【数学】2017年四川省眉山市中考真题(解析版)
眉山市2017年初中学业水平暨高中阶段学校招生考试
眉山市2017年初中学业水平暨高中阶段学校招生考试数学试卷一、选择题(36分)1.下列四个数中,比-3小的数是( )A .0B .1C .-1D .-52.不等式-2x >12的解集是( )A .x <-14B . x <-1C . x >-14D . x >-13.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )A .5.035×10-6B . 50.35×10-5C . 5.035×106D . 5.035×10-54.如图所示的几何体的主视图是()5.下列说法错误的是( )A .给定一组数据,那么这组数据的平均数一定只有一个B .给定一组数据,那么这组数据的中位数一定只有一个C .给定一组数据,那么这组数据的众数一定只有一个D .如果一组数据存在众数,那么该众数一定是这组数据中的某一个6.下列运算结果正确的是()A .8-18=-2B .(-0.1)-2=0.01C .(2ab)2÷b 2a =2a b D .(-m )3·m 2=-m 67.已知关于x ,y 的二元一次方程组{2ax +by =3ax -by =1)的解为{x =1y =-1),则a -2b 的值是()A .-2B .2C .3D .-38.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺DC B A 第4题图9.如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132°10.如图,EF 过□ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若□ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( ).A .14B .13C .12D .1011.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A .有最大值a 4B . 有最大值-a 4C . 有最小值a4D . 有最小值-a412.已知14m 2+14n 2=n -m -2,则1m -1n的值等于( )A .1B .0C .-1D .-14二、填空题(24分)13.分解因式:2ax 2-8a =__________.14.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是_______15.已知一元二次方程x 2-3x -2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是________.16.设点(-1,m )和点(12,n )是直线y =(k 2-1)x +b (0<k <1)上的两个点,则m 、n 的大小关系为____________.17.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm,DC =2cm,则OC =______cm .18.已知反比例函数y =2x,当x <-1时,y 的取值范围为___________.三.解答题:(60分)19.(6分)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.20.(6分)解方程:1x -2+2=1-x2-x.21.(8分)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC A BCED第8题图550.4第18题图第9题图BC IA 第10题图BF CE A O(顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6),(-1,4).⑴请在图中的网格平面内建立平面直角坐标系。
四川省眉山市中考数学试卷及答案
四川省眉山市中考数学试卷及答案第1卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分.共36分.在每个小题给出的四个选项中只 有一项是正确的.请把正确选项的字母填涂在答题卡上相应的位置1.计算3-1的结果是( ).A .31B .—31C .3D .—3 2.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9 ÷(一x)3=x 6D .(-2a 3)2=4a 63.下列二次根式中与2是同类二次根式的是( ).A .12B .23C .32 D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:m1 2 3 4 v 0.01 2.9 8.03 15.1 A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十1 6.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根区县东坡区 仁寿县 彭山县 洪雅县 青神县 丹棱县 人口数(万人) 83 160 33 34 20 16 则眉山市各区、县人口数的极差和中位数分别是( ).A .160万人,33.5万人 B.144万人,33.5万人C .144万人,34万人D .144万人,33万人8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟B .b a +8分钟C .b b a +-8分钟D .bb a --8分钟 10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21B .41 C.81 D .161 11.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l第II 卷 (非选择题 共84分)二、填空题:本大题共6个小题,每小题4分.共24分 将正确答案直接填在题中横线上.)13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14)17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______.18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.18题图 22题图三、本大题共2个小题.每小题5分,共10分.19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤) 20.计算:ba b -2十a 十b 四、本大题共3个小题,每小题7分.共21分.21 在如图所示的5×6方格中(每个方格的边长为1)画一圆,要求所画的圆经过四个格点,并求出你画的圆的半径.22.如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.23.黄金周长假推动了旅游经济的发展.下图是根据国家旅游局提供的近年来历次黄金周旅游收入变化图.(1)根据图中提供的信息.请你写出两条结论;(2)根据图中数据,求至的“十一”黄金周全国旅游收入平均每年增长的百分率(精确到0.1)五、本大题共2个小题,每小题9分,共18分24.如图.在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连结EG并延长交DC于M,过M作MN⊥AB.垂足为N,MN交BD于P(1)找出图中—对全等三角形.并加以证明(正方形的对角线分正方形得到的两个三角形除外);(2)设正方形ABCD的边长为1,按照题设方法作出的四边形BGMP若是菱形,求BE的长.25.某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:占地面积(m2/个)沼气池修建费用(万元/个) 可供使用户数(户/个)A型 3 20 48B型 2 3 6政府相关部门批给该村沼气池修建用地708m2.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.六、本大题共1个小题,共11分26.如图,矩形A’BC’O’是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的.O’点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O、O’两点且图象顶点M的纵坐标为—1.求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得ΔPOM为直角三角形?若存在,请求出P点的坐标和ΔPOM的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.。
眉山市__中考数学应用题解析
眉山市__中考数学应用题解析A1 (2011重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2 台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:25. 解:(1)设一台甲型设备的价格为x 万元,由题54%7523=⨯+x x ,解得x =12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1300)8(16020084)8(912a a a a ,解得:421≤≤a由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W 万元)8(105.1101)8(912a a a a w -⨯+⨯+-+=化简得: =w -2a +192,∵W 随a 的增大而减少 ∴当a =4时, W 最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.A2. (2011四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。
中考数学专题09三角形(第03期)-2017年中考数学试题分项版解析汇编(原卷版)
一、选择题目1.(2017四川省南充市)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .1) C .D .(1)2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .23B .56C .1D .763.(2017四川省眉山市)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺4.(2017四川省绵阳市)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m5.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=AEO =120°,则FC 的长度为( )A .1B .2 CD6.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF 的值为( )A .12 BC .23 D7.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .8.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .609.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A.r << Br << C5r << D.5r <<10.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 1211.(2017广西四市)如图,△ABC 中,∠A =60°,∠B =40°,则∠C 等于( )A .100°B .80°C .60°D .40°12.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 13.(2017广西四市)如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .60√3nmileB .60√2nmileC . 30√3nmileD .30√2nmile14.(2017江苏省连云港市)如图,已知△ABC ∽△DEF ,DE =1:2,则下列等式一定成立的是( )A.12BCDF B.12AD∠的度数∠的度数C.12ABCDEF△的面积△的面积D.12ABCDEF△的周长△的周长15.(2017河北省)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变16.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()A. B. C. D.17.(2017浙江省台州市)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C D.418.(2017浙江省台州市)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 19.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米20.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠F AE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°21.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .822.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .623.(2017重庆市B 卷)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( ) A .1:4 B .4:1 C .1:2 D .2:124.(2017重庆市B 卷)如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1:2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米 二、填空题目25.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是(填序号)26.(2017四川省广安市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8,D 、E 分别为AC 、AB 的中点,连接DE ,则△ADE 的面积是 .27.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .28.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN 的最小值为 .29.(2017四川省绵阳市)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则1tan ∠ACH的值是 .30.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 .31.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)32.(2017山西省)如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .33.(2017山西省)如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:sin 540.8090=,cos540.5878=,tan 54 1.3764=).34.(2017江苏省盐城市)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.35.(2017江苏省连云港市)如图,已知等边三角形OAB 与反比例函数ky x(k >0,x >0)的图象交于A 、B 两点,将△OAB 沿直线OB 翻折,得到△OCB ,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC 的值为 .(已知sin15624)36.(2017河北省)如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM =AC ,BN =BC ,测得MN =200m ,则A ,B 间的距离为 m .37.(2017浙江省丽水市)等腰三角形的一个内角为100°,则顶角的度数是 .38.(2017浙江省丽水市)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形I J KL 的边长为2,且I J ∥AB ,则正方形EFGH 的边长为.39.(2017浙江省绍兴市)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.40.(2017浙江省绍兴市)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.41.(2017湖北省襄阳市)在半径为1的⊙O中,弦AB、AC的长分别为1,则∠BAC的度数为.42.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题43.(2017四川省南充市)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.44.(2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.45.(2017四川省广安市)如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.46.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.47.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.48.(2017四川省眉山市)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.49.(2017四川省眉山市)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G 为CD 的中点,求HGGF 的值.50.(2017四川省绵阳市)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ;(2)连接DF ,若cos ∠DF A =45,AN=,求圆O 的直径的长度.51.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F . (1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.52.(2017四川省达州市)如图,信号塔PQ 座落在坡度i =1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ 落在斜坡上的影子QN 长为25米,落在警示牌上的影子MN 长为3米,求信号塔PQ 的高.(结果不取近似值)53.(2017四川省达州市)如图,△ABC 内接于⊙O ,CD 平分∠ACB 交⊙O 于D ,过点D 作PQ ∥AB 分别交CA 、CB 延长线于P 、Q ,连接BD . (1)求证:PQ 是⊙O 的切线; (2)求证:BD 2=AC •BQ ;(3)若AC 、BQ 的长是关于x 的方程4x mx +=的两实根,且tan ∠PCD =13,求⊙O 的半径.54.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.55.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.56.(2017山西省)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.57.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.58.(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.59.(2017广东省)如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.60.(2017广东省)如图,AB 是⊙O 的直径,AB=E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)61.(2017广东省)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C(0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF . (1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DEDB②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.62.(2017广西四市)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF . (1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形AB CD 的面积.63.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .64.(2017江苏省连云港市)如图,湿地景区岸边有三个观景台A 、B 、C ,已知AB =1400米,AC =1000米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向. (1)求△ABC 的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD ,试求A 、D 间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,c os60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41≈1.414).65.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A=43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan ∠A tan A =3:2时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留).66.(2017浙江省丽水市)如图是某小区的一个健身器材,已知BC =0.15m ,AB =2.70m ,∠BOD =70°,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)67.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.68.(2017浙江省丽水市)如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.69.(2017浙江省丽水市)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设ADn AE .(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ADAB 的值;(3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.70.(2017浙江省台州市)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)71.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.72.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?73.(2017浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB =30m . (1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)74.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.75.(2017重庆市B 卷)如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数ky x(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC=cos ∠ACH,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式; (2)求△BCH 的面积.76.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE . (1)如图1,若AB =42,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .祝你考试成功!祝你考试成功!。
中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。
2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)
2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。
2017眉山中考数学模拟试题及答案
2017眉山中考数学模拟真题一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.计算1﹣(﹣2)的正确结果是( )A.﹣2B.﹣1C.1D.32.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为( )2•1•c•n•j•yA.44×105B.0.44×107C.4.4×106D.4.4×1053.下列式子中,属于最简二次根式的是( )A. B. C. D.4.下列运算正确的是( )A.(a2)3=a5B.a3•a=a4C.(3ab)2=6a2b2D.a6÷a3=a25.下列说法中,正确的是( )A.“打开电视,正在播放新闻联播节目”是必然事件B.某种彩票中奖概率为10%是指买10张一定有一张中奖C.了解某种节能灯的使用寿命应采用全面检查D.一组数据3,5,4,6,7的中位数是5,方差是26.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为( )A.65°B.55°C.45°D.35°7.如图是某几何体的三视图,这个几何体的侧面积是( )A.6πB.2 πC. πD.3π8.如图,直线l:y= x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式:ax2﹣9ay2= .10.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.11.若关于x的方程kx2+(k+2)x+ =0有两个不相等的实数根,则k的取值范围是.12.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为.13.一辆汽车开往距离出发地180km的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地.原计划的行驶速度是km/h.14.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.16.对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是.(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置)2-1-c-n-j-y17.(1)计算:4sin60°﹣|3﹣ |+( )﹣2;(2)解方程:x2﹣ x﹣ =0.18.如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣ (x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.20.某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE= ,求BF的长.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(023.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y= x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.24.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q 运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.2017眉山中考数学模拟真题答案一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.计算1﹣(﹣2)的正确结果是( )A.﹣2B.﹣1C.1D.3【考点】有理数的减法.【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=1+2=3,故选D2.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为( )A.44×105B.0.44×107C.4.4×106D.4.4×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000=4.4×106,故选:C.3.下列式子中,属于最简二次根式的是( )A. B. C. D.【考点】最简二次根式.【分析】逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:是最简二次根式,A正确;=3,不是最简二次根式,B不正确;=2 ,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确,故选:A.4.下列运算正确的是( )A.(a2)3=a5B.a3•a=a4C.(3ab)2=6a2b2D.a6÷a3=a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式=a4,符合题意;C、原式=9a2b2,不符合题意;D、原式=a3,不符合题意,故选B.5.下列说法中,正确的是( )A.“打开电视,正在播放新闻联播节目”是必然事件B.某种彩票中奖概率为10%是指买10张一定有一张中奖C.了解某种节能灯的使用寿命应采用全面检查D.一组数据3,5,4,6,7的中位数是5,方差是2【考点】概率的意义;全面调查与抽样调查;中位数;方差;随机事件.【分析】根据必然事件是指在一定条件下一定发生的事件,随机事件和不可能事件对各选项分析判断利用排除法求解.【解答】解:A、打开电视,正在播放《新闻联播》节目是随机事件,故本选项错误;B、某种彩票中奖概率为10%,买这种彩票10张不一定会中奖,故本选项错误;C、了解某种节能灯的使用寿命应采用抽样调查,故本选项错误;D、一组数据3,5,4,6,7的中位数是5,方差是2,故本选项正确.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为( )A.65°B.55°C.45°D.35°【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】根据垂直定义可得∠MON=90°,再根据角平分线定义可得∠MOC= ∠AOC=35°,再根据角的和差关系进而可得∠CON的度数.【解答】解:∵ON⊥OM,∴∠MON=90°,∵OM平分∠AOC,∠AOC=70°,∴∠MOC= ∠AOC=35°,∴∠CON=90°﹣35°=55°,故选:B.7.如图是某几何体的三视图,这个几何体的侧面积是( )A.6πB.2 πC. πD.3π【考点】由三视图判断几何体;圆锥的计算.【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为1,高为3,利用勾股定理求得圆锥的母线长为,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为1,高为3,∴圆锥的母线长为,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×1=2π,∴圆锥的侧面积= lr= ×2π× = π,8.如图,直线l:y= x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)【考点】一次函数图象上点的坐标特征;规律型:点的坐标.【分析】根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A2015标即可.【解答】解:∵直线l的解析式为:y= x,∴直线l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB= ,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2015纵坐标为:42015,∴A2015(0,42015).故选A.二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式:ax2﹣9ay2= a(x+3y)(x﹣3y) .【考点】提公因式法与公式法的综合运用.【分析】首先提公因式a,然后利用平方差公式分解即可.【解答】解:原式=a(x2﹣9y2)=a(x+3y)(x﹣3y).故答案是:a(x+3y)(x﹣3y).10.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.【考点】作图—基本作图;线段垂直平分线的性质.【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.【解答】解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.11.若关于x的方程kx2+(k+2)x+ =0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:x的方程kx2+(k+2)x+ =0有两个不相等的实数根,∴△=b2﹣4ac=(k+2)2﹣k2>0,且k≠0,解得k>﹣1且k≠0.12.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为.【考点】旋转的性质;等腰三角形的性质;勾股定理.【分析】作A′D⊥CB′于D,B′E⊥BC于E,如图,利用旋转的性质得A′B′=A′C=AB=AC=5,B′C=BC=6,再根据等腰三角形的性质得CD=B′D=B′C=3,则利用勾股定理得到A′D=4,然后利用面积法求B′E.【解答】解:作A′D⊥CB′于D,B′E⊥BC于E,如图,∵△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C,∴A′B′=A′C=AB=AC=5,B′C=BC=6,∴CD=B′D= B′C=3,在Rt△A′CD中,A′D= =4,∵ B′E•A′C= A′D•B′C,∴B′E= = ,即点B′到BA′的距离为 .故答案为 .13.一辆汽车开往距离出发地180km的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地.原计划的行驶速度是60 km/h.【考点】分式方程的应用.【分析】设原计划的行驶速度是xkm/h.根据原计划的行驶时间=实际行驶时间,列出方程即可解决问题.【解答】解:设原计划的行驶速度是xkm/h.由题意:﹣ =1+ ,解得x=60,经检验:x=60是原方程的解.∴原计划的行驶速度是60km/h.故答案为60;14.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为.【考点】切线的性质;垂径定理.【分析】辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由三角函数和垂径定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE= ×2= ,∵EF=2EM,∴EF= .故答案为:2 .15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3 .【考点】翻折变换(折叠问题).【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC= =5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x= ,∴BE= ;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.16.对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是①③④.(把你认为正确结论的序号都填上)【考点】二次函数的性质.【分析】①利用根的判别式△>0判定即可;②根据二次函数的增减性利用对称轴列不等式求解即可;③根据向左平移横坐标减求出平移前的点的坐标,然后代入函数解析式计算即可求出m的值;④根据二次函数的对称性求出对称轴,再求出m的值,然后把x=2012代入函数关系式计算即可得解.【解答】解:①∵△=(﹣2m)2﹣4×1×(﹣3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本小题正确;②∵当x≤﹣1时y随x的增大而减小,∴对称轴直线x=﹣≤﹣1,解得m≤﹣1,故本小题错误;③∵将它的图象向左平移3个单位后过原点,∴平移前的图象经过点(3,0),代入函数关系式得,32﹣2m•3﹣3=0,解得m=1,故本小题正确;④∵当x=2时的函数值与x=8时的函数值相等,∴对称轴为直线x= =5,∴﹣ =5,解得m=5,故本小题正确;综上所述,结论正确的是①④共2个.故答案为:①③④.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置)17.(1)计算:4sin60°﹣|3﹣ |+( )﹣2;(2)解方程:x2﹣ x﹣ =0.【考点】解一元二次方程﹣公式法;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)利用配方法或公式法解答此题,均可得结果.【解答】解:(1)原式=2 ﹣2 +3+4=7;(2)方法一:移项,得x2﹣ x= ,配方,得(x﹣ )2=1由此可得x﹣=±1,x1=1+ ,x2=﹣1+方法二:a=1,b=﹣,c=﹣ .△=b2﹣4ac=(﹣ )2﹣4×1×(﹣ )=4>0方程有两个不等的实数根x= = = ±1,x1=1+ ,x2=﹣1+18.如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣ (x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【分析】(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.【解答】解:(1)∵点B(3,3)在双曲线y= 上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣ (x<0)上,∴ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,DM=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),得出四边形CEDF是平行四边形,即可得出结论;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵F是AD的中点,∴FD= AD.∵CE= BC,∴FD=CE.又∵FD∥CE,∴四边形CEDF是平行四边形.∴DE=CF.(2)解:过D作DG⊥CE于点G.如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠DCE=∠B=60°.在Rt△CDG中,∠DGC=90°,∴∠CDG=30°,∴CG= CD=2.由勾股定理,得DG= =2 .∵CE= BC=3,∴GE=1.在Rt△DEG中,∠DGE=90°,∴DE= = .20.某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人,在扇形统计图中“D”对应的圆心角的度数为72°;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)利用扇形统计图得到A类的百分比为10%,则用A类的频数除以10%可得到样本容量;然后用B类的百分比乘以360°得到在扇形统计图中“D”对应的圆心角的度数;(2)先计算出C类的频数,然后补全统计图;、(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解.【解答】解:(1)20÷ =200,所以这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数= ×360°=72°;故答案为200,72°;(2)C类人数为200﹣80﹣20﹣40=60(人),完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P(恰好选中甲、乙两位同学)= = .21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE= ,求BF的长.【考点】切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB 中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE= ,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.【解答】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙0的切线;(2)解:∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD= = ,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE= = ,∴AE= ,∵OD∥AE,∴△FDO∽△FEA,∴ = ,即 = ,∴BF= .22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=x﹣150,即y=(m﹣50)x+15000,分三种情况讨论,①当00,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150,即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33 ,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=x+150,即y=(m﹣50)x+15000,33 ≤x≤70①当0∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33 ≤x≤70的整数时,均获得最大利润;③当500,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y= x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.【考点】一次函数综合题.【分析】类比探究:结论:h=h1﹣h2.连接OA.利用三角形面积公式根据S△ABC=S△ABM﹣S△ACM,代入化简即可解决问题.拓展应用:首先证明AB=AC,分两种情形利用(1)中结论,列出方程即可解决问题.【解答】解:类比探究:结论:h=h1﹣h2.理由:连接OA,∵S△ABC= AC•BD= AC•h,S△ABM= AB•ME= AB•h1,S△ACM= AC•MF= AC•h2,.又∵S△ABC=S△ABM﹣S△ACM,∴ AC•h= AB•h1﹣AC•h2.∵AB=AC,∴h=h1﹣h2.拓展应用:在y= x+3中,令x=0得y=3;令y=0得x=﹣4,则:A(﹣4,0),B(0,3),同理求得C(1,0),OA=4,OB=3,AC=5,AB= =5,所以AB=AC,即△ABC为等腰三角形.设点M的坐标为(x,y),①当点M在BC边上时,由h1+h2=h得:OB=1+y,y=3﹣1=2,把它代入y=﹣3x+3中求得:x= ,∴M( ,2);②当点M在CB延长线上时,由h1﹣h2=h得:OB=y﹣1,y=3+1=4,把它代入y=﹣3x+3中求得:x=﹣,∴M(﹣,4).综上所述点M的坐标为( ,2)或(﹣,4).24.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q 运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求得点D的坐标,设抛物线的解析式为y=a(x+1)2+4(a≠0),将点B的坐标代入可求得a的值,故此可得到抛物线的解析式;(2)由题意知,DP=BQ=t,然后证明△DPE∽△DBC,可得到PE= t,然后可得到点E的横坐标(用含t的式子表示),接下来可求得点G的坐标,然后依据S四边形BDGQ=S△BQG+S△BEG+S△DEG,列出四边形的面积与t的函数关系式,然后依据利用配方法求解即可;(3)首先用含t的式子表示出DE的长,当BE和BQ为菱形的邻边时,由BE=QB可列出关于t的方程,从而可求得t的值,然后可求得菱形的周长;当BE为菱形的对角时,则BQ=QE,过点Q作QM⊥BE,则BM=EM.然后用含t的式子表示出BE的长,最后利用BE+ED=BD列方程求解即可.【解答】解:(1)由题意得,顶点D点的坐标为(﹣1,4).设抛物线的解析式为y=a (x+1)2+4(a≠0),∵抛物线经过点B(﹣3,0),代入y=a (x+1)2+4可求得a=﹣1∴抛物线的解析式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)由题意知,DP=BQ=t,∵PE∥BC,∴△DPE∽△DBC.∴ = =2,∴PE= DP= t.∴点E的横坐标为﹣1﹣ t,AF=2﹣ t.将x=﹣1﹣ t代入y=﹣(x+1)2+4,得y=﹣ t2+4.∴点G的纵坐标为﹣ t2+4,∴GE=﹣ t2+4﹣(4﹣t)=﹣ t2+t.如图1所示:连接BG.S四边形BDGQ=S△BQG+S△BEG+S△DEG,即S四边形BDGQ= BQ•AF+ EG•(AF+DF)= t(2﹣ t)﹣ t2+t.=﹣ t2+2t=﹣ (t﹣2)2+2.∴当t=2时,四边形BDGQ的面积最大,最大值为2.(3)存在.∵CD=4,BC=2,∴tan∠BDC= ,BD=2 .∴cos∠BDC= .∵BQ=DP=t,∴DE= t.如图2所示:当BE和BQ为菱形的邻边时,BE=QB.∵BE=BD﹣DE,∴BQ=BD﹣DE,即t=2 ﹣ t,解得t=20﹣8 .∴菱形BQEH的周长=80﹣32 .如图3所示:当BE为菱形的对角时,则BQ=QE,过点Q作QM⊥BE,则BM=EM.∵MB=cos∠QBM•BQ,∴MB= t.∴BE= t.∵BE+DE=BD,∴ t+ t=2 ,解得:t= .∴菱形BQEH的周长为 .综上所述,菱形BQEH的周长为或80﹣32 .。
眉山中考数学试卷及答案教学提纲
2017眉山中考数学试卷及答案眉山市2017年初中学业水平暨高中阶段学校招生考试数学试卷一、选择题(36分)1.下列四个数中,比-3小的数是( )A .0B .1C .-1D .-52.不等式-2x >12的解集是( )A .x <-14B . x <-1C . x >-14D . x >-13.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10-6B . 50.35×10-5C . 5.035×106D . 5.035×10-54.如图所示的几何体的主视图是( )5.下列说法错误的是( )A .给定一组数据,那么这组数据的平均数一定只有一个B .给定一组数据,那么这组数据的中位数一定只有一个C .给定一组数据,那么这组数据的众数一定只有一个D .如果一组数据存在众数,那么该众数一定是这组数据中的某一个6.下列运算结果正确的是( )A .8-18=- 2B .(-0.1)-2=0.01C .(2a b )2÷b 2a =2a bD .(-m )3·m 2=-m 67.已知关于x ,y 的二元一次方程组⎩⎨⎧2ax +by =3ax -by =1的解为⎩⎨⎧x =1y =-1,则a -2b 的值是( ) A .-2 B .2 C .3 D .-38.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺 B .57.5尺 C .6.25尺 D .56.5尺9.如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132°10.如图,EF 过□ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若□ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( ).A .14B .13C .12D .1011.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A .有最大值a 4B . 有最大值-a 4C . 有最小值a 4D . 有最小值-a 412.已知14m 2+14n 2=n -m -2,则1m -1n 的值等于( )A .1B .0C .-1D .-14二、填空题(24分)13.分解因式:2ax 2-8a =__________.14.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是_______15.已知一元二次方程x2-3x-2=0的两个实数根为x1,x2,则(x1-1)(x2-1)的值是________.16.设点(-1,m)和点(12,n)是直线y=(k2-1)x+b(0<k<1)上的两个点,则m、n的大小关系为____________.17.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC=______cm.18.已知反比例函数y=2x,当x<-1时,y的取值范围为___________.三.解答题:(60分)19.(6分)先化简,再求值:(a+3)2-2(3a+4),其中a=-2.20.(6分)解方程:1x-2+2=1-x2-x.21.(8分)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6),(-1,4).⑴请在图中的网格平面内建立平面直角坐标系;⑵请画出△ABC关于x轴对称的△A1B1C1;⑶请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.22.(8分)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.23.(9分)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是1 29.⑴求袋中红球的个数;⑵求从袋中任取一个球是黑球的概率.24.(9分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.⑴若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;⑵由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?25.(9分)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.⑴求证:BG=DE;⑵若点G为CD的中点,求HGGF的值.26.(11分)如图,抛物线y=ax2+bx-2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,-83)是抛物线上另一点.⑴求a、b的值;⑵连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;⑶若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.。
眉山市2017年中考数学试卷(含解析)-
2017年中考数学试题解析(四川眉山卷)(本试卷满分120分,考试时间120分钟)A 卷(共100分)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.(2017四川眉山3分)若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 【答案】C 。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点5±到原点的距离都是错误!未找到引用源。
,所以x的值是错误!未找到引用源。
,故选C 。
2.(2017四川眉山3分)下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷= 【答案】D 。
【考点】合并同类项,同底幂乘法和除法,幂的乘方和积的乘方。
【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:A .555a a 2a +=,选项错误;B .33336a a a a +⋅==,选项错误;C .()3333393a 3a 27a ⨯==,选项错误;D .1231239a a a a -÷==,选项正确。
故选D 。
3.(2017四川眉山3分)函数y =x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<【答案】B 。
【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,必须x 20x 2-≥⇒≥。
故选B 。
4.(2017四川眉山3分)某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】A .56.7510⨯- 克B .56.7410-⨯ 克C .66.7410-⨯ 克D . 66.7510-⨯克6.(2017四川眉山3分)下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形【答案】D 。
中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。
【精校】2017年四川省眉山市中考真题数学
2017年四川省眉山市中考真题数学一、选择题(36分)1.下列四个数中,比-3小的数是( )A.0B.1C.-1D.-5解析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.-5<-3<-1<0<1,所以比-3小的数是-5,答案:D2.不等式-2x>12的解集是( )A.x<-1 4B.x<-1C.x>-1 4D.x>-1解析:两边都除以-2可得:x<-14.答案:A3.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )A.5.035×10-6B.50.35×10-5C.5.035×106D.5.035×10-5解析:0.000 005 035m,用科学记数法表示该数为5.035×10-6.答案:A4.如图所示的几何体的主视图是( )A.B.C.D.解析:从正面看易得第一层有2个正方形,第二层也有2个正方形.答案:B5. 下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个解析:A、给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B、给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C、给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D、如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意. 答案:C6.下列运算结果正确的是( )=B.(-0.1)-2=0.01C.2222a b ab a b÷⎫⎪⎭=⎛⎝D.(-m)3·m2=-m6解析:A==B、(-0.1)-2=10.01=100,故此选项错误;C、2232324282a b a a ab a b b b÷=⨯=⎛⎫⎪⎝⎭,故此选项错误;D、(-m)3·m2=-m5,故此选项错误. 答案:A7.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩,的解为11xy=⎧⎨=-⎩,,则a-2b的值是( )A.-2B.2C.3D.-3解析:把11xy=⎧⎨=-⎩,代入方程组231ax byax by+=⎧⎨-=⎩,得:231a ba b-=⎧⎨+=⎩,,解得:4313ab⎧=⎪⎪⎨⎪=-⎪⎩,,所以a-2b=41233⎛⎫⎪⎝--⎭⨯=2.答案:B8. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A.1.25尺B.57.5尺C.6.25尺D.56.5尺解析:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.答案:B.9.如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为( )A.114°B.122°C.123°D.132°解析:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°-57°=123°.答案:C10.如图,EF过平行四边形ABCD对角线的交点O,交AD于E,交BC于F,若-ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A.14B.13C.12D.10解析:∵四边形ABCD 是平行四边形,周长为18,∴AB=CD ,BC=AD ,OA=OC ,AD ∥BC ,∴CD+AD=9,∠OAE=∠OCF ,在△AEO 和△CFO 中,OAE OCFOA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△AEO ≌△CFO(ASA),∴OE=OF=1.5,AE=CF ,则EFCD 的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.答案:C.11.若一次函数y=(a+1)x+a 的图象过第一、三、四象限,则二次函数y=ax 2-ax() A.有最大值4aB.有最大值-4aC.有最小值4aD.有最小值-4a解析:∵一次函数y=(a+1)x+a 的图象过第一、三、四象限,∴a+1>0且a <0,∴-1<a <0,∴二次函数y=ax 2-ax 由有最小值-4a.答案:D12.已知221144m n +=n-m-2,则11m n -的值等于( )A.1B.0C.-1D.-14解析:由221144m n +=n-m-2,得(m+2)2+(n-2)2=0,则m=-2,n=2,∴112112m n -=--=-1. 答案:C二、填空题(24分)13.分解因式:2ax 2-8a= .解析:原式=2a(x 2-4)=2a(x+2)(x-2).答案:2a(x+2)(x-2)14.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是 .解析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°-60°=120°.答案:120°15.已知一元二次方程x 2-3x-2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是 . 解析:∵一元二次方程x 2-3x-2=0的两个实数根为x 1,x 2,∴x 1+x 2=3,x 1·x 2=-2,∴(x 1-1)(x 2-1)=x 1·x 2-(x 1+x 2)+1=-2-3+1=-4.答案:-4.16.设点(-1,m)和点(12,n)是直线y=(k 2-1)x+b(0<k <1)上的两个点,则m 、n 的大小关系为 .解析:∵0<k <1,∴直线y=(k 2-1)x+b 中,k 2-1<0,∴y 随x 的增大而减小, ∵-1<12,∴m >n. 答案:m >n17.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8cm ,DC=2cm ,则OC= cm.解析:连接OA,∵OC⊥AB,∴AD=12AB=4cm,设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,∴R2=42+(R-2)2,解得R=5,∴OC=5cm. 答案:518.已知反比例函数y=2x,当x<-1时,y的取值范围为 .解析:∵反比例函数y=2x中,k=2>0,∴此函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,∵当x=-1时,y=-2,∴当x<-1时,-2<y<0.答案:-2<y<0.三.解答题:(60分)19.先化简,再求值:(a+3)2-2(3a+4),其中a=-2.解析:原式利用完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.答案:原式=a2+6a+9-6a-8=a2+1,当a=-2时,原式=4+1=5.20.解方程:11222xx x-+=--.解析:方程两边都乘以x-2得出1+2(x-2)=x-1,求出方程的解,再进行检验即可.答案:方程两边都乘以x-2得:1+2(x-2)=x-1,解得:x=2,检验:当x=2时,x-2=0,所以x=2不是原方程的解,即原方程无解.21.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6),(-1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.解析:(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接B2交y轴于点P,则P点即为所求.答案:(1)如图所示;(2)如图,即为所求;(3)作点B 关于y 轴的对称点B 2,连接AB 2交y 轴于点P ,则点P 即为所求.设直线AB 2的解析式为y=kx+b(k ≠0),∵A(-4,6),B 2(2,2),∴4622k b k b -+=⎧⎨+=⎩,,解得23103k b ⎧=-⎪⎪⎨⎪=⎪⎩,,∴直线AB2的解析式为:21033y x =-+,∴当x=0时,y=103,∴P(0,103). 22.如图,为了测得一棵树的高度AB ,小明在D 处用高为1m 的测角仪CD ,测得树顶A 的仰角为45°,再向树方向前进10m ,又测得树顶A 的仰角为60°,求这棵树的高度AB.解析:设AG=x,分别在Rt△AFG和Rt△ACG中,表示出CG和GF的长度,然后根据DE=10m,列出方程即可解决问题.答案:设AG=x.在Rt△AFG中,∵tan∠AFG=AGFG,∴在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴,解得:米).答:电视塔的高度AB约为.23.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是1 29.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解析:(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280-40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.答案:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个). 故袋中红球的个数是200个;(2)80÷290=8 29.答:从袋中任取一个球是黑球的概率是8 29.24.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?解析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.答案:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4-4x)=1080,整理得:x2-16x+55=0,解得:x1=5,x2=11.答:该烘焙店生产的是第5档次或第11档次的产品.25.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求HGGF的值.解析:(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG=DE;(2)设CG=1,从而知CG=CE=1,由勾股定理可知:由易证△ABH∽△CGH,所以BHHG=2,从而可求出HG的长度,进而求出HGGF的值.答案:(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG与△DCE中,CBG CDEBC CDBCG DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△BCG≌△DCE(ASA),∴BG=DE.(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:,∵sin∠CDE=CE GFDE GD=,∴∵AB∥CG,∴△ABH∽△CGH,∴21AB BHCG GH==,∴,∴53HGGF=.26.如图,抛物线y=ax2+bx-2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,-83)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.解析:(1)根据题意列方程组即可得到结论;(2)在y=ax2+bx-2中,当x=0时.y=-2,得到OC=2,如图,设P(0,m),则PC=m+2,OA=3,根据勾股定理得到=①当PA=CA时,则OP1=OC=2,②当③当PC=PA时,点P在AC的垂直平分线上,根据相似三角形的性质得到P3(0,54),④当(3)过H作HG⊥OA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=23t,求得抛物线的对称轴为直线x=113551023-=⨯,得到OG=1310,求得GN=t-1310,根据相似三角形的性质得到HG=213315t-,于是得到结论.答案:(1)把A(3,0),且M(1,-83)代入y=ax2+bx-2得2332083a ba b⎧+-=⎪⎨+=-⎪⎩,,解得:53133ab⎧=⎪⎪⎨⎪=-⎪⎩,;(2)在y=ax 2+bx-2中,当x=0时.y=-2,∴C(0,-2),∴OC=2,如图,设P(0,m),则PC=m+2,OA=3,=①当PA=CA 时,则OP 1=OC=2,∴P 1(0,2);②当,∴P 2(0;③当PC=PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P3EC ,∴32PC =P 3C=134,∴m=54,∴P 3(0,54), ④当P 4(0,,综上所述,P 1点的坐标(0,2)或(0或(0,54)或(0,; (3)过H 作HG ⊥OA 于G ,设HN 交Y 轴于M , ∵NH ∥AC ,∴OM ON OC OA =,∴23OM t =,∴OM=23t , ∵抛物线的对称轴为直线x=113551023-=⨯,∴OG=1310,∴GN=t-1310,∵GH∥OC,∴△NGH∽△NOM,∴HG GNOM ON=,即131023tHGt t-=,∴HG=213315t-,∴S=22131130331511()22330ON GH t t t t t⎛⎫==⎪⎝⎭⋅--<<.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
眉山市2017年初中学业水平暨高中阶段学校招生考试
D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个
6.下列运算结果正确的是( )
A. 8- 18=- 2
B.(-0.1)-2=0.01
C.(2a)2÷ b =2a b 2a b
D.(-m)3·m2=-m6
2ax+by=3
x=1
7.已知关于 x,y 的二元一次方程组 ax-by=1 的解为 y=-1,则 a-2b 的值
O
E5D
第 8 题图
B
C
第 9 题图
B
F
C
第 10 题图
9.如图,在△ABC 中,∠A=66°,点 I 是内心,则∠BIC 的大小为( )
A.114°
B.122°
C.123°
D.132°
10.如图,EF 过□ABCD 对角线的交点 O,交 AD 于 E,交 BC 于 F,若□ABCD 的
周长为 18,OE=1.5,则四边形 EFCD 的周长为( ).
A.5.035×10-6 B. 50.35×10-5 C. 5.035×106 D. 5.035×10-5
4.如图所示的几何体的主视图是( )
A
B
C
D
第 4 题图
5.下列说法错误的是( )
A.给定一组数据,那么这组数据的平均数一定只有一个
B.给定一组数据,那么这组数据的中位数一定只有一个
C.给定一组数据,那么这组数据的众数一定只有一个
y
BO
Ax
C
第 26 题图
4
A.14
B.13
C.12
D.10
11.若一次函数 y=(a+1)x+a 的图象过第一、三、四象限,则二次函数 y=ax2
-ax( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四川省眉山市中考真题一、选择题(36分)1.下列四个数中,比﹣3小的数是( )A .0B .1C .﹣1D .﹣5 2.不等式122x ->的解集是( ) A .x <14-B .x <﹣1C .x >14- D .x >﹣1 3.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6 B .50.35×10﹣5 C .5.035×106 D .5.035×10﹣5 4.如图所示的几何体的主视图是( )A .B .C .D .5.下列说法错误的是( )A .给定一组数据,那么这组数据的平均数一定只有一个B .给定一组数据,那么这组数据的中位数一定只有一个C .给定一组数据,那么这组数据的众数一定只有一个D .如果一组数据存在众数,那么该众数一定是这组数据中的某一个 6.下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b ab a b÷=D .326()m m m -=- 7.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣38.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺 9.如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132°10.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A .14B .13C .12D .1011.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数2y ax ax =-( )A .有最大值4a B .有最大值﹣4aC .有最小值4aD .有最小值﹣4a12.已知2211244m n n m +=--,则11m n-的值等于( )A .1B .0C .﹣1D .14-二、填空题(24分)13.分解因式:228ax a -=.14.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是.15.已知一元二次方程2320x x --=的两个实数根为1x ,2x ,则12(1)(1)x x --的值是. 16.设点(﹣1,m )和点(12,n )是直线2(1)y k x b =-+(0<k <1)上的两个点,则m 、n 的大小关系为.17.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC =cm .18.已知反比例函数2y x=,当x <﹣1时,y 的取值范围为. 三、解答题:(60分)19.先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2.20.解方程:11222xx x-+=--.21.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(﹣4,6),(﹣1,4).学-科网 (1)请在图中的网格平面内建立平面直角坐标系; (2)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.22.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A 的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.23.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是1 29.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.24.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?25.如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交BC 于G . (1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值.26.如图,抛物线22y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83-)是抛物线上另一点. (1)求a 、b 的值;(2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC 交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.参考答案一、选择题(36分)1.【答案】D.【解析】试题分析:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.考点:有理数大小比较.2.【答案】A.【解析】试题分析:两边都除以﹣2可得:x <14-,故选A . 考点:解一元一次不等式. 3.【答案】A .考点:科学记数法—表示较小的数. 4.【答案】B . 【解析】试题分析:从正面看易得第一层有2个正方形,第二层也有2个正方形. 故选B .考点:简单组合体的三视图. 5.【答案】C .考点:众数;算术平均数;中位数. 6.【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:二次根式的加减法;同底数幂的乘法;幂的乘方与积的乘方;分式的乘除法;负整数指数幂.7.【答案】B.【解析】试题分析:把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,两式相减得:a﹣2b=2,故选B.考点:二元一次方程组的解;整体思想.8.【答案】B.【解析】试题分析:依题意有△ABF∽△ADE,∴AD=DE,即5:AD=0.4:5,解得AD=62.5,BD=AD ﹣AB=62.5﹣5=57.5尺.故选B.考点:勾股定理的应用;相似三角形的判定与性质.9.【答案】C.【解析】试题分析:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选C.考点:三角形的内切圆与内心.10.【答案】C.考点:平行四边形的性质. 11.【答案】B . 【解析】试题分析:∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴a +1>0且a <0, ∴﹣1<a <0,∴二次函数2y ax ax =-由有最小值﹣4a,故选D . 考点:二次函数的最值;最值问题;一次函数图象与系数的关系. 12.【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-=,则m =﹣2,n =2, ∴11m n -=1122--=﹣1.故选C . 考点:分式的化简求值;条件求值.二、填空题(24分)13.【答案】2a (x +2)(x ﹣2). 【解析】试题分析:原式=22(4)a x - =2a (x +2)(x ﹣2).故答案为:2a (x +2)(x ﹣2). 考点:提公因式法与公式法的综合运用. 14.【答案】120°.考点:旋转对称图形. 15.【答案】﹣4. 【解析】试题分析:∵一元二次方程2320x x --=的两个实数根为1x ,2x ,∴123x x +=、122x x =-,∴12(1)(1)x x --=1212()1x x x x -++=﹣2﹣3+1=﹣4.故答案为:﹣4.考点:根与系数的关系. 16.【答案】m >n .考点:一次函数图象上点的坐标特征. 17.【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:垂径定理;勾股定理. 18.【答案】﹣2<y <0. 【解析】试题分析:∵反比例函数2y x=中,k =2>0,∴此函数图象的两个分支位于一、三象限,且在每一象限内y 随x 的增大而减小,∵当x =﹣1时,y =﹣2,∴当x <﹣1时,﹣2<y <0.故答案为:﹣2<y <0. 考点:反比例函数的性质.三、解答题:(60分)19.【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值. 20.【答案】无解.考点:解分式方程.21.【答案】(1)答案见解析;(2)答案见解析;(3)P (0,2). 【解析】试题分析:(1)根据A 点坐标建立平面直角坐标系即可; (2)分别作出各点关于x 轴的对称点,再顺次连接即可;(3)作出点B 关于y 轴的对称点B 2,连接B 2交y 轴于点P ,则P 点即为所求. 试题解析:(1)如图所示; (2)如图,即为所求;(3)作点C 关于y 轴的对称点C ′,连接B 1C ′交y 轴于点P ,则点P 即为所求. 设直线B 1C ′的解析式为y =kx +b (k ≠0),∵B 1(﹣2,-2),C ′(1,4),∴224k b k b -+=-⎧⎨+=⎩,解得:22k b =⎧⎨=⎩,∴直线AB 2的解析式为:y =2x +2,∴当x =0时,y =2,∴P (0,2).考点:作图﹣轴对称变换;勾股定理;轴对称﹣最短路线问题;最值问题.22.【答案】1653.【解析】考点:解直角三角形的应用﹣仰角俯角问题.23.【答案】(1)200;(2)8 29.【解析】试题分析:(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.试题解析:(1)290×129=10(个),290﹣10=280(个),(280﹣40)÷(2+1)=80(个),280﹣80=200(个).故袋中红球的个数是200个;(2)80÷290=8 29.答:从袋中任取一个球是黑球的概率是8 29.考点:概率公式.24.【答案】(1)第3档;(2)第5档.【解析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.考点:一元二次方程的应用.25.【答案】(1)证明见解析;(2)53.【解析】(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=5,∵sin∠CDE=CE GFDE GD=,∴GF=55,∵AB∥CG,∴△ABH∽△CGH,∴21AB BHCG HG==,∴BH=253,GH=53,∴HGGF=53.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.26.【答案】(1)2343 ab⎧=⎪⎪⎨⎪=-⎪⎩;(2)P点的坐标1(0,2)或(0,132-)或(0,54)或(0,132--);(3)2211(01)3311(13)33t t tSt t t⎧-<<⎪⎪=⎨⎪-≤<⎪⎩.【解析】(3)过H作HG⊥OA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=23t,求得抛物线的对称轴为直线x=15523-⨯=1310,得到OG=1310,求得GN=t﹣1310,根据相似三角形的性质得到HG=213315t-,于是得到结论.试题解析:(1)把A(3,0),且M(1,83-)代入22y ax bx=+-得:9320823a ba b+-=⎧⎪⎨+-=-⎪⎩,解得:2343ab⎧=⎪⎪⎨⎪=-⎪⎩;(2)在22y ax bx=+-中,当x=0时.y=﹣2,∴C(0,﹣2),∴OC=2,如图,设P(0,m),则PC=m+2,OA=3,AC=2223+=13,分三种情况:①当P A=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=13时,即m+2=13,∴m=13﹣2,∴P2(0,13﹣2);③当PC =P A 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC ,∴3132132PC =,∴P 3C =134,∴m =54,∴P 3(0,54),④当PC =CA =13时,m =﹣2﹣13,∴P 4(0,﹣2﹣13),综上所述,P 点的坐标1(0,2)或(0,132-)或(0,54)或(0,132--);(3)过H 作HG ⊥OA 于G ,设HN 交Y 轴于M ,∵NH ∥AC ,∴OM ON OC OA =,∴23OM t=,∴OM =23t ,∵抛物线的对称轴为直线x =15523-⨯ =1310,∴OG =1310,∴GN =t ﹣1310,∵GH ∥OC ,∴△NGH ∽△NOM ,∴HG GN OM ON =,即131023t HG t t -=,∴HG =213315t -,∴S =ON •GH =t (t ﹣)=t 2﹣t (0<t <3).(3)设直线AC 的解析式为y =kx +b (k ≠0)由题意得:302k b b +=⎧⎨=-⎩,解得:23k =,b =-2,∴223AC y x =-. 由(1)得抛物线对应的函数表达式为224233y x x =--=228(1)33x --,设AC 与抛物线y =228(1)33x --的对称轴x =1交于点F ,直线x =1与x 轴交于E 点,则F (1,43-),E (1,0).①当0<t <1时,EN =1-t ,由EN EH AE EF =得,1324t EH -=,∴EH =2(1)3t -,∴ONH S ∆=12ON •EH =1(1)3t t -,即21133S t t =-;②当1≤t ≤3时,EN =t -1,由EN EH AE EF =得,1324t EH -=,∴EH =2(1)3t -,∴ONH S ∆=12ON •EH =1(1)3t t -,即21133S t t =-;∴2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩.考点:二次函数综合题.。