大一物理课后习题答案

合集下载

大学物理课后习题答案

大学物理课后习题答案

第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。

因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。

AOP ∆是边长为a 的等边三角形。

已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。

大学物理课后题答案

大学物理课后题答案

习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。

由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。

[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。

A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。

[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。

[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。

中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。

求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理课后习题及答案(1-4章)含步骤解

大学物理课后习题及答案(1-4章)含步骤解
液面下降的速度,即
,根据流量守恒
,
(2)当
(3)当
时,
时,

,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =


= 2Ԧ − 2 Ԧ = −2Ԧ


1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,



= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+


≈ 0.04(m)
(1)角加速度 =
由 =




=
0−2×1500÷60
50
由 =


=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

直的平面上有一点 P,它到板的距离为 x 。求 P 点的磁感应强度的大小。
解: 取如图坐标系,在电流平板上取一条形平面,其在 P 点产生的磁场为
dB = 0dI =
0
I0 2a
dy

dB
的方向垂直
r

2r 2 x2 + y 2
由于电流平板相对 x 轴对称,所以在 P 点的总磁感应强度 B
x 轴的分量: Bx = dBx = 0 ;
B = 0 I (3 + 2 ) 4 2a b
6、如图,流出纸面的电流为 2I,流进纸面的电流为 I, 请写出每一个线圈中的环路公式。 解:根据线圈的绕向和线圈中电流和的方向是否满足右 手螺旋定则来判断。
L1
2I
L3
I L2
L4
所以由磁场中的安培环路定理有:
(A) H • dl = −2I
(B) H • dl = −I
解: 因为截流圆线圈轴线上的磁场
B=
0 IR2
3
2(R2 + x2 ) 2
而 I = 2R 2 = R
B
=
Bx
=
0 R 3
2(R2
+
x
2
)
3 2
,B
的方向与 x
轴的正方向一致。
x
o
R
ω
14、设氢原子基态的电子轨道半径为 a0,求由于电子的轨道运动(如图)在原子核处(圆心处)
产生的磁感强度的大小和方向. 解:①电子绕原子核运动的向心力是库仑力提供的.
值不为零。
18、如图所示,一无限长载流平板宽度为 a,线电流密
度(即沿 x 方向单位长度上的电流)为 ,求与平板共面且

大学物理(上)课后习题答案解析

大学物理(上)课后习题答案解析

第1章质点运动学 P211.8一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。

⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;<5>计算t =0s 到t =4s 内质点的平均加速度;<6>求出质点加速度矢量的表示式,计算t =4s 时质点的加速度<请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式>。

解:〔1j t t i t r)4321()53(2-+++=m⑵1=t s,2=t s 时,j i r5.081-=m ;2114r i j =+m∴213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+∴140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ <5> 0t =s 时,033i j =+v ;4t =s 时,437i j =+v<6> 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。

1.9质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。

质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。

解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a⑵当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。

大学物理上册课后习题答案

大学物理上册课后习题答案

大学物理上册课后习题答案大学物理上册课后习题答案大学物理是一门重要的基础学科,它为我们提供了理解自然界的物质和能量运动规律的工具。

然而,学习物理并不仅仅是理论知识的学习,更需要通过实践和习题的解答来巩固和应用所学的知识。

本文将为大家提供大学物理上册课后习题的答案,希望能够帮助大家更好地学习和理解物理知识。

第一章:运动的描述1. 一个物体从静止开始做匀加速直线运动,经过2秒后速度达到10m/s,求物体的加速度和位移。

答案:加速度a = (10m/s - 0m/s) / 2s = 5m/s²,位移s = (0m/s + 10m/s) / 2 ×2s = 10m。

2. 一个物体做直线运动,已知它的初速度为20m/s,加速度为4m/s²,求它在5秒内的位移。

答案:位移s = 20m/s × 5s + 1/2 × 4m/s² × (5s)² = 100m + 50m = 150m。

第二章:力学1. 一个质量为2kg的物体受到一个10N的水平力,求物体的加速度。

答案:根据牛顿第二定律F = ma,可得加速度a = F / m = 10N / 2kg = 5m/s²。

2. 一个质量为0.5kg的物体受到一个向上的力10N和一个向下的力5N,求物体的加速度。

答案:合力F = 10N - 5N = 5N,根据牛顿第二定律F = ma,可得加速度a = F / m = 5N / 0.5kg = 10m/s²。

第三章:能量守恒1. 一个质量为0.1kg的物体从地面上抛起,初速度为10m/s,求物体达到最高点时的动能、势能和总机械能。

答案:最高点时,物体的速度为0,所以动能为0;势能由重力势能计算,势能mgh = 0.1kg × 9.8m/s² × h,总机械能为动能和势能之和。

2. 一个质量为2kg的物体从高度为5m的斜面上滑下,摩擦系数为0.2,求物体滑到底部时的动能损失。

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

大学物理课后习题及答案(2)

大学物理课后习题及答案(2)

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

大学物理课后答案第1章质点运动学习题解答

大学物理课后答案第1章质点运动学习题解答
~
,解得
(2) , ,
1-13质点M作平面曲线运动,自O点出发经图示轨迹运动到C点。图中,OA段为直线,AB、BC段分别为不同半径的两个1/4圆周。设 时,M在 点,已知运动方程为 (SI),求 s时刻,质点M的切向加速度和法向加速度的大小。
解: 时 此时质点在大圆上


1-14一质点沿半径为 的圆周按 的规律运动,其中 和 都是常数。求:(1)质点在 时刻的加速度;(2) 为何值时,加速度在数值上等于 ;(3)当加速度大小为 时质点已沿圆周运行了几圈
解:

&
1-8一艘正在沿直线行驶的快艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即 ,式中 为正常数。试证明快艇在关闭发动机后又行驶 距离时的速度为 ,式中 是发动机关闭瞬时的速度。
解:

1-9一飞轮的转速在5s内由900rev/min均匀地减到800rev/min。求:(1)飞轮的角加速度;(2)在此5s内飞轮的总转数;(3)再经几秒飞轮将停止转动。
解: ,即
~
1-5一质点在 平面内运动,运动方程为 (SI)。(1)求质点运动的轨道方程并画出运动轨道;(2)计算1s末和2s末质点的瞬时速度和瞬时加速度;(3)在什么时刻质点的位置矢量与其速度矢量恰好垂直这时,它们的 、 分量各为多少(4)在什么时刻质点离原点最近算出这一距离。
解: , ,
(1) ,
消t,得轨道方程: ,
其曲线为开口向下的抛物线,如右图。
(2) ,

(3) ,
*
解得: ,
时, , , ,
时, , , ,
以上物理量均为国际单位。
(4)
令 ,解得
1-6一物体沿 轴运动,其加速度和位置的关系满足 (SI)。物体在 处的速度为10 m/s,求物体的速度和位置的关系。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理上册课后练习答案解析

大学物理上册课后练习答案解析

初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。

式中x 、y 的单位为m , t 的单位为s 。

试求: (1)初速度的大小和方向;(2)加速度的大小和方向。

分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。

一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。

解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。

大学物理课后习题答案

大学物理课后习题答案

大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。

(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。

(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。

解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。

大学物理学课后习题参考答案

大学物理学课后习题参考答案

习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)
则 又 得 飞轮总共转过 (圈) (2)设飞轮再经过时间t停止
由 得则
7、在xy平面内有一运动质点,其运动学方程为:(SI) 则t时刻其速度为多少?其切向加速度的大小为多少?该质点运动的轨 迹是什么? 解:(1)
(2)速率: (3)两式平方后相加,, 轨迹为一半径为10m的圆。
8、一条河在某一段直线岸边有A、B两个码头,相距 1km ,甲、乙两人 需要从码头A到码头B,再立即由B返回。甲划船前去,船相对河水的速 度 4km/h,而乙沿岸步行,步行速度也为 4km/h ,如河水流速为 2km/h ,方向从A到B,试推算甲比乙晚多少分钟回到码头A? 解:由A到B船对地的速度大小:
2、质点在一直线上运动,其坐标与时间有如下关系: (SI) (A 为常 数),则在任意时刻 t 质点的加速度为多少?什么时刻质点的速度为零? 解:(1)
(SI) (2)令
有 得 (SBiblioteka ) (K=0,1,2……)3、一质点沿X 方向运动,其加速度随时间变化关系为:a=3+2t (SI), 如果初始时质点的速度 为 5m/s ,则当 t 为 3s 时,质点的速度为多少? 解:由
由B到A船对地的速度大小: 甲由A到B再回到A所需时间: 乙由A到B再回到A所需时间:
所以甲比乙晚十分钟回到码头A 。
9、轮船在水上以相对于水的速度航行,水流速度为,人相对于甲板以 速度行走。如人相对于岸静止,则、和的关系是怎样的? 解:
即 的关系为:
第一章 运动学
1、质点的运动方程为 (SI),则在t 由 0 至 4s 的时间间隔内,质点的位 移大小为多少?在 t 由0 到 4s 的时间间隔内质点走过的路程为多少? 解:本题质点在x方向作直线运动
(1) t1=0时,=0 t2=4(s) 时, =(m) ∴位移大小(m) (2 ) 令 得t=3 (s ) 即t=3 (s )时,质点拐弯沿x轴负向运动,则0~4(s)内质点走过 的路程:

大学_大学物理教程上册(范仰才著)课后答案

大学_大学物理教程上册(范仰才著)课后答案

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 在自由旋转的水平圆盘上,站一质量为m 的人。

圆盘的半径为R ,转动惯量为J ,角速度为ω。

如果这人由盘边走到盘心,求角速度的变化及此系统动能的变化。

2. 在半径为1R 、质量为M 的静止水平圆盘上,站一静止的质量为m 的人。

圆盘可无摩擦地绕过盘中心的竖直轴转动。

当这人沿着与圆盘同心,半径为2R (1R <)的圆周相对于圆盘走一周时,问圆盘和人相对于地面转动的角度各为多少?3 长m l40.0=、质量kg M 00.1=的匀质木棒,可绕水平轴O 在竖直平面内转动,开始时棒自然竖直悬垂,现有质量g m 8=的子弹以s m v /200=的速率从A 点射入棒中,A 点与O 点的距离为l 43,如图所示。

求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。

4. 1mol 的氢,在压强为1.0×105Pa ,温度为20℃时,其体积为0V 。

今使它经以下两种过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80℃,然后令它作等温膨胀,体积变为原体积的2倍;(2)先使它作等温膨胀至原体积的2倍,然后保持体积不变,加热使其温度升到80℃。

试分别计算以上两种过程中吸收的热量,气体对外作的功和内能的增量;并在Vp 图上表示两过程5、 1摩尔理想气体在400K 与300K 之间完成一个卡诺循环,在400K 的等温线上,起始体积为0.0010m 3,最后体积为0.0050m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。

6. 电荷量Q 均匀分布在半径为R 的球体内,试求:离球心r 处(r <R )的电势。

7. 半径为1r 、2r 的两个同心导体球壳互相绝缘,现把的+q 电荷量给予内球,求: (1) 外球的电荷量及电势;(2) 把外球接地后再重新绝缘,外球的电荷量及电势; (3) 然后把内球接地,内球的电荷量及外球的电势的改变。

8. 半径为0R 的导体球带有电荷Q ,球外有一层均匀介质同心球壳,其内、外半径分别为1R 和2R ,相对电容率为r ε,求:(1) 介质内、外的电场强度E 和电位移D; 介质内的电极化强度P和表面上的极化电荷面密度σ'9.一截面半径为R 的无限长圆柱导体,均匀的通有电流I ,求导体内外的磁场分布。

10. 两平行长直导线相距d=40cm ,通过导线的电流I 1=I 2=20A ,电流流向如图所示。

求 (1)两导线所在平面内与两导线等距的一点P 处的磁感应强度。

(2)通过图中斜线所示面积的磁通量(r 1=r 3=10cm ,l =25cm )。

11. 截面积为S 、密度为ρ的铜导线被弯成正方形的三边,可以绕水平轴转动,如图所示。

导线放在方向竖直向上的匀强磁场中,当导线中的电流为I 时,导线离开原来的竖直位置偏转一个角度θ而平衡。

求磁感应强度。

若S =2mm 2,ρ=8.9g/cm 3,θ=15°,I =10A ,磁感应强度大小为多少?12. 如图所示,无限长直导线中电流为i ,矩形导线框abcd 与长直导线共面,且ad //AB ,dc 边固定,ab 边沿da 及cb 以速度v无摩擦地匀速平动,设线框自感忽略不计,t =0时,ab 边与dc 边重合。

(1)如i =I 0,I 0为常量,求ab 中的感应电动势,ab 两点哪点电势高?(2)如t I i ωcos 0=,求线框中的总感应电动势。

13. 用很薄的云母片(n =1.58)覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹的位置上。

如果入射光波长为550nm ,试问此云母片的厚度为多少?14. 利用劈尖的等厚干涉条纹可以测得很小的角度。

今在很薄的劈尖玻璃板上,垂直地射入波长为589.3nm 的钠光,相邻暗条纹间距离为5.0nm ,玻璃的折射率为1.52,求此劈尖的夹角I 1'i15. 波长600nm 的单色光垂直照射在光栅上,第二级明条纹分别出现在sin θ=0.20处,第四级缺级。

试求: ⑴ 光栅常数(a +b )。

⑵ 光栅上狭缝可能的最小宽度a 。

⑶ 按上述选定的a 、b 值,在光屏上可能观察到的全部级数。

16. 自然光通过两个偏振化方向成60°角的偏振片后,透射光的强度为I 1。

若在这两个偏振片之间插入另一偏振片,它的偏振化方向与前两个偏振片均成30°角,则透射光强为多少?17. 水的折射率为1.33,玻璃的折射率为1.50。

当光由水中射向玻璃而反射时,起偏振角为多少?当光由玻璃射向水而反射时,起偏振角又为多少?18. 一束光强为I 0的自然光垂直穿过两个偏振片,且两偏振片的振偏化方向成45°角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I 为 ( )(A)420I ; (B) 40I ; (C) 20I ; (D) 220I 。

19. 一束自然光自空气射向一块平板玻璃(如图),入射角等于布儒斯特角i 0,则在界面2的反射光 ( )(A) 光强为零;(B) 是完全偏振光,且光矢量的振动方向垂直于入射面; (C) 是完全偏振光,且光矢量的振动方向平行于入射面; (D) 是部分偏振光。

20. 自然光以60°的入射角照射到某一透明介质表面时,反射光为线偏振光,则( )(A) 折射光为线偏振光,折射角为30°; (B) 折射光为部分偏振光,折射角为30°; (C) 折射光为线偏振光,折射角不能确定; (D) 折射光为部分偏振光,折射角不能确定。

21. 引起动生电动势的非静电力是 力,引起感生电动势的非静电力 是 力。

22. 感应电场是由 产生的,它的电场线是 。

23. 下列哪种情况的位移电流为零? ( ) (A)电场不随时间而变化;(B)电场随时间而变化; (C)交流电路; (D)在接通直流电路的瞬时。

24. 磁介质有三种,1>rμ的称为___________,1<r μ的称为__________,1>>r μ的称为__________。

25. 磁场的高斯定理⎰⎰=⋅0S d B 说明了下面的哪些叙述是正确的? ( )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

26. 一平行板电容器,极板面积为S ,极板间距为d ,接在电源上,并保持电压恒定为U ,若将极板间距拉大一倍,那么电容器中静电能改变为 ,电源对电场作的功为 ,外力对极板作的功为 。

27. 极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些距离,则下列说法正确的是( )(A) 电容器极板上电荷面密度增加; (B) 电容器极板间的电场强度增加; (C) 电容器的电容不变; (D) 电容器极板间的电势差增大。

28. 在场强为E 的均匀电场中取一半球面,其半径为R ,电场强度的方向与半球面的对称轴平行。

则通过这个半球面的电通量为 ,若用半径为R 的圆面将半球面封闭,则通过这个封闭的半球面的电通量为 。

29. 关于高斯定理的理解有下面几种说法,其中正确的是( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

30. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。

31. 分振动方程分别为)25.050cos(31ππ+=t x 和)75.050cos(42ππ+=t x (SI 制)则它们的合振动表达式为:( )(A ))25.050cos(2ππ+=t x; (B ))50cos(5t x π=;30° 30° 30° dcb a OPA B(C ))71250cos(51-++=tg t x ππ; (D )7=x 。

s m u /40.0=,其32. 两相干平面简谐波沿不同方向传播,如图所示,波速均为中一列波在A 点引起的振动方程为)22cos(11ππ-=t A y ,另一列波在B 点引起的振动方m BP 00.1=,则两程为)22cos(22ππ+=t A y ,它们在P 点相遇,m AP 80.0=,波在P 点的相位差为: ( )(A )0; (B )π/2; (C )π; (D )3π/2。

33. 有两个同方向、同频率的简谐振动,它们的振动表式为:⎪⎭⎫ ⎝⎛+=π4310cos 05.01t x ,⎪⎭⎫ ⎝⎛+=π4110cos 06.02t x (SI 制)(1)求它们合成振动的振幅和初相位。

(2)若另有一振动)10cos(07.003ϕ+=t x ,问0ϕ为何值时,31x x +的振幅为最大;0ϕ为何值时,32x x +的振幅为最小。

34、一质点沿半径为0.2m 的圆周运动, 其角位置随时间的变化规律是256t +=θ(SI 制)。

在t =2s 时,它的法向加速度a n =___________;切向加速度a τ=_____35. 质量为0.25kg 的质点,受i t F=(N)的力作用,t =0时该质点以v =2jm/s 的速度通过坐标原点,该质点任意时刻的位置矢量是 ( )(A)22t i +2j m ;(B)j t i t 2323+m ;(C)j t i t343243+m ;(D) 条件不足,无法确定36.一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?( )(A) 由m 和M 组成的系统动量守恒. (B) 由m 和M 组成的系统机械能守恒. (C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.37、初速度为j i v450+=(m/s),质量为m =0.05kg 的质点,受到冲量 j i I 25.2+=(N ⋅s)的作用,则质点的末速度(矢量)为38. 力kN j i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为( )(A)m kN⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3A B39、一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减到10πrad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。

相关文档
最新文档