯=⨯. 14. 已知一个直角三角形的斜边21c =,一条直角边4b =,则另一条直角边a =. 15. 计算:322113÷=. 16. 已知三角形的一边长为2xy ,这边上的高为1xy,则这个三角形的面积是. 17. 计算:311294524543⎛⎫÷⨯- ⎪⎝⎭.18. 计算:533455156y xy x y x ⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭.19. 若直角三角形的面积是218cm ,一条直角边长3cm ,求另一条直角边长及斜边上的高线长.20. 张老师在微机上设计了一个长方形图片,已知长方形的长是140cm π,宽是35cm π.他又想设计一个面积与其相等的圆,请你帮助张老师求出圆的半径.C 档(跨越导练) 21. 式子2233x xy y--=成立时,x y ,满足的条件为( )A.0x y ⎧⎨<⎩≥B.00x y ⎧⎨>⎩≤ C.0x y ⎧⎨<⎩≤ D.0x y ⎧⎨>⎩≥ 22. 下列根式中最简二次根式的个数有( )22x y ,2ab,35xy ,22y c,225()a b -,3375x y ,22x y +.A .2个B .3个C .4个D .5个23. 下列计算正确的是( ) A .51533= B .824= C .142a a b b = C .51542= 24. 化简21a a a--的结果( ).A .1a --B .1a ---C .1a -D .1a --25. 定义运算“@”的运算法则为: x@y= 4xy + ,则 (2@6)@8=. 26. 计算:①42259x y (y >0)=______.②224a b c (a >0,b >0,c >0)=______.27. 对于题目:“化简并求值:22112a a a ++-,其中15a =.”甲、乙两人的解答不同,甲的解答是:222111111125a a a a a a a a a ⎛⎫++-=+-=+-= ⎪⎝⎭;乙的答案是:22211111124925a a a a a a a a a a a ⎛⎫++-=+-=+-=-= ⎪⎝⎭. 谁的解答是错误的?为什么? 28. 已知3xy =,求y xx y x y+的值。
八年级数学二次根式32道典型题(含答案和解析)
![八年级数学二次根式32道典型题(含答案和解析)](https://img.taocdn.com/s3/m/27d2430c0812a21614791711cc7931b765ce7bb9.png)
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
![初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)](https://img.taocdn.com/s3/m/5c7f197aba0d4a7303763a18.png)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
初二数学二次根式试题答案及解析
![初二数学二次根式试题答案及解析](https://img.taocdn.com/s3/m/872ea8f9900ef12d2af90242a8956bec0975a5e5.png)
初二数学二次根式试题答案及解析1.计算:(1)(2)【答案】(1)原式=﹣6;(2)原式=2x﹣x.【解析】(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可试题解析:(1)原式==﹣6;(2)原式=2+2x﹣x﹣2=2x﹣x.【考点】二次根式的混合运算2.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B.【解析】A、=3,故A选项错误;B、是最简二次根式,故B选项正确;C、=2,不是最简二次根式,故C选项错误;D、=,不是最简二次根式,故D选项错误.故选B.【考点】最简二次根式.3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.5.计算:______.【答案】13【解析】6.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.7.阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.【答案】(1)(2)(3)9【解析】解:(1)=.(2).(3)8.在3.14、、、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B.【解析】无理数即无限不循环小数,显然3.14、、0.2020020002这三个数是有限小数,不是无理数;而是无理数,所以也是,毫无疑问是无理数,的结果是一个无限循环小数,所以不是无理数,因此无理数有2个,即:故选B.【考点】无理数的定义.9.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.10.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.11.若(x-3)2+=0,则x-y= .【答案】5.【解析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解:根据题意得,x-3=0,y+2=0,解得x=3,y=-2,x-y=3-(-2)=3+2=5.故答案为:5.【考点】1.非负数的性质:2.算术平方根;3.偶次方.12.估算的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.【解析】因为5<<6,所以3<<4.故选C.【考点】估算无理数的大小.13.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大14.观察各数:,,,.其中最小数与最大数的和为(结论化简);【答案】【解析】依题意:;;;,易知最大数为,最小数为。
八年级数学:二次根式的乘除(乘法)练习题(含解析)
![八年级数学:二次根式的乘除(乘法)练习题(含解析)](https://img.taocdn.com/s3/m/09ba47bc16fc700aba68fc3a.png)
八年级数学:二次根式的乘除(乘法)练习题(含解析)一、 单选题(共10小题)1.已知2225152x x ---=,则222515x x -+-的值为( )A .3B .4C .5D .6【答案】C【解析】∵2225152x x ---=,2222222222(2515)(2515)(25)(15)251510x x x x x x x x ----+-=---=--+=∴2225155x x -+-=.故选C.2.下列变形正确的是( )A .()()4949--=-⨯-B .[0,]8πC .()2a b a b +=+D .22252425241-=-=【答案】C【解析】详解: A 选项,因为被开方数是非负数,所以 ()()4949--=-⨯-错误,B 选项,165651644==,所以B 计算错误,C 选项, ()2a b a b +=+符合2a a =的性质,所以C 正确,D 选项, ()()2225242524252449-=-+==7,所以D 错误,故选C.3.计算×的结果是( )A .B .4C .D .2【答案】B【解析】 试题解析:.故选B.4.把1(1)1a a --,其结果是( )A 1a -B 1a -C 1a -D 1a -【答案】B【详解】解:∵根式有意义, ∴101a >-,解得:a 1<,∴a-1<0,∴(21111a 11a a a -=----()=1a -故选B.5.一个长方形的长和宽分别是6、3,则它的面积是( )A .63B .2(63C .2D .3【答案】C【解析】由题意得, 63618182==.故选C.6.下列计算正确的是( )A .3242=122B ()()()()925=925=35=15-⨯----⨯-C .-D【答案】D 【解析】A 选项:24=,计算错误,故与题意不符;B 3515=⨯=,计算步骤有误,故与题意不符;C 选项:-==计算错误,故与题意不符;D 计算正确,故与题意相符. 故选D.7是整数,则正整数k 的最小值为( )A .1B .2C .4D .8【答案】B 【解析】试题解析: 8k =∴当2k =时4,==是整数,故正整数k 的最小值为2.故选B.8.计算()﹣2)的结果是( )A .1B .0C .﹣1D .﹣7【答案】C 【解析】原式=222)2341=-=-=-. 故选C.9.计算A .B .C .D .【答案】C【详解】解:== 故选C.10=a b ,用含有a ,b ,下列表示正确的是A .20.1abB .30.1a bC .20.2abD .2ab【答案】B【详解】330.10.10.1a b a b =⨯= 故答案选:B.二、 填空题(共5小题)11.【答案】2【详解】=2,故答案为:2.12.计算: 20082009⋅=_________.【解析】原式=()200823⎡⎤⨯-⎣⎦13)x 0,y 0≥≥的结果是______.【答案】【详解】)0,0x y ≥≥=4=.故答案为:414.若x x y=+--则22x y -的值为______.【答案】-6【详解】∵x =y x y +--∴22x y -=(x+y )(x-y)=)=-6. 故答案为-6.15.若一个长方体的长为cm,则它的体积为_____ cm 3.【答案】12.【解析】解:由题意得:=12.故答案为12.三、 解答题(共3小题)16.已知a +1a =1,求a 2+21a 的值.【答案】【详解】∵11a a +=+∴a 2+21a =21a a ⎛⎫+ ⎪⎝⎭-2=(1)2-2=9+.17.计算:;a >0,b >0).【答案】(1);(2)(3)5b.【详解】===;=-5b===.18.化简:;;.【答案】;(2)6;(3)4.【详解】解:(1)原式;(2)原式 =32=6;(3)原式.。
八下二次根式的乘法练习题
![八下二次根式的乘法练习题](https://img.taocdn.com/s3/m/1d94bf45c381e53a580216fc700abb68a882ad4f.png)
八下二次根式的乘法练习题一、选择题(每题3分,共15分)1. 下列哪个选项不是二次根式的乘法运算?A. \(\sqrt{2} \times \sqrt{3}\)B. \(\sqrt{4} \times 2\)C. \(\sqrt{9} \times \sqrt{16}\)D. \(\sqrt{2} \times \sqrt{2}\)2. 计算 \(\sqrt{8} \times \sqrt{18}\) 的结果等于:A. 6B. 9C. 12D. 183. 若 \(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\),下列哪个选项是错误的?A. \(a = 4, b = 9\)B. \(a = 16, b = 25\)C. \(a = 0, b = 1\)D. \(a = 2, b = 8\)4. 根据二次根式的乘法法则,下列哪个等式是正确的?A. \(\sqrt{6} \times \sqrt{6} = 36\)B. \(\sqrt{12} \times \sqrt{12} = 144\)C. \(\sqrt{2} \times \sqrt{8} = 4\)D. \(\sqrt{3} \times \sqrt{3} = 6\)5. 已知 \(\sqrt{72} = 6\sqrt{2}\),计算 \(\sqrt{72} \times\sqrt{72}\) 的结果等于:A. 72B. 432C. 144D. 288二、填空题(每题2分,共20分)6. 计算 \(\sqrt{50} \times \sqrt{2}\) 的结果为______。
7. 若 \(\sqrt{a} \times \sqrt{b} = 10\),且 \(a = 25\),则\(b\) 等于______。
8. 计算 \(\sqrt{32} \times \sqrt{48}\) 的结果为______。
9. 若 \(\sqrt{m} \times \sqrt{n} = \sqrt{mn}\),且 \(m = 9\),求 \(n\) 等于______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_____0,0
a b a b,你能证明这个猜测吗?
一般地,二次根式相乘,_________不变,
语言表述:算术平方根的积等于各个被开方数积的算术平方根
0,k a b k a b ⋅
⋅⋅=⋅⋅
⋅⋅≥≥(计算:
37; 1(2)427-3.2⎛⎫⨯ ⎪⎝⎭
(a n b mn =比较大小(一题多解533与; ______0,0_a b
典例精析
例4 (教材P7例2变式题)化简:
(1)22
5328-;(2)()322
6900x x y xy x y ,++≥≥ .
方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.
针对训练 1. 计算:()()31
(1)
144169(2)
284
a a ; . -⨯-⋅
2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,
求出它的面积.
二、课堂小结 二次根式的乘法 内容
二次根式的乘法法则
算术平方根的积等于各个被开方数积的算术平方根.即
()0,0≥≥=⋅b a ab b a
积的算术平方根的性质 积的算术平方根,等于积中各因式的算术平方根的积.即
0,0ab a b a b
二次根式的乘法法则拓展
①多个二次根式相乘时此法则也适用,即
()
0,0,00a b
c n abc n a b c n ⋅⋅⋅=⋅⋅⋅≥≥≥⋅⋅⋅⋅⋅⋅≥
②()()0,0m a n b mn ab a b =≥≥
教学备注 配套PPT 讲授
3.探究点2新知讲授
(见幻灯片16-22)
4.课堂小结(见幻灯片29)
8,12b ,求250a ,332b ,求。