【必考题】初三数学上期中模拟试题(及答案)
【必考题】初三数学上期中试题(含答案)
x
28
80
1 4
x
42
5000
1 x2 129x 8416 4
1 x 2582 8225 ,
4
∵当 x=258 时, y 1 258 42 22.5 ,不是整数, 4
∴x=258 舍去,
∴当 x=256 或 x=260 时,函数取得最大值,最大值为 8224 元,
又∵想让客人得到实惠,
4a 故选 B.
3.C
解析:C 【解析】 【分析】 【详解】
解: y x2 2mx 4=(x m)2 m2 4 ,∴点 M(m,﹣m2﹣4),∴点 M′(﹣m,
m2+4),∴m2+2m2﹣4=m2+4.解得 m=±2.∵m>0,∴m=2,∴M(2,﹣8). 故选 C. 【点睛】 本题考查二次函数的性质.
是甲出发后( )
A.1h
B. 0.75h
C.1.2h 或 0.75h
9.下列图形中,既是轴对称图形又是中心对称图形的是( )
D.1h 或 0.75h
A.
B.
C.
D.
10.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为 60 , 90 , 210 .让转盘自由转动,指针停止后落在黄色区域的概率是 ( )
这条抛物线上,则点 M 的坐标为( )
A.(1,-5)
B.(3,-13)
C.(2,-8)
D.(4,-20)
4.下列图形中是中心对称图形但不是轴对称图形的是( )
A.
B.
C.
D.
5.已知实数 a 0 ,则下列事件是随机事件的是( )
A. a 0
B. a 1 0
C. a 1 0
D. a2 1 0
初中九年级(上)期中数学模拟试卷及答案
.
,
11解析:点
关于原点的对称点的坐标为
,
故答案为:
.
12解析:根据题意得
,
解得
.
故答案为:
.
13解析:设每轮传染中平均每人传染了 人.
依题意,得
,
即
,
解方程,得
,
舍去 。
答:每轮传染中平均每人传染了 人.
14解析:设圆的半径是 米,则 ,
,
,
,
的半径长为 米.
故答案为: .
米,
米),
14. 如图,一条公路的转弯处是一段圆弧( ),点 是这段弧
所在圆的圆心, 为 米,
一点,
于 .若
米,则的 的半径长为
______米.
15. 已知抛物线
, 为常数)与 轴
相交于点 , ,顶点为 .下列四个结论:
①该抛物线的对称轴为
;
②
;
③若
为等腰直角三角形,则
;
④若
时,图象任意两点之间的线段均不与 轴平行,则 的范围是
≌
,
,
四边形 设
是等边三角形,
是矩形,
,
,
, , ,
,
,
,
,
<<
,
故 的取值范围是
<<
.
故答案为:
<<
.
17解析:当
时,原方程为
,
解得:
,
设方程的另一个实数根为 ,
,
.
方程的另一个根为 , 的值为 .
18解析: 证明: 将
绕 点逆时针旋转 得到
,
,
,
是等边三角形.
,
理由:
九年级上册数学期中考试试卷【含答案】
九年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a√32. 下列哪个是无理数?()A. √9B. √16C. √3D. √13. 下列哪个数是虚数?()A. 3B. -5C. √-1D. 04. 二项式展开式(x+y)^3的项数为()A. 2B. 3C. 4D. 55. 下列哪个图形不是中心对称图形?()A. 正方形B. 矩形C. 圆D. 正三角形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 一元二次方程的解可以是两个相同的实数根。
()8. 函数y=2x+3的图像是一条直线。
()9. 所有的正方形都是矩形。
()10. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)11. 若a、b是不为0的实数,且a+b=0,则a和b的关系是_________。
12. 一个等差数列的第5项是10,第10项是20,则这个数列的公差是_________。
13. 若一个圆的半径为r,则它的直径是_________。
14. 二项式展开式(x+y)^4中x^2y^2的系数是_________。
15. 一个正六边形的内角和是_________度。
四、简答题(每题2分,共10分)16. 简述一元二次方程的求解公式。
17. 什么是等差数列?给出一个等差数列的例子。
18. 什么是相似三角形?相似三角形的性质有哪些?19. 什么是中心对称图形?给出一个中心对称图形的例子。
20. 什么是概率?如何计算一个事件的概率?五、应用题(每题2分,共10分)21. 一个长方形的长是10cm,宽是5cm,求它的面积和周长。
22. 解方程:2x-5=3x+4。
23. 一个等差数列的第1项是3,公差是2,求第10项。
24. 一个圆的半径是7cm,求它的周长和面积。
25. 抛掷一个正方体,求得到一个偶数面的概率。
人教版初三上册《数学》期中考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。
A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。
()2. 在同一平面内,垂直于同一直线的两条直线互相平行。
()3. 一元二次方程的根一定是实数。
()4. 圆的周长与半径成正比。
()5. 一组数据的方差越大,说明这组数据的波动越小。
()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。
2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。
3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。
4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。
5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。
2. 请简述圆的性质。
3. 请简述等差数列的性质。
4. 请简述三角形的内角和定理。
5. 请简述平行线的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。
(必考题)初中数学九年级上期中经典习题(含答案解析)
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.B5.D6.D7.A8.D9.B10.B11.C12.B13.A14.B15.C二、填空题16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=17.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了18.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根19.70°【解析】【分析】根据圆周角定理可得:∠ACB=90°∠A=∠D=20°根据三角形内角和定理可求解【详解】因为AB为⊙O的直径所以∠ACB=90°因为∠D=20°所以∠A=∠D=20°所以∠CB20.【解析】【分析】先求出袋子中球的总个数及白球的个数再根据概率公式解答即可【详解】∵在一个不透明的口袋中装有3个红球1个白球共4个球∴任意摸出1个球摸到白球的概率是【点睛】本题考查了概率公式解题的关键21.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO绕点C逆时针旋转90°得到△CBD′则BD′=OD=2∴点D坐标为(46);当将点C与点O重合时点C向下平移4个单位得到△22.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概23.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故24.【解析】【分析】连接OB根据切线的性质得到∠OBA=90°根据勾股定理求出OA根据题意计算即可【详解】连接OB∵AB是⊙O的切线∴∠OBA=90°∴OA==4当点P在线段AO上时AP最小为2当点P在25.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:解析丢失2.B解析:解析丢失3.D解析:解析丢失4.B解析:解析丢失5.D解析:解析丢失6.D解析:解析丢失7.A解析:解析丢失8.D解析:解析丢失9.B解析:解析丢失10.B解析:解析丢失11.C解析:解析丢失12.B解析:解析丢失13.A解析:解析丢失14.B解析:解析丢失15.C解析:解析丢失二、填空题16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:解析丢失17.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:解析丢失18.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:解析丢失19.70°【解析】【分析】根据圆周角定理可得:∠ACB=90°∠A=∠D=20°根据三角形内角和定理可求解【详解】因为AB为⊙O的直径所以∠ACB=90°因为∠D=20°所以∠A=∠D=20°所以∠CB解析:解析丢失20.【解析】【分析】先求出袋子中球的总个数及白球的个数再根据概率公式解答即可【详解】∵在一个不透明的口袋中装有3个红球1个白球共4个球∴任意摸出1个球摸到白球的概率是【点睛】本题考查了概率公式解题的关键解析:解析丢失21.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO绕点C逆时针旋转90°得到△CBD′则BD′=OD=2∴点D坐标为(46);当将点C与点O重合时点C向下平移4个单位得到△解析:解析丢失22.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:解析丢失23.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:解析丢失24.【解析】【分析】连接OB根据切线的性质得到∠OBA=90°根据勾股定理求出OA根据题意计算即可【详解】连接OB∵AB是⊙O的切线∴∠OBA=90°∴OA==4当点P在线段AO上时AP最小为2当点P在解析:解析丢失25.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
【必考题】九年级数学上期中试题及答案
【必考题】九年级数学上期中试题及答案一、选择题1.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=194.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°5.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A.1B.22C.2D.26.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°7.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 8.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 9.一元二次方程2410x x --=配方后可化为( ) A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对 11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .45二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.已知、是方程的两个根,则代数式的值为______.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.17.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.19.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.20.如图,将ABC 绕点A 逆时针旋转150︒,得到ADE ,这时点B C D 、、恰好在同一直线上,则B 的度数为______.三、解答题21.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.22.如图,四边形ABCD 内接于⊙O ,4OC =,42AC =.(1)求点O 到AC 的距离;(2)求ADC ∠的度数.23.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.24.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB 的面积能否等于27cm ?请说明理由.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.2.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 4.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角,∴∠ACB >∠ASB ,即∠ASB <30°.故选D5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°. 故选D . 点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 8.A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x 2-4x-1=0,x 2-4x=1,x 2-4x+4=1+4,(x-2)2=5,故选:D .【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一 解析:【解析】【分析】 利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k+=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k>﹣34,∴k1=﹣1舍去.∴k=3.故答案为:3.【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.【详解】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴2224OA OB+=∴OA=.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键. 20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1) 14;(2)14【解析】【分析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.2;(2)135°.【解析】【分析】(1)作OM ⊥AC 于M ,根据等腰直角三角形的性质得到2即可得到结论;(2)连接OA ,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【详解】(1)作OM AC ⊥于M ,∵42AC =∴22AM CM ==∵4OC =, ∴2222OM OC MC =-=(2)连接OA ,∵OM MC =,090OMC ∠=,∴045MOC MCO ∠=∠=,∵OA OC =,∴045OAM ∠=,∴090AOC ∠=,∴045B ∠=,∵0180D B ∠+∠=,∴0135D ∠=.【点睛】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.23.(1)a >-1;(2) x 1=-3,x 2=-1.【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a 的取值范围;(2)把a 代入后解方程即可.试题解析:(1)∵方程有两个不相等的实数根∴16-4(3-a )>0,∴a >-1 .(2)由题意得:a =0 ,方程为x 2+4x +3=0 ,解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.(1)3秒后,PQ 的长度等于10;(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=10,利用勾股定理BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,10PQ =,5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(2225210x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于10(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.25.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
最新初三数学上期中模拟试题(带答案)
最新初三数学上期中模拟试题(带答案)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5D .43.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④4.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)5.下列交通标志是中心对称图形的为( )A .B .C .D .6.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .1107.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .78.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°9.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠310.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .201811.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 4312.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.15.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.16.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.17.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;18.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.19.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².20.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .三、解答题21.某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出5个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.(1)确定商场每周销售这种型号防护面罩所得的利润w (元)与售价x (元/个)之间的函数关系式.(2)当售价x (元/个)定为多少时,商场每周销售这种防护面罩所得的利润w (元)最大?最大利润是多少?22.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)23.解方程(1)2250x x --= (2) x (3-2x )= 4 x -624.某市场将进货价为40元/件的商品按60元/件售出,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元/件,每星期该商品要少卖出10件.(1)请写出该商场每月卖出该商品所获得的利润y (元)与该商品每件涨价x (元)间的函数关系式;(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD ,由圆周角定理得出∠BDC =90°,求出∠DCE =20°,再由直角三角形两锐角互余求解即可,解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.3.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.4.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.5.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6.A解析:A【解析】【分析】画树状图(用A 、B 、C 表示三本小说,a 、b 表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A 、B 、C 表示三本小说,a 、b 表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310. 故选:A .【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键. 7.C解析:C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.8.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 9.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 10.B解析:B【解析】【分析】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1得到at 2+bt-1=0,利用at 2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020.【详解】对于一元二次方程a (x-1)2+b (x-1)-1=0,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.A解析:A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CA A′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.12.C解析:C【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.14.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为 解析:94【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 15.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m 的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根解析:1m >【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m >故填:1m >.【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.16.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V= , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.17.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.根据题意,得100(1-x)2=64,即(1-x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.18.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:252π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB=10,BC:AC=3:4,可以求得AC,BC的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB为直径,∴∠ACB=90°,∵BC:AC=3:4,∴sin∠BAC=35,又∵sin∠BAC=BCAB,AB=10,∴BC=35×10=6,AC=43×BC=43×6=8,∴S阴影=S半圆﹣S△ABC=12×π×52﹣12×8×6=252π﹣24.故答案为:252π﹣24.【点睛】本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.19.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π.故答案为2π.【点睛】本题考查了圆锥的侧面积公式:S=12l•R.圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径.20.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE 的位置使点A恰好落在边DE上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6解析:【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.三、解答题21.(1)2=-+-;(2)当售价定为54元时,每周获得的利润最大,最w x x555014000大利润为1120元.【解析】【分析】(1)根据所得利润=每件利润×销售量,可以列出w与x之间的函数关系式并化简为二次函数一般形式;(2)由市场售价不得低于50元/个,且商场每周销售数量不得少于80个的销售任务可以确定x的取值范围,然后结合二次函数图像性质可以解答本题.【详解】解:(1)根据题意,得()()()()2w x x x x x x=---=--=-+-40100550403505555014000⎡⎤⎣⎦,因此,利润与售价之间的函数关系式为2=-+-555014000w x x(2)∵销售量不得少于80个,∴100-5(x-50)≥80,∴x≤54,∵x≥50,∴50≤x≤54,2=-+-555014000w x x()2=---x x511014000()222=--+--x x51105555140002x=--+5(55)1125∵a=-5<0,开口向下,对称轴为直线x=55,∴当50≤x≤54时,w随着x的增大而增大,∴当x=54时,w最大值=()2--+,554551125=1120因此,当售价定为54元时,每周获得的利润最大,最大利润为1120元.【点睛】本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.22.(1)这种水果今年每千克的平均批发价是24元;(2)每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.【解析】【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为()10120%12-=万元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元,可列出方程:12000010000010001x x -=+,求得x 即可. (2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值.【详解】 (1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去).故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m 元,依题意由(1)知平均批发价为24元,则有()41241803003m w m -⎛⎫=-⨯+ ⎪⎝⎭260420066240m m =-+-, 整理得()260357260w m =--+,∵600a =-<,∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.(1) 1211x x ==;(2) 123,22x x ==-. 【解析】【分析】(1)将方程2250x x --=移项得225x x -=,在等式两边同时加上一次项系数一半的平方1,即可得出结论;(2)将方程()3246x x x =--移项得32640x x x +-=-,提公因式后,即可得出结论.【详解】解:(1)2250x x --=,移项,得:225x x -=,等式两边同时加1,得:2216x x -+=,即:()216x -=,解得:11x =21x =,(2)()3246x x x =--,移项,得:32640x x x +-=-,提公因式,得:3220xx +=-, 解得:13 2x =,22x =-,故答案为:(1)11x =21x =;(2)132x =,22x =-. 【点睛】 本题考查配方法、因式分解法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.因式分解法的一般步骤:(1)移项,将方程右边化为0;(2)再把左边运用因式分解法化为两个一次因式的积;(3)分别令每个因式等于零,得到一元一次方程组;(4)分别解这两个一元一次方程,得到方程的解.24.(1)y=−10x 2+100x+6000;(2)每月该商场销售该种商品获利不能达到6300元,理由见解析;(3)每件售价不低于62元且不高于68元时,该商场获得的月利润不低于6160元【解析】【分析】(1)该商品每件涨价x (元),该商场每月卖出该商品所获得的利润y (元),依题意可得y 与x 的函数关系式;(2)不能,把函数关系式用配方法化为y=-10(x-5)2+6250,可得y 有最大值为6250; (3)令-10x 2+100x+6000≥6160,求出x 的取值范围即可.【详解】(1)该商品每件涨价x (元),该商场每月卖出该商品所获得的利润y (元),根据题意得(6040)(30010)=+--y x x∴y=−10x 2+100x+6000故答案为:y=−10x 2+100x+6000(2)每月该商场销售该种商品获利不能达到6300元,理由:∵y=−10x 2+100x+6000=−10(x−5)2+6250,当x=5时,y 取最大值为6250元,小于6300元∴不能达到;(3)依题意有:−10x 2+100x+6000⩾6160,整理得:x 2−10x+16⩽0,∴(x−2)(x−8)⩽0,∴①2080x x -⎧⎨-⎩……或②2080x x -≤⎧⎨-≥⎩, 解①得:2⩽x ⩽8,解②得:x ⩽2且x ⩾8,无解,∴当售价不低于62元且不高于68元时,商场获得的月利润不低于6160元.【点睛】本题考查了二次函数的实际应用,理解两个变量表示的含义,根据题意找到等量关系列出函数关系式是解题的关键.25.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.。
温州2024年九年级上学期期中数学模拟试卷(答案版)
温州2024年九年级上学期期中考试数学模拟试卷答案一.选择题(每小题3分,共30分)1.【答案】D【详解】解:∵O 的半径为3,点P 在O 外,∴3OP >,∴OP 的长可能是4,故选:D .2. 【答案】D【详解】解: 二次函数的顶点式为2225y x =−−(),∴其顶点坐标为:(2,5)−.故选:D3. 【答案】A【详解】解:A 、守株待兔是随机事件,故A 符合题意;B 、种豆得豆是必然事件,故B 不符合题意;C 、水中捞月是不可能事件,故C 不符合题意;D 、水涨船高是必然事件,故D 不符合题意;故选:A .4. 【答案】C【详解】解:抛物线2y x 向右平移3个单位长度得到的抛物线是()23yx =−. 故选:C5. 【答案】D【详解】解:∵圆被等分成4份,其中白色区域占3份, ∴指针落在白色区域的概率为34, 故选:D .6. 【答案】D【详解】解:∵∠BOC 与∠D 是同弧所对的圆心角与圆周角,∠D =32°,∴264BOC D ∠=∠=°, =180=18064=116AOC BOC ∴∠°−∠°−°°,故选:D .7. 【答案】C【详解】解:由25(2)y x m =−−+得图象开口向下,对称轴为直线2x =,∵二次函数25(2)y x m =−−+的图象经过1(0,)A y ,2(1,)B y ,3(4,)C y ,∴点A 、C 关于直线xx =2对称,则31y y =,∵当xx <2时,y 随x 的增大而增大,01<,∴12y y <,∴312y y y =<.故选:C .8. 【答案】A【详解】解:根据题意得,()30wx y =−,即()()=30280w x x −−+,故选:A .9. 【答案】C【解析】 【详解】解:连接OD ,如图,设O 的半径为r ,∵CD AB ⊥,∴ BCBD =,CG DG =, ∵点C 是弧BE 的中点,∴ CECB =, ∴ BECD =, ∴8CD BE ==, ∴142DG CD ==,在Rt ODG △中,∵3,OG r OD r =−=, ∴()22243r r +−=,解得256r =, 即O 的半径为256. 故选:C .10. 【答案】D【详解】解:∵()224321y x x x =−+=−−,10a =>,∴抛物线的开口向上,顶点坐标为()2,1−,对称轴是直线2x =,∴当2x =时,y 取得最小值1−,∵当4m x ≤≤时,总有14y m −≤≤, ∴124m −≤≤, 若02m <≤,则当4x =时,4y m =,即有244443m −×+, 解得:34m =; 若104m −≤≤,则当x m =时,4y m =, 即有2443m m m =−+解得:4m =±,不合题意,∴这种情况不存在,综上所述,当4m x ≤≤时,总有14y m −≤≤,则34m =. 故选:D 二.填空题(每小题4分,共24分)11. 【答案】59【解析】【详解】点()3,5代入2y ax =得:95a =∴59a = 故答案为:59 12. 【答案】0.2【详解】解:根据表格数据,纸杯的杯口朝上的频率稳定在0.2左右,故任意抛掷一只纸杯的杯口朝上的概率为0.2,故答案为:0.213. 【答案】6【详解】解:如图所示,连接OC ,OB ,∵ BC BC =,30BAC ∠=°,∴260COB BAC ∠=∠=°,又∵6OC OB ==,∴OCB 是等边三角形,∴6BC =,故答案为:6.14. 【答案】40°##40度【详解】解:∵C C AB ′∥,∴70ACC CAB ′∠=∠=°, ∵将ABC 绕点A 旋转到AB C ′′△的位置,∴AC AC ′=,CAC BAB ′′∠=∠,∴70ACC AC C ′′∠=∠=°,∴180707040CAC ′∠=°−°−°=°,∴40BAB ′∠=°,故答案为:40°.15. 【答案】24m <<【详解】解:如图,以AO 所在直线为y 轴,以地面所在的直线为x 轴建立平面直角坐标系,由题意可知()()3,1.80,0.9C A ,,设抛物线的解析式为()23 1.8y a x =−+,把()0,0.9A 代入()23 1.8y a x =−+,得: ()20.903 1.8a =−+解得0.1a =−,∴所求的抛物线的解析式是()20.13 1.8y x =−−+, 当 1.7y =时,()20.13 1.8 1.7x −−+=, 解得1224x x ==,, ∴则m 的取值范围是24m <<.故答案为:24m <<.16. 【答案】23或54【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =, 当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−,在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23或54 三.解答题17. 【答案】(1)2,3b c =−= (2)对称轴为直线1x =【解析】【小问1详解】解:由题意,将点()0,3A ,点()1,2B 代入2y x bx c =++得:312c b c = ++=, 解得23b c =− = . 【小问2详解】解:由(1)可知,二次函数的解析式为()222312y x x x =−+=−+, 所以该二次函数的对称轴为直线1x =.18. 【答案】(1)23 (2)49【解析】【小问1详解】解:23P =; 【小问2详解】解:两次摸到红球的概率为49P =. 19. 【答案】(1)见解析 (2)见解析【解析】【小问1详解】解:如图,AB C ′′△即为所求;【小问2详解】 解:如图,点O 即所求.20. 【答案】(1)见解析 (2)20【解析】小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=°,∵∥OD BC ,∴90OFA ACB ∠=∠=°,∴OF AC ⊥,∴ AD CD=, ∴点D 为 AC 的中点;【小问2详解】为【解:∵OF AC ⊥,16AC =, ∴182AF AC ==, 在Rt AFO 中,222AO AF OF =+, ∴()22=64OA OD DF +−,∴()22=644OA OA +−,∴10OA =,∴O 的直径为20.21. 【答案】(1)y 关于x 的函数表达式为24852793y x x =−++; (2)该女生在此项考试中是得满分,理由见解析.【解析】【小问1详解】解:∵当水平距离为3m 时,实心球行进至最高点3m 处, ∴设()233y a x =−+,∵()233y a x =−+经过点53 0,, ∴()250333a =−+, 解得:427a =− ∴224485(3)3272793y x x x =−−+=−++, ∴y 关于x 的函数表达式为24852793y x x =−++; 【小问2详解】解:该女生在此项考试中是得满分,理由如下∶ ∵对于二次函数24852793y x x =−++,当0y =时,有248502793x x −++=, ∴2424450x x −−=, 解得∶1152x =,232x =−(舍去), ∵15 6.92>, ∴该女生在此项考试中是得满分.22. 【答案】(1)见解析 (2)O 的半径为5【解析】【小问1详解】证明:延长CO 交O 于F ,C 为 ABD 的中点, AC CD ∴=,,AC DC OC AD ∴=⊥, AB 是O 的直径, 90ADB ∴∠=°,BE AD ∴⊥,OC BE ∴∥;【小问2详解】解:连接BC ,则90ACB ∠=°,OC OA = ,OAC OCA ∴∠=∠, OC BE ∥ ,OCA E ∴∠=∠,OAC E ∴∠=∠,EB AB ∴=,90ACB ∠=° ,BC AE ∴⊥,CA CE ∴==2AE CE ∴ 设O 的半径r ,则2EB AB r ==,62DE BD EB r ∴=+=+, 22222AB BD AE DE AD −=−= ,2222(2)6(62)r r ∴−=−+, 整理得23400r r +−=,解得125,8r r ==−(舍去), ∴ O 的半径为5. 23. 【答案】(1)2244y x x =−+ (2)4a =(3)见解析【解析】【小问1详解】解:∵此函数图象过点(2,4), ∴44324a a a −+−=, 解得2a =,∴这个二次函数的表达式为2244y x x =−+;【小问2详解】解:由()22232122y ax ax a a x a =−+−=−+−得,该函数的图象的对称轴为直线1x =, ∵若123x x =时,127y y ==, ∴点A 、B 关于直线1x =对称, ∴12223122x xx x ++==,解得212x =, 将1,72 代入函数表达式中,得2112272a a −+−=,解得4a =;【小问3详解】证明:由题意,21y y −()()222211232232ax ax a ax ax a =−+−−−+− ()()2221212a x x a x x =−−−()()21212a x x x x =−+−,∵12x x <,∴210x x −>,∵121x x a +=−,∴1223x x a +−=−,∵0<<3a ,∴30a −<,则1220x x +−<,∴210y y −<,∴12y y >.24. 【答案】(1)见解析 (2(3)125或9625【解析】【小问1详解】证明:连接AEAB 是直径,90AEB ∴∠=°,∴90EAD ADE ∠+∠=°,AF BC ⊥ ,90FAB ∴∠=°,∴90B F ∠+∠=°,点E 为弧AC 得中点,B EAD ∴∠=∠,F ADE ∴∠=∠,AD AF ∴=.【小问2详解】解:3,4AF AB ==,AF AB ⊥,∴在Rt ABF 中,5FB =, ∵1122ABF S AB AF BF AE =⋅=⋅ , ∴345AE ×=, 解得:125AE =,在Rt ABE △中,根据勾股定理可得:165BE , ∵3AD AF ==,∴在Rt AED △中,95ED =, 75BD BE ED ∴=−=, ABD ∴ 的周长7424355AB AD BD =++=++=. 【小问3详解】解:①当AE AP =时,125AP AE ==,②当AE PE =时, P 与C 重合,过点F 作FH AD ⊥于点H ,连接BC ,∵,AF AD AE DF =⊥, ∴1825DF DE ==, ∵1122ADF S DF AE AD FH =⋅=⋅ , ∴1812355FH ×=, 解得:7225FH =, ∵,BCD FHD BDC FDH ∠=∠∠=∠, ∴BCD FHD ∽, ∴DF FH BD BC=,则187252575BC =, 解得:2825BC =,根据勾股定理可得:2125CD =, ∴9625AP AC AD CD ==+=;③当AP PE =时,连接,OE OA ,连接OP 交AE 于点G , ∵AP PE =,OE OA =,∴OP 垂直平分AE , ∴1625AG AE ==,根据勾股定理可得:85OG ==, ∴11185PG OG OP =+=,2225P G OG OP =−=,根据勾股定理可得:1AP 2AP =,综上所述:125AP =或9625.。
【必考题】初三数学上期中试卷(附答案)
【必考题】初三数学上期中试卷(附答案)一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =2.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°4.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .235.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣46.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 7.已知()222226x y y x +-=+,则22x y +的值是( )A .-2B .3C .-2或3D .-2且3 8.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 9.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .010.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上 11.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º二、填空题13.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.14.抛物线y=ax 2+bx+c 的顶点为D(﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c <0;③c ﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根.其中正确结论是________.15.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.16.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.17.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________18.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.19.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .20.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.三、解答题21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).22.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元23.2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目(必考),物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分,假设小丽在选择科目时不考虑主观性.(1)小丽选到物理的概率为;(2)请用“画树状图”或“列表”的方法分析小丽在思想政治、地理、化学、生物四门科目中任选 2门选到化学、生物的概率.24.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE的长.25.已知关于x 的方程2(31)30mx m x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.3.D解析:D试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.4.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.5.D解析:D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.6.D解析:D【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.7.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.8.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 9.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.10.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a 、b 都是实数,那么a +b =b +a 是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误;∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】 本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.A解析:A【解析】【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=o ,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB 为等边三角形,60AOB ∴∠=o ,又12C AOB ∠=∠Q , 16030.2C ∴∠=⨯=o o 故选:A .【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.二、填空题13.10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算【详解】设圆锥底面圆的半径为r 则2πr=解得:r=10所以圆锥的底面半径为10故答案为:10【点睛】考查了圆锥的计算及扇形的弧长的计算的知识解析:10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算.【详解】设圆锥底面圆的半径为r ,则2πr=12030180π⋅, 解得:r=10, 所以圆锥的底面半径为10.故答案为:10.【点睛】考查了圆锥的计算及扇形的弧长的计算的知识,解题关键是牢固掌握和弧长公式.14.②③④【解析】【分析】由抛物线与x 轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a=−1, ∴b=2a , ∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+b x+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义.15.【解析】【分析】设BD =x 则EC =3xAE =6﹣3x 根据S △DEB =·BD·AE 得到关于S 与x 的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD =x 则EC =3xAE =6﹣3x ∵∠A =90° 解析:32【解析】【分析】设BD =x ,则EC =3x ,AE =6﹣3x ,根据S △DEB =12·BD ·AE 得到关于S 与x 的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD =x ,则EC =3x ,AE =6﹣3x ,∵∠A =90°,∴EA ⊥BD ,∴S △DEB =12•x (6﹣3x )=﹣32x 2+3x=﹣32(x ﹣1)2+32, ∴当x =1时,S 最大值=32. 故答案为:32. 【点睛】 本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.16.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB =10BC :AC =3:4可以求得ACBC 的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB 为直径 解析:252π﹣24 【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB =10,BC :AC =3:4,可以求得AC ,BC 的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB 为直径,∴∠ACB =90°,∵BC :AC =3:4,∴sin ∠BAC =35, 又∵sin ∠BAC =BC AB ,AB =10, ∴BC =35×10=6, AC =43×BC =43×6=8, ∴S 阴影=S 半圆﹣S △ABC =12×π×52﹣12×8×6=252π﹣24. 故答案为:252π﹣24. 【点睛】 本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.17.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.18.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答19.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为解析:1 24;【解析】【分析】先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人,∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是1 24.故答案为1 24.20.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA ,OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB =90°,又OA =OB ,AB =4,根据勾股定理,得圆的半径是22.【详解】解:连接OA ,OB∵∠C =45°∴∠AOB =90°又∵OA =OB ,AB =4∴2224OA OB +=∴OA =22.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB =90°是解题的关键.三、解答题21.(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形,由此计算即可;【详解】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形=22222290?·1390?·11360360ππ++-=2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.23.(1)12;(2)16【解析】【分析】(1)由题意可知小丽只有两种可选择:物理或历史,即可求解;(2)从所有等可能结果中找到同时包含生物和化学的结果数,再根据概率公式计算可得.【详解】(1)因为小丽只有两种可选择:物理或历史,所以小丽选到物理的概率为1 2(2)设思想政治为 A,地理为 B,化学为 C,生物为 D,画出树状图如下:共有 12 种等可能情况,选中化学、生物的有2 种,∴P(选中化学、生物)=212=16.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.24.(1)PC是⊙O的切线;(2)9 2【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出OC OPAD AP=,即10610r r-=,解得r=154,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=34,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴OC OPAD AP=,即10610r r-=,解得r=154.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25.(1)证明见解析;(2)y=x2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,求出m的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m为任何实数时,方程mx2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx2+(3m+1)x+3=0解得x1=-3,x2=-1m.∵抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,∴m=1.∴抛物线的解析式为y=x2+4x+3.考点:二次函数综合题.。
初三数学答案 第一学期期中模拟卷
初三数学第一学期期中模拟卷参考答案与试题解析一.选择题(共10小题,满分27分)1.在4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=,213x x=+中,是一元二次方程的个数为()A .2个B .3个C .4个D .5个【解答】解:4(1)(2)5x x -+=,25100x -=,2280x x +=,是一元二次方程,共3个,故选:B .2.下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形;B 、是中心对称图形,不是轴对称图形;C 、是轴对称图形,也是中心对称图形;D 、是轴对称图形,不是中心对称图形.故选:B .3.下列事件中,是随机事件的是()A .相似三角形的对应角相等B .O 的半径为5,3OP =,点P 在O 外C .买一张电影票,座位号是奇数D .直径所对的圆周角为直角【解答】解:A 、相似三角形的对应角相等是必然事件,故此选项不合题意;B 、O 的半径为5,3OP =,点P 在O 外是不可能事件,故此选项不合题意;C 、买一张电影票,座位号是奇数是随机事件,故此选项符合题意;D 、直径所对的圆周角为直角是必然事件,故此选项不合题意;故选:C .4.已知抛物线2y x =经过1(2,)A y -、B 2(1,)y 两点,在下列关系式中,正确的是()A .120y y >>B .210y y >>C .120y y >>D .210y y >>【解答】解: 抛物线2y x =,∴抛物线开口向上,对称轴为y 轴,1(2,)A y ∴-关于y 轴对称点的坐标为1(2,)y .又012<< ,120y y ∴>>,故选:C .5.如图,AB 是O 的直径,C 和D 是O 上两点,连接AC 、BC 、BD 、CD ,若36CDB ∠=︒,则(ABC ∠=)A .36︒B .44︒C .54︒D .72︒【解答】解:AB 是O 的直径,90ACB ∴∠=︒,36A D ∠=∠=︒ ,903654ABC ∴∠=︒-︒=︒,故选:C .6.如图,在ABC ∆中,55BAC ∠=︒,20C ∠=︒,将ABC ∆绕点A 逆时针旋转α角度(0180)α<<︒得到ADE ∆,若//DE AB ,则α的值为()A .65︒B .75︒C .85︒D .130︒【解答】解: 在ABC ∆中,55BAC ∠=︒,20C ∠=︒,1801805520105ABC BAC C ∴∠=︒-∠-∠==︒-︒-︒=︒,将ABC ∆绕点A 逆时针旋转α角度(0180)α<<︒得到ADE ∆,105ADE ABC ∴∠=∠=︒,//DE AB ,180ADE DAB ∴∠+∠=︒,18075DAB ADE ∴∠=︒-∠=︒∴旋转角α的度数是75︒,故选:B .7.如图所示33⨯的正方形网格,若向该网格中进行随机投掷飞镖试验,则飞镖扎在阴影区域(顶点均在格点上)的概率为()A .59B .49C .23D .13【解答】解: 大正方形的面积339=⨯=,阴影部分的面积=大正方形的面积4-个小直角三角形的面积194219452=-⨯⨯⨯=-=,∴阴影部分的面积占总面积的59,∴飞镖落在阴影区域(顶点都在格点上)的概率为59.故选:A .8.二次函数2246y x x =--的最小值是()A .8-B .2-C .0D .6【解答】解:222462(1)8y x x x =--=--,因为图象开口向上,故二次函数的最小值为8-.故选:A .9.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A .7B .8C .9D .10【解答】解:设主干长出x 根枝干,依题意,得:2157x x ++=,解得:17x =,28x =-(不合题意,舍去).故选:A .10.如图,点E 、F 、G 、H 分别是正方形ABCD 边AB 、BC 、CD 、DA 上的点,且AE BF CG DH ===.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为()A .B .C .D .【解答】解:设正方形的边长为m ,则0m >,AE x = ,DH x ∴=,AH m x ∴=-,222EH AE AH =+ ,22()y x m x ∴=+-,2222y x x mx m =+-+,2222y x mx m =-+22112[()]24x m m =-+22112()22x m m =-+,y ∴与x 的函数图象是A .故选:A .二.填空题(共7小题,满分28分)11.在平面直角坐标系中,点(2,1)P -与点(,1)Q a -关于原点对称,则a =2.【解答】解: 点(2,1)P -与点(,1)Q a -关于原点对称,2a ∴=.故答案为:2.12.洋洋掷一枚硬币,结果一连9次都掷出正面朝上,请问他第10次掷硬币时出现正面朝上的机会为12.【解答】解: 一枚硬币只有两面,掷出正面朝上或朝下的概率均为12,∴他第10次掷硬币时出现正面朝上的机会为12.13.若抛物线226y x x m =++与x 轴有两个交点,则m 的取值范围是92m <.【解答】解: 抛物线226y x x m =++与x 轴有两个交点,∴△26423680m m =-⨯=->,92m ∴<.故答案为:92m <.14.如图,正五边形ABCDE 内接于O ,若O 的半径为10,则 AB 的长为4π.【解答】解:如图所示:连接OA 、OB .O 为正五边形ABCDE 的外接圆,O 的半径为5,360725AOB ︒∴∠==︒,∴ AB 的长为:72104180ππ⨯= .故答案为4π.15.已知二次函数2y ax bx c =++的图象如图所示,则下列四个代数式:①abc ,②93a b c -+,③24b ac -;④2a b +中,其值小于0的有②④(填序号).【解答】解:①由二次函数的图象可知,该函数图象开口向下,则0a <;对称轴在y 轴的右侧,0b >.该函数图象与y 轴交于负半轴,则0c <,0abc ∴>;②由图象可知,当3x =-时,0y <,即930y a b c =-+<;③由图象可知,抛物线与x 轴有两个交点,则240b ac ->;④由图象可知,对称轴为012b a <-<,0a < 20a b ∴+<综上,小于0的有②④.故答案为:②④.16.如图,AB 是O 的直径,弦CD AB ⊥于点E ,若30CDB ∠=︒,O 的半径为5cm 则圆心O 到弦CD 的距离为 2.5cm .【解答】解:CD AB ⊥ ,90OEC ∴∠=︒,223060COB CDB ∠=∠=⨯︒=︒ ,115 2.522OE OC ∴==⨯=,即圆心O 到弦CD 的距离为2.5cm .故答案为2.5cm .17.如图,ABC ∆内接于O ,105ABC ∠=︒,O 的切线CD 交AB 的延长线于点D ,且CD BC =,则ACB ∠的度数为45︒.【解答】解:在优弧AC 上任取一点P ,连接PC ,PA ,105ABC ∠=︒ ,75P ∴∠=︒,2150AOC P ∠=∠=︒,OA OC = ,15OAC OCA ∴∠=∠=︒,CD BC = ,75CBD CDB ∴∠=∠=︒,30BCD ∴∠=︒,O 的切线CD 交AB 的延长线于点D ,OC CD ⊥ ,90OCD ∴∠=︒,90153045ACB ∴∠=︒-︒-︒=︒,故答案为:45︒.三.解答题(一)(共3小题,共18分)18.解方程:2680x x --=.【解答】解:268x x -=,26917x x +=-,2(3)17x -=,3x -=,所以13x =+,23x =-.19.ABC ∆的三个顶点的位置如图所示,现将ABC ∆平移,使点A 变换为点1A ,点1B 、1C 分别是B 、C 的对应点.(1)请画出平移后的△111A B C (不写画法);(2)将△111A B C 绕点1C 顺时针旋转90︒,画出旋转后的△221A B C (不写画法)【解答】解:(1)如图,△111A B C 为所作;(2)如图,△221A B C 为所作.20.如图所示,正方形ABCD 的边长为1,依次以A ,B ,C ,D 为圆心,以AD ,BE ,CF ,DG 为半径画扇形,求阴影部分的面积.【解答】解: 正方形ABCD 的边长为1,∴扇形的半径分别为1,2,3,4,圆心角为90︒,2222111112344444S ππππ∴=⨯+⨯+⨯+⨯阴影19444ππππ=+++152π=.四.解答题(一)(共3小题,共24分)21.某网店销售一种产品.这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/件市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示:(1)当1218x 时,求y 与x 之间的函数关系式;(2)求每天的销售利润w (元)与销售价x (元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?【解答】解:(1)依题意,设y 与x 之间的函数关系式为:y kx b=+将点(12,30)(18,24)代入得30122418k b k b =+⎧⎨=+⎩,解得142k b =-⎧⎨=⎩∴当1218x 时,求y 与x 之间的函数关系式:42(1218)y x x =-+ (2)依题意,得(10)w y x =- 则有30(10)(1012)(42)(10)(1218)x x w x x x ⨯-<⎧=⎨-+-⎩ 当1012x < 时,最大利润为60w =元当1218x 时,2252420(26)256w x x x =-+-=--+10a =-< ∴抛物线开口向下,故当1218x 时,w 随x 的增大而增大∴当18x =时,有最大值得192w =元故当18x =元时.销售利润最大,最大利润是192元,此时销售的件数为24件.22.如图,已知矩形ABCD 中,30ACB ∠=︒,将矩形ABCD 绕点A 旋转得到矩形AB C D ''',使点B 的对应点B '落在AC 上,B C ''交AD 于点E ,在B C ''上取点F ,使FB AB '=.(1)求证:BB FB '=';(2)求FBB ∠'的度数;(3)已知4AB =,求BFB ∆'面积.【解答】证明:(1) 矩形ABCD 中,30ACB ∠=︒,60BAC ∴∠=︒,由旋转可得:AB AB '=,ABB ∴∆'为等边三角形,BB AB ∴'=,FB AB '= ,BB FB ∴'=';(2)解:由(1)得到ABB ∆'为等边三角形,60AB B ∴∠'=︒,由旋转可得90AB F ∠'=︒,150BB F ∴∠'=︒,BB FB ∴'=',15FBB BFB ∴∠'=∠'=︒;(3)解:过B 作BH BF ⊥交FB '的延长线于H ,15FBB BFB ∠'=∠'=︒ ,B ∴∠30B H '=︒,在Rt △B B H '中,4BB AB '==,B ∠30B H '=︒,2BH ∴=,1142422BFB S FB BH '∆'∴=⨯=⨯⨯=.23.某中学在艺术节期间向全校学生征集书画作品,美术王老师从全校随机抽取了四个班级记作A 、B 、C 、D ,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整;(3)若全校参展作品中有五名同学获得一等奖,其中有三名男生、二名女生.现在要在其中抽两名同学去参加学校总结表彰座谈会,请用画树状图或列表的方法求恰好抽中一名男生一名女生的概率.【解答】解:(1)150512360÷=,所以抽查的四个班级共征集到作品12件,B 班级的作品数为122523---=(件),条形统计图补充为:(2)画树状图为:共有20种等可能的结果数,其中恰好抽中一名男生一名女生的结果数为12,所以恰好抽中一名男生一名女生的概率123205==.五.解答题(三)(共2小题,共20分)24.如图,AB 是O 的直径,点F C ,是O 上两点,且AF FC CB ==,连接AC AF ,,过点C 作CD AF ⊥交AF 延长线于点D ,垂足为D .(1)求BAC ∠的度数;(2)求证:CD 是O 的切线;(3)若CD =,求O 的半径.【解答】(1)如图,连接OC∵AF FC CB ==∴1×180=603BOC =︒︒∠∴11×603022BAC BOC ==︒=︒∠∠(2)证明:∵ FCCB =,∴FAC BAC ∠=∠,∵OA OC =,∴28AB BC ==,∴OAC OCA ∠=∠,∴FAC OCA ∠=∠,∴OC AF ∥,∵CD AF ⊥,∴OC CD ⊥,∴CD 是O 的切线;(3)解:连结BC ,∵AB 为直径,∴90ACB ∠=︒,∵30BAC ∠=︒,∴30DAC ∠=︒,在Rt ADC △中,CD =,∴2AC CD ==,在Rt ACB △中,433BC AC ===,∴O 的半径为4.25.如图,已知抛物线2y ax bx c =++的图象与x 轴交于(2,0)A ,(8,0)B -两点,与y 轴交于点(0,8)C -.(1)求抛物线的解析式;(2)点F 是直线BC 下方抛物线上的一点,当BCF ∆的面积最大时,求出点F 的坐标;(3)在(2)的条件下,是否存在这样的点(0,)Q m ,使得BFQ ∆为等腰三角形?如果有,请直接写出点Q 的坐标;如果没有,请说明理由.【分析】(1)将A ,B ,C 的坐标代入函数2y ax bx c =++即可;(2)如图1中,作//FN y 轴交BC 于N ,求出直线BC 的解析式,设21(,38)2F m m m +-,则(,8)N m m --,再用含m 的代数式表示出BCF ∆的面积,用函数的思想即可推出结论;(3)此问要分BQ BF =,QB QF =,FB FQ =三种情况进行讨论,分别用勾股定理可求出m 的值,进一步写出点Q 的坐标.【解答】解:(1)将(2,0)A ,(8B -,0)(0C ,8)-代入函数2y ax bx c =++,得,4206480008a b c a b c a b c ++=⎧⎪-+=⎨⎪++=-⎩,解得,1238a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线解析式为21382y x x =+-;(2)如图1中,作//FN y 轴交BC 于N ,将(8,0)B -代入8y kx =-,得,1k =-,8BC y x ∴=--,设21(,38)2F m m m +-,则(,8)N m m --,FBC FNB FNC S S S ∆∆∆∴=+182FN =⨯4FN =214[(8)(38)]2m m m =---+-2216m m=--22(4)32m =-++,∴当4m =-时,FBC ∆的面积有最大值,此时(4,12)F --,∴点F 的坐标是(4,12)F --;(3)存在点(0,)Q m ,使得BFQ ∆为等腰三角形,理由如下:①如图21-,当BQ BF =时,由题意可列,22228(84)12m +=-+,解得,1m =2m =-1(0Q ∴,,2(0,Q -;②如图22-,当QB QF =时,由题意可列,22228(12)4m m +=++,解得4m =-,3(0,4)Q ∴-;③如图23-,当FB FQ =时,由题意可列,2222(84)12(12)4m -+=++,解得,10m =,224m =-,4(0,0)Q ∴,5(0,24)Q -;设直线BF 的解析式为y kx b =+,将(8,0)B -,(4,12)F --代入,得80412k b k b -+=⎧⎨-+=-⎩,解得,3k =-,24b =-,324BF y x ∴=--,当0x =时,24y =-,∴点B ,F ,Q 重合,故5Q 舍去,∴点Q 有坐标为(0,或(0,-或(0,4)-或(0,0).。
2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】
2024—2025学年人教版九年级上册数学 期中考试模拟试卷一、单选题1.在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是( )A .(6,5)B .(﹣6,5)C .(6,﹣5)D .(﹣6,﹣5)2.在Rt ABC △中,90C Ð=°,D 为AC 上一点,CD =动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A ®®匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为()s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段AB 的长是( )A .6B .8C .D .3.对于一元二次方程230x x c -+=,当94c =时,方程有两个相等的实数根.若将c 的值在94的基础上减小,则此时方程根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定4.如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△ADE 的周长为( )A .19B .20C .27D .306.下列函数是二次函数的是( )A .21y x x =+B .1(1)2y x x =-C .21y x =--D .()21y x x =+7.已知二次函数y=2x 2﹣12x +19,下列结果中正确的是( )A .其图象的开口向下B .其图象的对称轴为直线x=﹣3C .其最小值为1D .当x <3时,y 随x 的增大而增大8.如图,二次函数2y ax bx c =++的图象与x 轴相交于A ,()1,0B 两点,对称轴是直线1x =-,下列说法正确的是( )A .0a <B .当1x >-时,y 的值随着x 的值增大而减小C .点A 的坐标为()2,0-D .420a b c -+<9.二次函数()20y ax bx c a =++¹的部分图像如图所示,图像过点()1,0-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)8720a b c ++>;(4)若点()13,A y -,点21,2B y æö-ç÷èø、点37,2C y æöç÷èø在该函数图像上,则132y y y <<;(5)若方程()()153a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确的结论有( )A .2个B .3个C .4个D .5个10.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是c≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题11.二次函数21(3)22y x =+-的图象是由函数212y x =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.12.如图,已知二次函数()20y ax bx c a =++¹的图象与x 轴交于点()1,0A -,与y 轴的交点B 在()0,2-和()0,1-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a -<-;④113a <<;⑤bc >.其中正确结论有 (填写所有正确结论的序号).13.关于x 的一元二次方程2410kx x +-=有两个不相等的实数根,则k 的取值范围是 .14.某种商品原价每件售价为400元,经过连续两次降价后,每件售价为288元,设平均每次降价的百分率为x ,则可列方程为 .15.已知抛物线248y x x =+-与直线l 交于点(5,)A m -,(),3B n -(0n >).若点()P x y , 在抛物线上且在直线l 下方(不与点A ,B 重合),则点P 的纵坐标的取值范围为 .三、计算题16.解方程:(1)()()2121x x -=-(2)22520x x --=四、作图题17.如图,正方形网格中,每个小方格都是边长为1的正方形△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕坐标原点O 顺时针方向旋转90°,出旋转后的△A 2B 2C 2.五、解答题18.台风“杜苏芮”牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?19.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm ,根据题意列出方程,并化成一般形式.20.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为小于2的整数,且方程的根都是整数,求k 的值.21.如图,长方形ABCG 与长方形CDEF 全等点B ,C ,D 和点C ,G ,F 分别在同一条直线上,其中4AB CD ==,8BC DE ==.连接对角线AC ,CE .(1)在图①中,连接AE ,直接判断ACE △形状是______;直接写出AE 的值______;(2)如图②,将图①中的长方形CDEF 绕点C 逆时针旋转,当CF 平分ACE Ð时,求此时点E 到直线AC 的距离.(3)如图③,将图①中的长方形CDEF 绕点C 逆时针旋转到某一个位置,连接AE ,连接DG 并延长交AE 于点M ,取AG 的中点N ,连接MN ,直接写出MN 长的最小值______;22.如图,已知点()()1,04,0A B -,,点C 在y 轴的正半轴上,且90ACB Ð=°,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得4BCN S =V ?如果存在,那么这样的点有几个?如果不存在,请说明理由.23.已知抛物线()220y ax x c a =++¹经过点()0,1,对称轴是直线1x =.(1)求抛物线的解析式;(2)若点(),s t 在该抛物线上,且12s -<<;求t 的取值范围;(3)若设m 是抛物线与x 轴的一个交点的横坐标,记629140m M -=,比较M 的大小.1.C【分析】根据关于原点对称的点,横、纵坐标都互为相反数即可得出答案.【详解】点P (﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:C .【点睛】本题考查了在平面直角坐标系中,关于原点对称的点的特征,关于原点对称的点,横、纵坐标都互为相反数;关于x 轴对称的点,y 互为相反数,x 不变;关于y 轴对称的点,x 互为相反数,y 不变,关于谁对称谁不变,另一个互为相反数.2.A【分析】本题考查了二次函数图象,求二次函数解析式,在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,求得BC 的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,当6S =时,262t =+,解得:2t =(负值已舍去),∴2BC =,∴抛物线经过点()2,6,∵抛物线顶点为:()4,2,设抛物线解析式为:()242S a t =-+,将()2,6代入,得:()26242a =-+,解得:1a =,∴()242S t =-+,当18y =时,()218420t t =-+=,(舍)或8t =,∴826AB =-=,故选:A .3.C【分析】根据一元二次方程根的判别式求解即可得.【详解】解:由题意可知:1a =,3b =-,当94c =时,24940b ac c D =-=-=,当94c<时,∴24940b ac cD=-=->,∴该方程有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查一元二次方程利用根的判别式判断根的情况,解题的关键是熟练运用根的判别式进行求解.4.B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=1 2BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选B.5.A【分析】先由△ABC 是等边三角形得出AC=AB=BC 根据图形旋转的性质得出AE=CD ,BD=BE ,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD ,即可求出结果【详解】解:∵△ABC 是等边三角形,∴AC=AB=BC=10,∵△BAE 是△BCD 逆时针旋转60°得出,∴AE=CD ,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=9,∴△AED 的周长=AE+AD+DE=AC+BD=19.故答案为19【点睛】此题重点考查学生对于图形旋转的理解,抓住旋转前后图形边角的关系是解题的关键6.B【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行分析.【详解】解:A 、含有分式,不是二次函数,故此选项不符合题意;B 、2111(1)=222y x x x x =--,是二次函数,故此选项正确;C 、是一次函数,故此选项不符合题意;D 、3y x x =+是三次函数,故此选项不符合题意;故选:B .【点睛】本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,解题关键是注意二次项系数不为0.7.C【分析】根据二次函数的性质对各选项分析判断即可解答.【详解】∵二次函数y=2x 2﹣12x+19=2(x ﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x >3时,y 随x 的增大而增大,当x <3时,y 随x 的增大而减小;所以C 选项正确.故选C .【点睛】本题考查了二次函数的性质,熟记性质是解题的关键.8.D【分析】本题主要考查了二次函数的图象与系数的关系,抛物线与x 轴的交点.抛物线开口向上则0a >,即可判断A ;又0a >,对称轴是直线1x =-,从而当1x >-时,y 的值随着x 的值增大而增大,故可判断B ;又(1,0)A ,对称轴是直线1x =-,则(3,0)B -,故可判断C ;结合(3,0)A -,(1,0)B ,抛物线开口向上,从而当2x =-时,420y a b c =-+<,进而可以判断D .【详解】解:Q 抛物线开口向上,0a \>,故A 错误;Q 开口向上,对称轴是直线1x =-,\当1x >-时,y 的值随着x 的值增大而增大,故B 错误.(1,0)B Q ,对称轴是直线1x =-,(3,0)A \-,故C 错误.结合(3,0)A -,(1,0)B ,抛物线开口向上,\当2x =-时,420y a b c =-+<.故D 正确.故选:D .9.B【分析】①正确,根据对称轴公式计算即可.②错误,利用x =-3时,y <0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a 、b 即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.【详解】①正确:∵-22b a= ,所以4a +b =0.故①正确.②错误:∵x =-3时, y <0,∴9a - 3b +c <0,∴9a +c <3b ,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴ a -b +c = 025a + 5b +c = 0解得b = -4a ,c = -5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a + 7b +2c >0 ,故③正确.④错误,∵点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C 离对称轴的距离近,∴y 3>y 2,∵a <0 , -3< -0.5<2,∴y 1<y 2∴y 1<y 2<y 3,故④错误.⑤正确.∵a <0 ,∴(x +1)(x -5)=-3a >0 ,即(x +1)(x -5)>0 ,故x <-1或x >5 ,故⑤正确.∴正确的有三个,故选B .【点睛】本题考查抛物线和x 轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.10.D【分析】①根据二次函数的性质即可得出抛物线y=6x 2的对称轴为y 轴,结合a=6>0即可得出当x >0时,y 随x 的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m 的值,再令x+m+2=该数值可求出x 值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【详解】∵在二次函数y=6x 2中,a=6>0,b=0,∴抛物线的对称轴为y 轴,当x>0时,y 随x 的增大而增大,∴①结论正确;∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,∴x+m=-2+m 或1+m ,∴方程a (x+m+2)2+b=0中,x+m+2=-2+m 或x+m+2=1+m ,解得:x 1=-4,x 2=-1,∴②结论正确;∵二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴1022b c b ++=ìïí-ïî?解得:b≤-4,c≥3,∴结论③正确.故选D【点睛】此题重点考查学生随函数图象和性质理解,熟练掌握图象性质是解题的关键.11. 左 3 下2【分析】本题主要考查二次函数与几何变换,图象平移时函数表达式变化的特征是:图象向左平移()0n n >个单位,函数表达式中x 加上n ;图象向右平移()0n n >个单位,函数表达式中x 减去n ;图象向下平移()0m m >个单位,函数表达式中y 加上m ;图象向上平移()0m m >个单位,函数表达式中y 减去m ;根据以上平移规律,对题中的二次函数表达式进行分析,即可得出答案.【详解】解:由“左加右减”的原则将函数212y x =的图象向左平移3个单位,所得二次函数的解析式为:()2132y x =+;由“上加下减”的原则将函数()2132y x =+的图象向下平移2个单位,所得二次函数的解析式为:()21322y x =+-.故答案为:左,3,下,2.12.①③⑤【分析】此题主要考查图象与二次函数系数之间的关系,涉及了数形结合思想的应用.根据对称轴为直线1x =及图象开口向下,与y 轴的交点,可判断出a 、b 、c 的符号,从而判断①;求出图象与轴的另一个交点为()3,0,则可判断②;利用函数的最小值:2414ac b a-<-,可判断③;根据方程20ax bx c ++=的两根为121,3x x =-=,可得,32c b a a =-=-,可判断④⑤的正误.【详解】解:①∵函数开口方向向上,∴0a >;∵对称轴为直线1x =,∴12b a-=,∴20b a =-<,∵抛物线与y 轴交点在轴负半轴,∴0c <,∴0abc >,故①正确;②∵图象与x 轴交于点()1,0A -,对称轴为直线1x =,∴图象与轴的另一个交点为()3,0,当2x =时,420y a b c =++<,故②错误;③∵二次函数的图象与y 轴的交点在()0,1-的下方,对称轴在x 轴右侧,且0a >,∴函数的最小值:2414ac b a-<-,∴244ac b a -<-,故③正确;④∵图象与x 轴交于点()1,0A -,()3,0,∴方程20ax bx c ++=的两根为121,3x x =-=,∴132,133b c a a-=-+==-´=-,∴3c a =-,2b a =-,∴,32c b a a =-=-,∵图象与y 轴的交点B 在()0,2-和()0,1-之间,∴21c -<<-,∴1233a <<;故④错误;∵,32c b a a =-=-,∴32c b -=-,∵0c <,∴23b c c =>,故⑤正确.故答案为:①③⑤.13.1k >-且0k ¹【分析】此题考查了一元二次方程的定义,一元二次方程的判别式,解题的关键是熟练掌握一元二次方程的定义,一元二次方程的判别式.由一元二次方程的定义可得0k ¹,由一元二次方程2410kx x +-=有两个不相等的实数根,可得判别式240b ac D =->,解不等式求解即可.【详解】解:∵2410kx x +-=是一元二次方程,∴0k ¹,又∵一元二次方程2410kx x +-=有两个不相等的实数根,∴240b ac D =->,即()24410k -´->,解得:1k >-,综上所述,k 的取值范围是1k >-且0k ¹.故答案为:1k >-且0k ¹.14.()24001288x -=【分析】设平均每次降价的百分率为x ,利用经过连续两次降价后的价格=原价×(1-降价率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每次降价的百分率为x ,依题意得:400(1-x )2=288.故答案为:400(1-x )2=288.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.123y -£<-【分析】先求出点A 和点B 的坐标,确定直线l 的函数表达式,配合二次函数的图像求解即可;【详解】解:分别将(5,)A m - 、(),3B n - 代入248y x x =+-得:()()m =-+´--=-254583n n +-=-2483 ,解得:11n = ,25n =-(舍)∴(5,3)A --,(1,3)B -∴直线l 的表达式为:=3y -()y x x x =+-=+-2248212Q ∴y 的最小值为:12-y 的取值范围为:123y -£<-故答案为:123y -£<-【点睛】本题考查了二次函数的性质、二次函数图像与表达式的关系;熟练配合函数图像将复杂问题直观化是解决问题的关键.16.(1)121,3x x ==;(2)12x x ==【分析】(1)解一元二次方程,用因式分解法求解;(2)解一元二次方程,用公式法求解.【详解】解:(1)()()2121x x -=-()()21210x x ---=()()1120x x ---=1=0x -或120x --=121,3x x \==(2)22520x x --=2,5,2a b c ==-=-Q 224(5)42(2)410b ac \D =-=--´´-=>∴x \=1x \【点睛】本题考查解一元二次方程,掌握解方程的步骤因式分解的方法及求根公式,正确计算是解题关键.17.(1)见解析;(2)见解析.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2即可.【详解】(1)解:如图,△A 1B 1C 1为所作;(2)解:如图,△A 2B 2C 2为所作;【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(1)捐款增长率为20%(2)第四天该单位能收到5184元捐款【分析】(1)设捐款增长率为x ,根据“第一天收到捐款3000元,第三天收到捐款4320元,第二天、第三天收到捐款的增长率相同”列方程,解方程即可得到答案;(2)用第三天收到的捐款乘以()120%+即可得到答案.【详解】(1)设捐款增长率为x ,根据题意列方程得,23000(1)4320x ´+=,解得10.2x =,2 2.2x =-(不合题意,舍去);答:捐款增长率为20%.(2)第四天收到捐款为:()4320120%5184´+=(元),答:第四天该单位能收到5184元捐款.【点睛】此题考查了一元二次方程的应用,根据题意找到等量关系列出方程是解题的关键.19.241460x x -+=.【分析】首先表示出无盖长方体盒子的底面长为(4-2x )dm ,宽为(3-2x )dm 再根据长方形的面积可得方程()()14232432x x --=´´.【详解】由题意得:无盖长方体盒子的底面长为()42x dm -,宽为()32x dm -,由题意得,()()14232432x x --=´´整理得:241460x x -+=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.20.(1)98k >-且0k ¹(2)1k =-【详解】解:(1)2(3)4(2)9+8k k D =--´-=,∵一元二次方程2320kx x --=有两个不相等的实数根,∴9+800k k >ìí¹î∴98k >-且0k ¹.(2)∵k 为不大于2的整数,∴1k =-,1k =∴当1k =-时,方程2320x x ---=2-都是整数;当1k =时,方程2320x x --=综上所述,1k =-.21(3)2【分析】(1)由矩形ABCG 与矩形CDEF 全等得AC CE =,然后证明出90ACE Ð=°,再由勾股定理得AC =AE =;(2)由CF 平分ACE Ð结合等腰三角形“三线合一”得:CF AE ^,4AF EF ==,再由等面积法得点E 到直线AC (3)过点E 作AG 的平行线交DG 的延长线于H ,连接EG ,先证明HME GMA V V ≌得AM ME =,再由中位线定理得12MN GE =,再由在矩形CDEF 绕点C 逆时针旋转过程中GE的范围为:CE CG GE CE CG -££+得GE 的最小值为4,故MN 的最小值为2-.【详解】(1)Q 矩形ABCG 与矩形CDEF 全等,AC CE \=,ACB ECF Ð=Ð,90ACB ACG Ð+Ð=°Q ,90ECF ACG \Ð+Ð=°,90ACE \Ð=°,∴ACE △是等腰直角三角形,222AE AC CE \=+,QAC =,AE\=;(2)当CF平分ACEÐ时,AC CE=Q,由等腰三角形“三线合一”得:CF AE^,4AF EF==,\设点E到直线AC的距离为d,则由等面积法:1122ACES EF CF AC d =×=×V,d\=\此时点E到直线AC(3)如图,过点E作AG的平行线交DG的延长线于H,连接EG,HE AGQ∥,H MGA\Ð=Ð,CG CD=Q,CGD CDG\Ð=Ð,90AGC CDEÐ=Ð=°Q,90MGA CGD\Ð+Ð=°,90CDG HDEÐ+Ð=°,MGA HDE\Ð=Ð,HDE H\Ð=Ð,HE ED AG\==,在HMEV与GMAV中,HME GMAH MGAHE AGÐ=ÐìïÐ=Ðíï=î,(AAS)HME GMA\V V≌,AM ME\=,AGQ的中点为N,12MN GE \=,MN GE ∥,Q 在矩形CDEF 绕点C 逆时针旋转过程中GE 的范围为:CE CG GE CE CG -££+,44GE \-££+,GE \的最小值为4,MN \的最小值为2.【点睛】本题是矩形旋转变换综合题,主要考查了矩形的性质、旋转的性质、矩形全等的性质、全等三角形的判定与性质、等面积法求高、中位线定理,过点E 作AG 的平行线交DG 的延长线于H 、构造HME GMA V V ≌是本题的关键.22.(1)213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切.(3)((()12321212,3N N N +---,,.【分析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的性质,直线与的位置关系,平行线的性质.(1)Rt ACB V 中,OC AB ^,利用相似三角形能求出OC 的长,即可确定C 点坐标,再利用待定系数法能求出该抛物线的解析式.(2)证明CM 垂直于过点C 的半径即可.(3)先求出线段BC 的长,根据BCN △的面积,可求出BC 边上的高,那么做直线l ,且直线l 与直线BC 的长度正好等于BC 边上的高,那么直线l 与抛物线的交点即为符合条件的N 点.【详解】(1)解:Rt ACB V 中,14OC AB AO BO ^==,,,∴ACO ABO V V ∽.∴CO AO OB CO =,∴24OC OA OB =×=.∴2OC =.∴点()0,2C .∵抛物线2y ax bx c =++经过A 、B 两点,∴设抛物线的解析式为:()()+14y a x x =-,将C 点代入上式,得:()()20+104a =-,解得1=2a -.∴抛物线的解析式:()()1x+142y x =--,即213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切,理由如下:如图,设抛物线的对称轴与x 轴的交点为D ,连接CD .由于A 、B 关于抛物线的对称轴对称,则点D 为Rt ABC V 斜边AB 的中点,32CD AB =.由(1)知:22131325++2=22228y x x x æö=---+ç÷èø,则点325,28M æöç÷èø,259288ME =-= .而32CE OD ==,2OC =,∴ME CE OD OC =::.又∵90MEC COD Ð=Ð=°,∴COD CEM V V ∽.∴CME CDO Ð=Ð.∴9090CME CDM CDO CDM DCM Ð+Ð=Ð+Ð=°Ð=°,.∵CD 是D e 的半径,∴直线CM 与以AB 为直径的圆相切.(3)由()()4,00,2B C 、得:BC =则:11422BCN S BC h h h =×=´==V ,过点B 作BF BC ^,且使BF h =F 作直线l BC P 交x 轴于G .Rt BFGV中,sin sinBGF CBOÐ=Ð=1 2 -,sin4BG BF BGF=¸Ð==.∴()0,0G或()8,0.易知直线BC:122y x=-+,则可设直线l:12y x b=-+,将G点坐标代入,得:0b=或4b=,则:直线l:12y x=-142y x=-+;联立抛物线的解析式,得:21213++222y xy x xì=-ïïíï=-ïî或214213++222y xy x xì=-+ïïíï=-ïî.解得:2y1xì=+ïí=-ïî2y1xì=-ïí=-ïî或2y3x=ìí=î∴抛物线上存在点N,使得S4BCN=V,这样的点有3个:((()12321212,3N N N+---,,23.(1)221y x x=-++(2)22t-<£(3)当1m=M>;当1m=M<【分析】本题主要考查了求二次函数解析式,二次函数图象的性质,二次函数与x轴的交点问题:(1)把()0,1代入解析式可得1c=,再根据对称轴计算公式可得1a=-,据此可得答案;(2)根据(1)所求可得当1x£时,y随x的增大而增大;当1x>时,y随x的增大而减小,分别求出当1s=-时,当1s=时,t得值即可得到答案;(3)先根据题意得到2210m m -++=,即221m m =+,再把221m m =+整体代入分子中把分子进行降次求解即可.【详解】(1)解:把()0,1代入()220y ax x c a =++¹中得1c =.∵对称轴是直线1x =,∴212a-=,解得1a =-.∴抛物线的解析式为221y x x =-++.(2)解:∵由(1)知:221y x x =-++.∵对称轴是直线1x =,∴当1x £时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小,当1x =时,y 有最大值为212112-+´+=,∵点(),s t 在该抛物线上,且12s -<<,∴当1s =-时,2t =-;当2s =时,1t =;∴22t -<£;(3)解:∵m 是抛物线与x 轴的一个交点的横坐标,∴2210m m -++=,即221m m =+.∴629140m M -=()32911402m -+=()()2021212914m m -++=()()20214412914m m m -+++=()()129140214214m m m =++++éù-ëû()()1252911402m m +-+=22422529140m m ++-=()242122529140m m +++-=702929140m +-=2m =,∵221m m =+,∴m =∴2m =∴当1m =时,M > 当1m =M <.。
【必考题】九年级数学上期中试题(附答案)
【必考题】九年级数学上期中试题(附答案)一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1B .1C .-4D .4 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3 3.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°4.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( )A .25°B .40°C .50°D .65°5.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④6.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .7.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 8.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .89.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 10.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x +=D .()247x += 二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.圆锥的底面半径为14cm,母线长为21cm,则该圆锥的侧面展开图的圆心角为_____度.15.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.16.关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是_____.17.如图,矩形ABCD对角线AC、BD交于点O,边AB=6,AD=8,四边形OCED为菱形,若将菱形OCED绕点O旋转一周,旋转过程中OE与矩形ABCD的边的交点始终为M,则线段ME的长度可取的整数值为___________________.18.一个正多边形的一个外角为30°,则它的内角和为_____.19.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.20.已知一个直角三角形的两条直角边长分别为3cm和4cm,则这个直角三角形的内切圆的半径为 cm三、解答题21.已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D.(I)如图①,若BC是⊙O的直径,BC=4,求BD的长;(Ⅱ)如图②,若∠ABC的平分线交AD于点E,求证:DE=DB.22.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W(元)与销售单价x元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?23.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).24.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD,(1)求证:CD是⊙O的切线;(2)若BC=6,tan∠CDA=23,求CD的长.25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.【详解】解:根据题意可得:△=2(4) -4×4c=0,解得:c=1 故选:B .【点睛】本题考查一元二次方程根的判别式. 2.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法3.D解析:D【解析】【分析】连接CD ,由圆周角定理得出∠BDC =90°,求出∠DCE =20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD ,如图,∵BC 是半圆O 的直径,∴∠BDC =90°,∴∠ADC =90°,∵∠DOE =40°,∴∠DCE =20°,∴∠A =90°−∠DCE =70°,故选:D .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.4.B解析:B【解析】连接OC ,∵CD 是切线,∴∠OCD=90°,∵OA=OC ,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.5.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.考点:二次函数图象与系数的关系.6.D解析:D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.7.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根, ∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.8.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2;故答案为B .【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键. 9.D解析:D【解析】【分析】求出b 2-4ac 的值,根据b 2-4ac 的正负即可得出答案.【详解】x 2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键10.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.11.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M= C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.14.240【解析】【分析】根据弧长=圆锥底面周长=28πcm 圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm 扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm ,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm ,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.15.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16.k≤且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可【详解】∵关于x 的一元二次方程kx2﹣4x+3=0有实数根∴△=(-4)2-4k×3≥0且k≠0解得k≤且k≠0故解析:k ≤43且k ≠0; 【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可.【详解】∵关于x 的一元二次方程kx 2﹣4x+3=0有实数根,∴△=(-4)2-4k×3≥0且k≠0,解得k≤43且k≠0, 故答案为:k≤43且k≠0 【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax 2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;解题时,要注意a≠0这个隐含的条件.17.345【解析】【分析】连接OE 交CD 与点M 根据矩形与菱形的性质由勾股定理求出OE 的长在旋转过程中求出OM 的取值范围进而得出ME 的取值范围进而求解【详解】如图连接OE 交CD 与点M ∵矩形ABCD 对角线A解析:3,4,5【解析】【分析】连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解.【详解】如图,连接OE 交CD 与点M ,∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,∴90BAD ︒∠=,OA OB OC OD ===,∴由勾股定理知,10BD =,∴5OA OB OC OD ====,∵四边形OCED 为菱形,∴OE CD ⊥,132DM CD ==,∴由勾股定理知,4OM =,即8OE =,∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3,当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5,∴35OM ≤≤,∵8OE =,∴35ME ≤≤,∴线段ME 的长度可取的整数值为3,4,5,故答案为:3,4,5.【点睛】本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.18.1800°【解析】试题分析:这个正多边形的边数为=12所以这个正多边形的内角和为(12﹣2)×180°=1800°故答案为1800°考点:多边形内角与外角解析:1800°【解析】 试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.19.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.【详解】设AA ′=x,AC 与A ′B ′相交于点E ,∵△ACD 是正方形ABCD 剪开得到的,∴△ACD 是等腰直角三角形,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x2−12x+32=0,=4,x2=8,解得x1即移动的距离AA′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.20.1【解析】通过勾股定理计算出斜边的长得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半计算出内切圆半径最后求它们的差解:因为斜边==5内切圆半径r==1;所以r=1故填1会利用解析:1【解析】通过勾股定理计算出斜边的长,得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半,计算出内切圆半径,最后求它们的差.解:因为斜边==5,内切圆半径r==1;所以r=1.故填1.会利用勾股定理进行计算.其内切圆半径等于两直角边的和与斜边的差的一半.三、解答题21.(I)BD=22;(II)见解析.【解析】【分析】(I)连接OD,易证△DOB是等腰直角三角形,由勾股定理即可求出BD的长;(II)由角平分线的定义结合(1)的结论即可得出∠CBD+∠CBE=∠BAE+∠ABE,再根据三角形外角的性质即可得出∠EBD=∠DEB,由此即可证出BD=DE.【详解】解:(I)连接OD,∵BC是⊙O的直径,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD=45°,∴∠BOD=90°,∵BC=4,∴BO=OD=2,∴BD==;(II)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.∵∠BAD=∠CBD,∴∠CBD+∠CBE=∠BAE+∠ABE.又∵∠DEB=BAE+∠ABE,∴∠EBD=∠DEB,∴BD=DE.【点睛】本题考查了三角形外接圆与外心、垂径定理、圆周角定理以及角平分线的定义,熟练掌握和圆有关的性质是解题的关键.22.(1)y=﹣20x+1400(40≤x≤60);(2)W=﹣20x2+2200x﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y件为200件加增加的件数(60-x)×20;(2)利润w等于单件利润×销售量y件,即W=(x-40)(-20x+1400),整理即可;(3)先利用二次函数的性质得到w=-20x2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W随x的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,∴销售量y件与销售单价x元之间的函数关系式为: y=﹣20x+1400,(2)设该品牌童装获得的利润为W(元)根据题意得,W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润W元与销售单价x元之间的函数关系式为:W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,W=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,当56≤x≤60时,W 随x 的増大而减小,∴当x =56时,W 有最大值,W max =﹣20(56﹣55)2+4500=4480(元),∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.23.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则903232180n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.24.(1)证明见解析;(2)4.【解析】分析:(1)连接OD ,如图,先证明∠CDA=∠ODB ,再根据圆周角定理得∠ADO+∠ODB=90°,则∠ADO+∠CDA=90°,即∠CDO=90°,于是根据切线的判定定理即可得到结论;(2)由于∠CDA=∠ODB ,则tan ∠CDA=tan ∠ABD=23,根据正切的定义得到tan ∠ABD=23AD BD =,接着证明△CAD ∽△CDB ,由相似的性质得23CD AD BC BD ==,然后根据比例的性质可计算出CD 的长.详(1)证明:连接OD ,如图,∵OB=OD ,∴∠OBD=∠BDO ,∵∠CDA=∠CBD ,∴∠CDA=∠ODB ,∵AB 是⊙O 的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD ⊥CD ,∴CD 是⊙O 的切线;(2)∵∠CDA=∠ODB ,∴tan ∠CDA=tan ∠ABD=23, 在Rt △ABD 中,tan ∠ABD=23AD BD , ∵∠DAC=∠BDC ,∠CDA=∠CBD ,∴△CAD ∽△CDB , ∴23CD AD BC BD ==, ∴CD=23×6=4. 点睛:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.25.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.。
【必考题】初三数学上期中模拟试题含答案
【必考题】初三数学上期中模拟试题含答案一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .3.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠34.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x +4)2=11 B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=21 5.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( )A .2017B .2018C .2019D .20206.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧¼AMB 上一点,则∠APB 的度数为( )A .45°B .30°C .75°D .60°7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④9.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .210.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.15.已知、是方程的两个根,则代数式的值为______.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.18.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.19.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².20.已知x 1,x 2是方程x 2﹣x ﹣3=0的两根,则1211+x x =_____.三、解答题21.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)22.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).23.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.24.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加▲ 件,每件商品盈利▲ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=3.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.3.B解析:B 【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B. 考点:函数图像与x 轴交点的特点.4.D解析:D 【解析】 【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】 解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21, 故选D . 【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.5.B解析:B 【解析】 【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案. 【详解】解:∵设a b ,是方程220190x x +-=的两个实数根, ∴把x a =代入方程,得:22019a a +=, 由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=; 故选:B . 【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.6.D解析:D 【解析】【详解】作半径OC⊥AB于点D,连结OA,OB,∵将O沿弦AB折叠,圆弧较好经过圆心O,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.7.A解析:A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.D解析:D 【解析】 【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 故选:D. 【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.10.D解析:D 【解析】 【分析】求出b 2-4ac 的值,根据b 2-4ac 的正负即可得出答案. 【详解】 x 2+2x+2=0, 这里a=1,b=2,c=2, ∵b 2−4ac=22−4×1×2=−4<0, ∴方程无实数根, 故选D. 【点睛】此题考查根的判别式,掌握运算法则是解题关键11.C解析:C 【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率解析:5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.15.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.16.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.17.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.18.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.19.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π. 故答案为2π.【点睛】本题考查了圆锥的侧面积公式:S =12l •R .圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径. 20.-【解析】【分析】利用根与系数的关系可得出x1+x2=1x1•x2=-3将其代入=中即可得出结论【详解】∵x1x2是方程x2﹣x ﹣3=0的两根∴x1+x2=1x1•x2=﹣3∴===﹣故答案为:﹣【解析:-13【解析】【分析】 利用根与系数的关系可得出x 1+x 2=1,x 1•x 2=-3,将其代入1211+x x =1212x x x x +⋅中即可得出结论.【详解】∵x 1,x 2是方程x 2﹣x ﹣3=0的两根,∴x 1+x 2=1,x 1•x 2=﹣3, ∴1211+x x =1212x x x x +⋅=13-=﹣13. 故答案为:﹣13. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 三、解答题21.(1)这种水果今年每千克的平均批发价是24元;(2)每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.【解析】【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为()10120%12-=万元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元,可列出方程:12000010000010001x x -=+,求得x 即可.(2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值.【详解】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去).故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m 元,依题意由(1)知平均批发价为24元,则有()41241803003m w m -⎛⎫=-⨯+ ⎪⎝⎭260420066240m m =-+-, 整理得()260357260w m =--+,∵600a =-<,∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题. 22.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:AC=32,则9032321801802n r l πππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.23.(1)证明见解析;(2)2933()22cm p -. 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3.∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm p p 创=-=创=V 扇形 24.(1) 2x 50-x(2)每件商品降价20元,商场日盈利可达2100元.【解析】【分析】【详解】(1) 2x 50-x .(2)解:由题意,得(30+2x)(50-x)=2 100解之得x 1=15,x 2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x =20.答:每件商品降价20元,商场日盈利可达2 100元.25.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12. 在Rt △OBM 中, ∠COB=60°,OB=cos30MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.。
【必考题】初三数学上期中模拟试卷带答案
【必考题】初三数学上期中模拟试卷带答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =2.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣43.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 4.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )A .2020B .2019C .2018D .2017 5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .110 6.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1 B .-1 C .±1 D .27.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .8.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣39.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52 B .10 C .5D .15 10.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶311.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .71212.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab <0;②方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3;③4a+2b+c <0;④当x >1时,y 随x 值的增大而增大;⑤当y >0时,﹣1<x <3;⑥3a+2c <0.其中不正确的有_____.15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________16.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.17.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.19.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是_____°.20.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由. 23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.已知△ABC 在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;(3)求点A 旋转到点A ′所经过的路线长(结果保留π).25.如图,△ABC 的顶点坐标分别为A (0,1)、B (3,3)、C (1,3).(1) 画出△ABC 关于点O 的中心对称图形△A 1B 1C 1(2) 画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2,直接写出点C 2的坐标为______.(3) 若△ABC 内一点P (m ,n )绕原点O 逆时针旋转90°的对应点为Q ,则Q 的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.3.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.4.B解析:B【解析】【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.5.A解析:A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 7.D解析:D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.8.B【解析】【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答.【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称,∴m =﹣3,n =2.故选:B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.B解析:B【解析】【分析】 依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.10.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.11.B解析:B【解析】【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901=3604, 即转动圆盘一次,指针停在黄区域的概率是14, 故选B .【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.12.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.⑤【解析】【分析】①由图象可知a>0b<0则问题可解;②根据图象与x 轴交点问题可解;③由图象可知当x=2时对应的点在x 轴下方x=2时函数值为负;④由图象可知抛物线对称轴为直线x=1当x>1时y 随x 值解析:⑤【解析】【分析】①由图象可知,a>0,b<0,则问题可解;②根据图象与x 轴交点,问题可解;③由图象可知,当x=2时,对应的点在x 轴下方,x=2时,函数值为负;④由图象可知,抛物线对称轴为直线x=1,当x>1时,y 随x 值的增大而增大;⑤由图象可知,当y>0时,对应x>3或x<-1;⑥根据对称轴找到ab 之间关系,再代入a ﹣b+c =0,问题可解.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴在y 轴右侧,与y 轴交于负半轴,∴a >0,﹣2b a >0,c <0, ∴b <0,∴ab <0,说法①正确;②二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,∴方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3,说法②正确;③∵当x =2时,函数y <0,∴4a+2b+c <0,说法③正确;④∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x =1,∵图象开口向上,∴当x >1时,y 随x 值的增大而增大,说法④正确;⑤∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y <0时,﹣1<x <3,说法⑤错误;⑥∵当x =﹣1时,y =0,∴a ﹣b+c =0,∴抛物线的对称轴为直线x =1=﹣2b a,∴b =﹣2a ,∴3a+c =0,∵c <0,∴3a+2c <0,说法⑥正确.故答案为⑤.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数图象上点的坐标特征,解答关键是根据二次函数性质结合函数图象解答问题.15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V = , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.17.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒cos30AE OA ==︒tan 30OE AE =⋅︒=直尺的宽度:CE OC OE =-==【点睛】 考查垂径定理,熟记垂径定理是解题的关键.18.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====角三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,1902ACB CH DH CD ∴∠︒=,== 30A ∠︒Q =,2AC CH ∴==在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.19.【解析】试题分析:连结BC因为AB是⊙O的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD分别是过⊙O上点BC的切线∠BDC=110°所以CD=BD所以∠BCD=∠DBC=35°又∠AB解析:【解析】试题分析:连结BC,因为AB是⊙O的直径,所以∠ACB=90°,∠A+∠ABC=90°,又因为BD,CD分别是过⊙O上点B,C的切线,∠BDC=110°,所以CD=BD,所以∠BCD=∠DBC=35°,又∠ABD=90°,所以∠A=∠DBC=35°.考点:1.圆周角定理;2.切线的性质;3.切线长定理.20.【解析】试题分析:设小道进出口的宽度为x米依题意得(30-2x)(20-x)=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.三、解答题21.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.22.这个游戏对双方不公平,理由见解析.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:59;∴小明胜的概率为59,小亮胜的概率为49,∵59≠49,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.23.(1) 14;(2) 14【解析】【分析】 (1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14; (2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种, ∴李欣和张帆恰好选择同一线路游览的概率为41164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:AC=32,则9032321801802n rlπππ⨯===.考点:图形的旋转、扇形的弧长计算公式.25.(1)作图见解析;(2)作图见解析,(﹣3,1);(3)(﹣n,m).【解析】【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点连线即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;(3)利用(2)中对应点的规律写出Q的坐标.【详解】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2的坐标为(﹣3,1);(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(﹣n,m).故答案为:(﹣3,1),(﹣n,m).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
【必考题】初三数学上期中模拟试卷(含答案)
【必考题】初三数学上期中模拟试卷(含答案)一、选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°3.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)4.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上5.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -= B .213()24x += C .215()24x += D .215()24x -= 6.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .07.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 8.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120° 9.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 10.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个12.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 二、填空题13.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .14.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.15.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M ,则线段ME 的长度可取的整数值为___________________.16.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)17.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.18.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是 _________.19.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.20.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.三、解答题21.已知关于x 的方程2(31)30mx m x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.22.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?23.某公司委托旅行社组织一批员工去某风景区旅游,旅行社收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加一人,人均旅游费降低10元;但人均旅游费不低于550元,公司支付给旅行社30000元,求该公司参加旅游的员工人数.24.如图,四边形ABCD 内接于⊙O ,4OC =,42AC =.(1)求点O 到AC 的距离;(2)求ADC ∠的度数.25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD即可解决问题.【详解】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A(32,0),B(0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.4.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x+x=12x+x+14=1+14 215()24x+=.故选C【点睛】考点:配方的方法.6.C解析:C【解析】【分析】先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.【详解】解:把x=0代入方程得m²−5m+4=0,解得m₁=4,m₂=1,而a−1≠0,所以m=4.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.7.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k „,此时116k „且0k ≠; 综上,116k „.故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C .9.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.10.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确; ②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B .12.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.二、填空题13.【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD 为等边三角形∴CD=BC=BD=12cm 在Rt△ACB 中AB解析:【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.14.P >Q 【解析】∵抛物线的开口向下∴a<0∵∴b>0∴2a -b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b -2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c>0∴P=3b -2cQ=b解析:P >Q【解析】∵抛物线的开口向下,∴a <0, ∵02b a-> ∴b >0,∴2a-b <0, ∵02b a-= ∴b+2a=0, x=-1时,y=a-b+c <0. ∴102b bc --+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,∴c >0,∴3b+2c >0,∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0∴P >Q ,故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.15.345【解析】【分析】连接OE 交CD 与点M 根据矩形与菱形的性质由勾股定理求出OE 的长在旋转过程中求出OM 的取值范围进而得出ME 的取值范围进而求解【详解】如图连接OE 交CD 与点M∵矩形ABCD 对角线A解析:3,4,5【解析】【分析】连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解.【详解】如图,连接OE 交CD 与点M ,∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,∴90BAD ︒∠=,OA OB OC OD ===,∴由勾股定理知,10BD =,∴5OA OB OC OD ====,∵四边形OCED 为菱形,∴OE CD ⊥,132DM CD ==, ∴由勾股定理知,4OM =,即8OE =,∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3,当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5,∴35OM ≤≤,∵8OE =,∴35ME ≤≤,∴线段ME 的长度可取的整数值为3,4,5,故答案为:3,4,5.【点睛】本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.16.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】 底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr =列式进行计算即可得解.【详解】 解:圆锥的侧面积11641222==⨯⨯=lr ππ. 故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键. 17.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.18.【解析】【分析】先求出袋子中球的总个数及白球的个数再根据概率公式解答即可【详解】∵在一个不透明的口袋中装有3个红球1个白球共4个球∴任意摸出1个球摸到白球的概率是【点睛】本题考查了概率公式解题的关键 解析:14【解析】【分析】先求出袋子中球的总个数及白球的个数,再根据概率公式解答即可.【详解】∵在一个不透明的口袋中装有3个红球、1个白球,共4个球,∴任意摸出1个球,摸到白球的概率是14. 【点睛】本题考查了概率公式,解题的关键是熟练的掌握概率公式的知识点. 19.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根.20.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.【详解】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴2224+=OA OB∴OA=22.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键.三、解答题21.(1)证明见解析;(2)y=x2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,求出m的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m 为任何实数时,方程mx 2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx 2+(3m+1)x+3=0解得x 1=-3,x 2=-1m. ∵抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数, ∴m=1.∴抛物线的解析式为y=x 2+4x+3.考点:二次函数综合题.22.每件衬衫应降价20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x 元.根据题意,得 (40-x )(20+2x )=1200,整理,得x 2-30x+200=0,解得x 1=10,x 2=20.∵“扩大销售量,减少库存”,∴x 1=10应舍去,∴x=20.答:每件衬衫应降价20元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23.该公司有50人参加旅游.【解析】【分析】设该公司有x 人参加旅游,由308002400030000⨯=<,可得出x 30>,分30x 55<≤及x 55>两种情况考虑,由总价=单价⨯数量,可得出关于x 的一元二次方程(一元一次方程),解之即可得出结论.【详解】设该公司有x 人参加旅游.308002400030000⨯=<Q ,x 30∴>.()308005501055(+-÷=人).根据题意得:当30x 55<≤时,有()x 80010x 3030000⎡⎤--=⎣⎦,化简得:2x 110x 30000-+=,解得:1x 50=,2x 60(=舍去);当x 55>时,有550x 30000=, 解得:600x (11=舍去). 答:该公司有50人参加旅游.【点睛】本题考查了一元二次方程的应用以及一元一次方程的应用,分30x 55<≤及x 55>两种情况,列出关于x 的方程是解题的关键.24.(1)22;(2)135°.【解析】【分析】(1)作OM ⊥AC 于M ,根据等腰直角三角形的性质得到AM=CM=22,根据勾股定理即可得到结论;(2)连接OA ,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【详解】(1)作OM AC ⊥于M ,∵42AC =,∴22AM CM ==,∵4OC =,∴2222OM OC MC =-=;(2)连接OA ,∵OM MC =,090OMC ∠=,∴045MOC MCO ∠=∠=,∵OA OC =,∴045OAM ∠=,∴090AOC ∠=,∴045B ∠=,∵0180D B ∠+∠=,∴0135D ∠=.【点睛】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.。
【必考题】初三数学上期中模拟试卷带答案(1)
【必考题】初三数学上期中模拟试卷带答案(1)一、选择题1.下列事件中,属于必然事件的是( ) A .随时打开电视机,正在播新闻 B .优秀射击运动员射击一次,命中靶心 C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形2.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 3.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣4 4.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°5.已知()222226x y y x +-=+,则22xy +的值是( )A .-2B .3C .-2或3D .-2且36.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A .252元/间B .256元/间C .258元/间D .260元/间7.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm8.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( )A .B .C .D .10.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A.30ºB.35ºC.25ºD.60º二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C的坐标是_____.15.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论是________.16.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为_____.17.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .19.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为¼BB',则图中阴影部分的面积为_____.20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 22.已知关于x 的方程2(31)30mx m x +++=. (1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.23.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据: 摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 63 124178 302 481 599 1803 摸到白球的频率m n0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P (摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?25.如图,四边形ABCD 内接于⊙O ,4OC =,42AC =. (1)求点O 到AC 的距离; (2)求ADC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可. 详解:A .是随机事件,故A 不符合题意; B .是随机事件,故B 不符合题意; C .是随机事件,故C 不符合题意; D .是必然事件,故D 符合题意. 故选D .点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.2.B解析:B 【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.3.D解析:D 【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.4.D解析:D 【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°.故选D .点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.5.B解析:B 【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260xyx y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.6.B解析:B 【解析】 【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况. 【详解】设每天的利润为W 元,根据题意,得: W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭2112984164x x =-+-()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元, 又∵想让客人得到实惠, ∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B . 【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.A解析:A 【解析】 【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r . 【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=, 30A B ︒∴∠∠==, 1452OE OA cm ∴==,∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.B解析:B【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.9.C解析:C 【解析】 【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题. 【详解】 当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误, 当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误, 故选C . 【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B解析:B 【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心. 解:如图,连接AD 、BE ,作线段AD 、BE 的垂直平分线, 两线的交点即为旋转中心O ′.其坐标是(0,1). 故选B..11.B解析:B 【解析】分析:可先根据一次函数的图象判断a 的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A .由一次函数y =ax ﹣a 的图象可得:a <0,此时二次函数y =ax 2﹣2x +1的图象应该开口向下.故选项错误;B .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上,对称轴x =﹣22a->0.故选项正确; C .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上,对称轴x =﹣22a->0,和x 轴的正半轴相交.故选项错误; D .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上.故选项错误. 故选B .点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y =ax ﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.A解析:A 【解析】 【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=o ,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB 为等边三角形,60AOB ∴∠=o ,又12C AOB ∠=∠Q , 16030.2C ∴∠=⨯=o o 故选:A .【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.(40382)【解析】【分析】先求出开始时点C的横坐标为OC=1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C 的位置然后求出翻转B前进的距离连接CE过点D作解析:(4038,23)【解析】【分析】先求出开始时点C的横坐标为12OC=1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C的位置,然后求出翻转B前进的距离,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,求出CE=2CH=2×CDsin60°=23,即可得出点C的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×33,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C 所在的位置是解题的关键.15.②③④【解析】【分析】由抛物线与x 轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a=−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义. 16.【解析】【分析】由圆内接四边形的性质先求得∠D 的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD 是⊙O 的内接四边形∴∠B +∠D =180°∴∠D =180°-135°=45°∴∠AOC =90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D 的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠B +∠D =180°,∴∠D =180°-135°=45°,∴∠AOC =90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.17.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.18.45【解析】【分析】【详解】试题分析:根据概率的意义用符合条件的数量除以总数即可即10-210=45考点:概率解析:【解析】【分析】【详解】 试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率 19.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S 阴=S 扇形BDB′-S△DBC -S△DB′C 计算即可详解:△ABC 绕AC 的中点D 逆时针旋转90°得到△AB′C 此时点A′在斜边 解析:32π 【解析】 分析:连接DB 、DB′,先利用勾股定理求出DB′=2212=5+,A′B′=2222=22+,再根据S 阴=S 扇形BDB′-S △DBC -S △DB ′C ,计算即可.详解:△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B ′C',此时点A′在斜边AB 上,CA′⊥AB ,连接DB 、DB′,则2212=5+,A 2222=22+∴S 阴=9052531222222=36042()ππ⨯-⨯÷-÷-. 故答案为5342π-. 点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【解析】试题解析:连接OEAE∵点C 为OA 的中点∴∠CEO=30°∠EOC=60°∴△AEO 为等边三角形∴S 扇形AOE=∴S 阴影=S 扇形AOB-S 扇形COD-(S 扇形AOE-S△COE)===312π+. 【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 432ππ-+=3 122π+三、解答题21.(1)﹣2,1;(2)1;(3)x2﹣1>2x﹣3【解析】【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x、y的值,再求x+y的值;(3)将两式相减,再配方即可作出判断.【详解】解:(1)x2﹣4x+5=(x﹣2)2+1;(2)x2﹣4x+y2+2y+5=0,(x﹣2)2+(y+1)2=0,则x﹣2=0,y+1=0,解得x=2,y=﹣1,则x+y=2﹣1=1;(3)x2﹣1﹣(2x﹣3)=x2﹣2x+2=(x﹣1)2+1,∵(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x 2﹣1>2x ﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.22.(1)证明见解析;(2)y=x 2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx 2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数,求出m 的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m 2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m 为任何实数时,方程mx 2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx 2+(3m+1)x+3=0解得x 1=-3,x 2=-1m. ∵抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数, ∴m=1.∴抛物线的解析式为y=x 2+4x+3.考点:二次函数综合题.23.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【解析】【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y =答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.24.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】() 1∵摸到白球的频率为()0.650.620.5930.6040.6010.5990.60170.6++++++÷≈, ∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等).【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.25.;(2)135°.【解析】【分析】(1)作OM ⊥AC 于M ,根据等腰直角三角形的性质得到即可得到结论;(2)连接OA ,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【详解】(1)作OM AC ⊥于M ,∵AC =∴AM CM ==∵4OC =,∴OM ==(2)连接OA ,∵OM MC =,090OMC ∠=,∴045MOC MCO ∠=∠=,∵OA OC =,∴045OAM ∠=,∴090AOC ∠=,∴045B ∠=,∵0180D B ∠+∠=,∴0135D ∠=.【点睛】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.。
【典型题】初三数学上期中模拟试题(附答案)
【典型题】初三数学上期中模拟试题(附答案)一、选择题1.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.下列交通标志是中心对称图形的为( )A .B .C .D .3.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )A .2020B .2019C .2018D .2017 4.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .1105.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm 6.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 7.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .8.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k <9.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019 D .202010.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 4311.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .19 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x += D .()247x +=二、填空题13.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .14.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.15.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<o o,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.16.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.17.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.18.如图,O e 是ABC V 的外接圆,30C ∠=o ,2AB cm =,则O e 的半径为________cm .19.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.20.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有_____.(填序号)三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分),A 组:75≤x <80;B 组:80≤x <85;C 组:85≤x <90;D 组:90≤x <95;E 组:95≤x <100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频数分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.23.解方程(1)2250x x --= (2) x (3-2x )= 4 x -624.如图,△ABC 的顶点坐标分别为A (0,1)、B (3,3)、C (1,3).(1) 画出△ABC 关于点O 的中心对称图形△A 1B 1C 1(2) 画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2,直接写出点C 2的坐标为______.(3) 若△ABC 内一点P (m ,n )绕原点O 逆时针旋转90°的对应点为Q ,则Q 的坐标为______.25.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元(0)x >时,平均每天可盈利y 元.()1写出y 与x 的函数关系式;()2当该专卖店每件童装降价多少元时,平均每天盈利400元?()3该专卖店要想平均每天盈利600元,可能吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.3.B解析:B【解析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.4.A解析:A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.5.A解析:A【解析】【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r.过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==, 1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】 解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.7.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题.当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误,当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误,故选C .【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根, ∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.9.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.10.A解析:A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC ,∠A ′=∠BAC=30°,∠A ′B ′C=∠B=60°,于是可判断△CAA ′为等腰三角形,所以∠CAA′=∠A ′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B ′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2, ∵△ABC 绕点C 顺时针旋转得到△A′B′C′,∴A ′B ′=AB=2,B′C=BC=1,A′C=AC ,∠A ′=∠BAC=30°,∠A ′B ′C=∠B=60°, ∴△CAA ′为等腰三角形,∴∠CAA ′=∠A ′=30°,∵A 、B′、A ′在同一条直线上,∴∠A ′B ′C=∠B ′AC+∠B ′CA ,∴∠B ′CA=60°-30°=30°,∴B ′A=B ′C=1,∴AA ′=AB ′+A ′B ′=2+1=3.故选:A .【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.11.A解析:A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm 在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.14.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△D EB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.15.15°或60°【解析】【分析】分情况讨论:①DE⊥BC②AD⊥BC然后分别计算的度数即可解答【详解】解:①如下图当DE⊥BC时如下图∠CFD=60°旋转角为:=∠CAD=60°-45°=15°;(2解析:15°或60°.【解析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:α=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:α=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键. 16.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO绕点C逆时针旋转90°得到△CBD′则BD′=OD=2∴点D坐标为(46);当将点C与点O重合时点C向下平移4个单位得到△解析:(4,2).【解析】【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.17.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答18.2【解析】【分析】作直径AD连接BD得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB发现等边△AOB)【详解】作直径AD连接BD 得:∠ABD=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【详解】作直径AD,连接BD,得:∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.19.15【解析】分析:先判断出∠BAD=150°AD=AB 再判断出△BAD 是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC 绕点A 逆时针旋转150°得到△ADE ∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB ,再判断出△BAD 是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC 绕点A 逆时针旋转150°,得到△ADE ,∴∠BAD=150°,AD=AB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是顶角为150°的等腰三角形,∴∠B=∠BDA ,∴∠B=12(180°-∠BAD )=15°, 故答案为15°. 点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD 是等腰三角形是解本题的关键.20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误; 观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a =1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23. 【解析】【分析】(1)用A 组人数除以A 组所占百分比得到参加初赛的选手总人数,用总人数乘以B 组所占百分比得到B 组人数,从而补全频数分布直方图;(2)用360度乘以C 组所占百分比得到C 组对应的圆心角度数,用E 组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23.22.(1)商场每件衬衫降价4元,则商场每天可盈利1008元;(2)每件衬衫应降价20元;(3)不可能.理由见解析.【解析】【分析】(1)根据题意得到每天的销售量,然后由销售量×每件盈利进行解答;(2)利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可;(3)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)410205⎛⎫⨯+⎪⎝⎭×(40-4)=1008(元).答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20,∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x2-30x+400=0,∵Δ=900-4×400<0,∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23.(1) 1211x x ==;(2) 123,22x x ==-. 【解析】【分析】 (1)将方程2250x x --=移项得225x x -=,在等式两边同时加上一次项系数一半的平方1,即可得出结论;(2)将方程()3246x x x =--移项得32640x x x +-=-,提公因式后,即可得出结论.【详解】解:(1)2250x x --=,移项,得:225x x -=,等式两边同时加1,得:2216x x -+=,即:()216x -=,解得:11x =21x =,(2)()3246x x x =--,移项,得:32640x x x +-=-,提公因式,得:3220xx +=-, 解得:13 2x =,22x =-,故答案为:(1)11x =21x =;(2)132x =,22x =-. 【点睛】本题考查配方法、因式分解法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.因式分解法的一般步骤:(1)移项,将方程右边化为0;(2)再把左边运用因式分解法化为两个一次因式的积;(3)分别令每个因式等于零,得到一元一次方程组;(4)分别解这两个一元一次方程,得到方程的解.24.(1)作图见解析;(2)作图见解析,(﹣3,1);(3)(﹣n ,m ).【解析】【分析】(1)根据关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点连线即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到点C 2的坐标;(3)利用(2)中对应点的规律写出Q 的坐标.【详解】(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作,点C 2的坐标为(﹣3,1);(3)若△ABC 内一点P (m ,n )绕原点O 逆时针旋转90°的对应点为Q ,则Q 的坐标为(﹣n ,m ).故答案为:(﹣3,1),(﹣n ,m ).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)2220400y x x =-++;(2)10元:(3)不可能,理由见解析【解析】【分析】 ()1根据总利润=每件利润⨯销售数量,可得y 与x 的函数关系式;()2根据()1中的函数关系列方程,解方程即可求解;()3根据()1中相等关系列方程,判断方程有无实数根即可得.【详解】解:()1根据题意得,y 与x 的函数关系式为()()22026040220400y x x x x =+--=-++; ()2当400y =时,2400220400x x =-++,解得110x =,20(x =不合题意舍去).答:当该专卖店每件童装降价10元时,平均每天盈利400元;()3该专卖店不可能平均每天盈利600元.当600y =时,2600220400x x =-++,整理得2101000x x -+=,2(10)411003000=--⨯⨯=-<Q V ,∴方程没有实数根,答:该专卖店不可能平均每天盈利600元.【点睛】本题主要考查二次函数的应用、一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.。
初三数学上期中模拟试题含答案
一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.下列图形中,是中心对称图形的是( )A .B .C .D .3.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .84.如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .3,1)-B .(1,3)C .(2,0)D .(3,0) 5.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A .正方形B .矩形C .菱形D .矩形或菱形 6.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--7.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 8.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( )A .顶点是()3,2B .开口向上C .与x 轴有两个交点D .对称轴是3x = 9.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+10.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D . 11.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 12.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 13.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 14.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定二、填空题15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()b a b c a ++的值为______.x… 3- 2- 0 … y … 3 1.68- 1.68-… 17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.18.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 19.若二次式236x -的值与2x -的值相等,则x 的值为_______.20.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.三、解答题21.如图,已知△ABC 的三个顶点的坐标分别为A (﹣6,0)、B (﹣2,3)、C (﹣1,0).(1)请直接写出与点B 关于坐标原点O 的对称点B1的坐标;(2)将△ABC 绕坐标原点O 顺时针旋转90°.画出对应的△A′B′C′图形,直接写出点A 的对应点A′的坐标;22.在图中网格上按要求画出图形,并回答下列问题:(1)把△ABC 平移,使点A 平移到图中点D 的位置,点B 、C 的对应点分别是点E 、F ,请画出△DEF ;(2)画出△ABC 关于点D 成中心对称的△111A B C ;(3)△DEF 与△111A B C (填“是”或“否”)关于某个点成中心对称,如果是,请在图中画出对称中心,并记作点O .23.已知二次函数21122y x kx k =++-. (1)求证:不论k 为任何实数,该二次函数的图象与x 轴总有公共点;(2)若该二次函数的图象与x 轴有两个公共点A ,B ,且A 点坐标为()3,0,求B 点坐标.24.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.25.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).26.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】解:A 选项是轴对称图形,不是中心对称图形,故本选项不符合题意;B 选项不是轴对称图形,是中心对称图形,故本选项不符合题意;C 选项不是轴对称图形,是中心对称图形,故本选项不符合题意;D 选项既是轴对称图形,也是中心对称图形,故本选项符合题意.故选D .【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.2.C解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的概念.3.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.4.A解析:A【分析】BC=,再利用旋转的性质得到如图,利用含30度的直角三角形三边的关系得到1'∠︒,然后利用第四象限点的坐3,1,90''''==OC OC B C BC B C O BCO====∠标特征写出点B′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,3331BC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 5.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.C解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P (-3,-5)关于原点对称的点的坐标是(3,5),故选C .点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数. 7.B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.8.C解析:C【分析】根据函数图象和性质逐个求解即可.【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.B解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.10.D解析:D【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案.【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.11.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.12.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.13.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 14.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 二、填空题15.【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0 解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 16.6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1则−=−1所以=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3, ∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.17.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 19.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】 本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.三、解答题21.(1)B1的坐标为(2,-3);(2)图见解析,A′的坐标为(0,6).【分析】(1)直接利用关于原点对称点的性质得出答案;(2)利用旋转的性质得出对应点位置进而得出图形,再写出A′的坐标即可.【详解】解:(1)点B关于坐标原点O对称的点B1的坐标为:(2,-3);(2)如下图所示,△A′B′C′即为所求作的三角形,A′的坐标为(0,6).【点睛】本题考查了利用旋转变换作图,坐标与图形变化——旋转.熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.(1)见解析;(2)见解析;(3)是,见解析【分析】(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;(3)连接两组对应点即可得.【详解】(1)如图所示,△DEF即为所求.(2)如图所示,△A 1B 1C 1即为所求;(3)如图所示,△DEF 与△A 1B 1C 1是关于点O 成中心对称,故答案为:是.【点睛】本题主要考查了作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.23.(1)见解析;(2)B (1-,0)【分析】(1)令y=0得到关于x 的一元二次方程,再用k 表示出该方程的判别式,可判断出其根的情况,可证得结论;(2)把A 点坐标代入可求得抛物线的解析式,再令0y =,可求得方程的解,可得出B 点坐标.【详解】(1)证明:令0y =可得:211022x kx k ++-=, ∵12a =,b k =,12c k =-, ∵22114422b ac k k ⎛⎫=-=-⨯⨯- ⎪⎝⎭221k k =-+ ()210k =-≥,∴不论k 为任何实数,方程211022x kx k ++-=, 二次函数21122y x kx k =++-的图象与x 轴总有公共点; (2)解:∵A (3,0)在抛物线21122y x kx k =++-上, ∴21133022k k ⨯++-=,解得1k =-,∴二次函数的解析式为21322y x x =--, 令0y =,即213022x x --=, 解得3x =或1x =-,∴B 点坐标为(1-,0).【点睛】本题主要考查了二次函数与方程的关系,掌握二次函数图象与x 轴的交点横坐标为对应一元二次方程的两根是解题的关键.24.(1)4m =,B 的坐标为()4,0;(2)14x <<.【分析】(1)将点A 的坐标代入解析式即可求得m 的值,然后令y=0,求得x 的值即为B 点的横坐标;(2)先根据A 、B 两点的坐标求出二次函数的解析式,再画出函数图像,最后直接写出解集即可.【详解】解:(1)∵y x m =-+的图象过点()1,3A , ∴31m =-+, ∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0;(2)∵二次函数2y ax bx =+图象过A ,B 两点∴23=a+b 0=44a b ⎧⎨+⎩ ,解得:=-14a b ⎧⎨=⎩画出函数图像如图:由函数图像可得不等式2ax bx x m +>-+的解集为:14x <<.【点睛】本题考查了一次函数图像的性质、求二次函数的解析式及利用函数图像确定不等式的解集,掌握数形结合思想是解答本题的关键.25.(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.26.(1)14x =24x =2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=4x -=14x =,24x =(2)2(2)6(2)80x x ---+= []2(2)31x --= 51x =±, 16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】初三数学上期中模拟试题(及答案)一、选择题1.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 2.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0; ②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a -<0,其中,正确结论的个数是( )A .1B .2C .3D .43.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .4.下列交通标志是中心对称图形的为( )A .B .C .D .5.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .06.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h7.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶38.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)9.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14 C .15 D .1610.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 11.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( ) A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数 B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AB=BC C .AC ⊥BD D .AC=BD二、填空题13.如图,将Rt ABC V 绕直角顶点C 顺时针旋转90o ,得到DEC V ,连接AD ,若25BAC ∠=o ,则BAD ∠=______.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.16.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.17.如图,AD 为ABC V 的外接圆O e 的直径,如果50BAD ∠=︒,那么ACB =∠__________.18.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.20.若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为______.三、解答题21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式;(2)求△MCB 的面积MCB S V .(3)在坐标轴上,是否存在点N ,满足△BCN 为直角三角形?如存在,请直接写出所有满足条件的点N .22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.()1求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;()2求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?()3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)23.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.24.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=o ,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件. (1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x -=,故x -2=3或x -2=-3,解得:x 1=5,x 2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.2.B解析:B【解析】【分析】【详解】∵抛物线与y 轴交于正半轴,∴c >0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a>0,④错误; 故选B.3.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B .【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.5.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.6.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.7.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.8.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..9.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.10.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.11.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.12.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题13.【解析】【分析】根据旋转的性质可得AC=CD再判断出△ACD是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD 可得答案【详解】∵Rt△ABC绕其直角顶点C解析:70o【解析】【分析】根据旋转的性质可得AC=CD,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD可得答案.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°∘.【点睛】本题考查了旋转的性质、等腰直角三角形的判定与性质,熟练掌握相关性质并准确识图是解题的关键.14.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm 在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.15.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根 解析:1m >【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m >故填:1m >.【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.16.【解析】试题分析:解:连接OD ∵CD 是⊙O 切线∴OD ⊥CD ∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB ⊥OD ∴∠AOD=90°∵OA=OD ∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.17.40°【解析】【分析】连接BD 如图根据圆周角定理得到∠ABD=90°则利用互余计算出∠D=40°然后再利用圆周角定理得到∠ACB 的度数【详解】连接BD 如图∵AD 为△ABC 的外接圆⊙O 的直径∴∠ABD解析:40°.【解析】【分析】连接BD ,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB 的度数.【详解】连接BD ,如图,∵AD 为△ABC 的外接圆⊙O 的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40°.【点睛】本题考查了圆周角定理.熟练掌握并运用圆周角定理是解决本题的关键.18.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.19.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概 解析:14【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为:14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答 20.-1【解析】【分析】根据关于x 的一元二次方程x2+2x ﹣m=0有两个相等的实数根可知△=0求出m 的取值即可【详解】解:由已知得△=0即4+4m=0解得m=-1故答案为-1【点睛】本题考查的是根的判别解析:-1【解析】【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题21.(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOBS S S S =V V V 梯形﹣﹣即可解决问题. (3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOBS S S S =V V V 梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15. (3)存在.如图2中,∵OC=OB=5,∴△BOC 是等腰直角三角形,①当C 为直角顶点时,N 1(﹣5,0).②当B 为直角顶点时,N 2(0,﹣5).③当N 为直角顶点时,N 3(0,0).综上所述,满足条件的点N 坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质22.()()21y 5x 800x 2750050x 100=-+-≤≤;()2当x 80=时,y 4500=最大值;()3 销售单价应该控制在82元至90元之间.【解析】【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:()()y x 50505100x ⎡⎤=-+-⎣⎦()()x 505x 550=--+25x 800x 27500=-+-()2y 5x 800x 2750050x 100∴=-+-≤≤;()22y 5x 800x 27500=-+-25(x 80)4500=--+a 50=-<Q ,∴抛物线开口向下.50x 100≤≤Q ,对称轴是直线x 80=,∴当x 80=时,y 4500=最大值;()3当y 4000=时,25(x 80)45004000--+=,解得1x 70=,2x 90=.∴当70x 90≤≤时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得()505x 5507000-+≤,解得x 82≥.82x 90∴≤≤,50x 100≤≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.23.60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】【分析】根据规律求得图10中黑点个数是6×10=60个;图n 中黑点个数是6n 个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n 个点阵中有:n×3(n ﹣1)+1=3n 2﹣3n+1;(2)代入271,列方程,方程有解则存在这样的点阵.【详解】解:图10中黑点个数是6×10=60个;图n 中黑点个数是6n 个, 故答案为60个,6n 个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个, 第3个点阵中有:3×6+1=17个, 第4个点阵中有:4×9+1=37个, 第5个点阵中有:5×12+1=61个, …第n 个点阵中有:n×3(n ﹣1)+1=3n 2﹣3n+1, 故答案为61,3n 2﹣3n+1;(2)3n 2﹣3n+1=271,n 2﹣n ﹣90=0,(n ﹣10)(n+9)=0,n 1=10,n 2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.24.经过2秒后PBQ ∆的面积等于24cm【解析】【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【详解】过点Q 作QE PB ⊥于E ,则90QEB ∠=︒,如图所示:30ABC ∠=︒Q ,2QE QB ∴=12PQB S PB QE ∆∴=g g 设经过t 秒后PBQ ∆的面积等于2 4cm ,则62PB t QB t QE t =-==,,. 根据题意,16 4.2t t -=g g () 212 680,24t t t t -+===,.当4t =时,28,87t =>,不合题意舍去,取2t =.答:经过2秒后PBQ ∆的面积等于24cm .【点睛】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程.25.(1)200-20x ;(2)15元.【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量; (2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700,整理得 x 2-8x +15=0,解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x =5.所以售价为10+5=15(元),答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.。