中考二次函数解决利润应用题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学挑战满分知识点

二次函数应用题

题型一、与一次函数结合

销售总利润=利润×销售量

(利润=售价-成本)

1.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).

(1)求y与x之间的函数关系式.

(2)当销售价定为多少元时,每天的销售利润最大最大利润是多少

(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要

每天获得150元的销售利润,销售价应定为多少元

(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,

则y=﹣2x2+120x﹣1600.

由题意,有,解得20≤x≤40.

故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;

(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,

∴当x=30时,y有最大值200.

故当销售价定为30元/千克时,每天可获最大销售利润200元;

(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,

整理,得x2﹣60x+875=0,

解得x1=25,x2=35.

∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.

故当销售价定为25元/千克时,该农户每天可获得销售利润150元

2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.

(1)试求y与x之间的关系式;

(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润每月的最大利润是多少

解:(1)依题意设y=kx+b,则有

所以y=-30x+960(16≤x≤32).

(2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16) =30(-x2 +48x-512)

=-30(x-24)2 +1920.所以当x=24时,P有最大值,最大值为1920.

答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.

某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;

(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少

解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象得

⎩⎨

⎧=+=+3015050130b k b k 解得 ⎩⎨⎧=-=1801b k

∴函数关系式为y =-x +180.

(2)W =(x -100) y =(x -100)( -x +180) =-x2+280x -18000 =-(x -140) 2+1600

当售价定为140元, W 最大=1600.

∴售价定为140元/件时,每天最大利润W =1600元

某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB ﹣﹣BC ﹣﹣CD 所示(不包括端点A ).

(1)当100<x <200时,直接写y 与x 之间的函数关系式: y=﹣+8 .

O

(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润

点:

二次函数的应用

分析:(1)利用待定系数法求出当100<x<200时,y与x之间的函数关系式即可;

(2)根据当0<x≤100时,当100<x≤200时,分别求出获利W与x的函数关系式,进而求出最值即可;

(3)根据(2)中所求得出,﹣(x﹣150)2+450=418求出即可.

解答:解;(1)设当100<x<200时,y与x之间的函数关系式为:y=ax+b,

解得:

∴y与x之间的函数关系式为:y=﹣+8;

故答案为:y=﹣+8;

(2)当采购量是x千克时,蔬菜种植基地获利W元,

当0<x≤100时,W=(6﹣2)x=4x,

当x=100时,W有最大值400元,

当100<x≤200时,

W=(y﹣2)x

=(﹣+6)x

=﹣(x﹣150)2+450,

∵当x=150时,W有最大值为450元,

综上所述,一次性采购量为150千克时,蔬菜种植基地能获得最大利润为450元;

(3)∵418<450,

∴根据(2)可得,﹣(x﹣150)2+450=418

解得:x1=110,x 2=190,

答:经销商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润.

点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及一元二次方程的解法等知识,利用数形结合以及分段讨论得出是解题关键.

5.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:

若日销售量y是销售价x的一次函数.

⑴求出日销售量y(件)与销售价x(元)的

函数关系式;

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元此时每日销

售利润是多少元

相关文档
最新文档