概率论与数理统计试题及答案3

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计(经管类)(有答案)

概率论与数理统计(经管类)(有答案)

实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计03-第三章作业及答案

概率论与数理统计03-第三章作业及答案

概率论与数理统计03-第三章作业及答案习题3-1⽽且12{0}1P X X ==. 求1和2的联合分布律.解由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, ⽽121{0}{0}04P X P X =?==≠, 所以X 1和X 2不独⽴.2. 设随机变量(X ,Y )的概率密度为(,)(6),02,24,0,.f x y k x y x y =--<<<其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-= , 所以 18k =. (2) 31201,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--??1322011(6)d 82y x x y =--321113()d 828y y =-=?. (3) 1.51.5 { 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==??4 1.521d (6)d 8y x y x --=22011(6)d 82y x x y =--?421633()d 882y y =-? 2732=. (4) 作直线4x y +=, 并记此直线下⽅区域与(,)0f x y ≠的矩形区域(0,2)(0,4)?的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =??44201d (6)d 8x y x y x -=--??4422011(6)d 82xy x x y -=--?42211[(6)(4)(4)]d 82y y y y =----? 42211[2(4)(4)]d 82y y y =-+-? 423211(4)(4)86y y =----?23=. 图3-8 第4题积分区域3. ⼆维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =≤≤≤≤其它.试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤. 解由2111401(,)d d d (1)d 26xk k f x y xdy x kxy y x x x +∞+∞-∞-∞====-??,解得6=k .因⽽ 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=. 4. 设⼆维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=??≤≤≤≤其它求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因⽽, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=其它.其它. 124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=其它.其它.5. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-??若≤若 1,1,1, 1.U Y U -=>??若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解 (1) 见本章第三节三(4).(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==13144=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2) {22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. ⽽{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设⼆维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===?;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=??当02()(,)d d 12y Y y f y f x y x x +∞-∞===-;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=其它 (2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0z f x y x y -=≤2x12202-2d 1d d 1d zxz x zx y x y =?+24z z =-.故 1,02,()20,.()其它Z zzz f z F z -<<'== (3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===. 3. 设G 是由直线y =x , y =3,x =1所围成的三⾓形区域, ⼆维随机变量(,)X Y 在G 上服从⼆维均匀分布.求: (1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度.解 (1)由于三⾓形区域G 的⾯积等于2, 所以(,)X Y 的概率密度为∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=??. 其中0G S 为G 0的⾯积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=?. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-?. 当1x 时, 0)(=x f X .因此∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独⽴, 且分布律分别为下表:求⼆维随机变量(,)X Y 的分布律.解由于X 与Y 相互独⽴, 所以有}{}{},{j i j i y Y P x X P y Y x X P =?====,6,5,2,0;0,21,1=--=j i .因此可得⼆维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独⽴? 解由于边缘分布满⾜23111,1i j i j p p ??====∑∑, ⼜X , Y 相互独⽴的等价条件为p ij = p i . p .j (i =1,2; j =1,2,3).故可得⽅程组 21,3111().939αβα++==?+解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i .p .j 成⽴. 因此当29α=,19β=时, X 与Y 相互独⽴..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=?<<>?其它 (1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独⽴?解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-?,得 111e b -=-.(2) ()(,)d X f x f x y y ∞-∞=?1e ,01,1e 0,xx --<<=-??其它.()(,)d Y f y f x y x ∞-∞=?e ,0,0,y y ->=其它.(3) 由于(,)()()X Y f x y f x f y =?,所以X 与Y 相互独⽴.4. 设X 和Y 是两个相互独⽴的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()20Y yy f y y ->=,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的⼆次⽅程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=??其它, 21e ,0,()20,.yY y f y ->=其它因X 和Y 相互独⽴, 故(X , Y )的联合概率密度为21e ,01,(,)()()20,.yX Y x y f x y f x f y -<<>==其它 (2) ⽅程有实根的充要条件是判别式⼤于等于零. 即244X Y ?=-≥20X ?≥Y .因此事件{⽅程有实根}2{X =≥}Y .下⾯计算2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈?.图3-3 第6题积分区域习题3-41. 设⼆维随机变量(X ,Y )的概率分布为YX 0 10 0.4 a 1 b 0.1若随机事件{X =0}与{X +Y =1}相互独⽴, 求常数a , b .解⾸先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+?. 解得0.4,0.1a b ==.2. 设两个相互独⽴的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律.解随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=?=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===?+?=,28.04.07.0}4,3{}7{=?=====Y X P Z P ,或写为3. 设X 和Y 是两个相互独⽴的随机变量, 且X 服从正态分布N (µ, σ2 ), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解已知X 和Y 的概率密度分别为22()2()x X f x µσ--=,),(+∞-∞∈x ;-?-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独⽴, 所以22()21()()()d d 2z y a Z X Y f z f z y f y y y a µσ---+∞=1[()()]2z µa z µa ΦΦa σσ-+---. 4. 设随机变量X 和Y 的联合分布是正⽅形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==≤≤21[42(2)]412u =-?- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=其它..总习题三1. 设随机变量(X , Y )的概率密度为<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解⾸先(,)其它X x x f x f x y dy +∞-∞<<==??1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=??取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=??取其它值.当10<,||,(|)20,Y X y x f y x x y <=取其它值.2. 设随机变量X 与Y 相互独⽴, 下表列出⼆维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填⼊表中空⽩处 .解⾸先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有24P X x Y y P Y y P X x Y y ====-===-=.在此基础上利⽤X 和Y 的独⽴性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利⽤X 和Y 的独⽴性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======. 于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利⽤X 和Y 的独⽴性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======?=; 2323311{,}{}{}434P X x Y y P X x P Y y ======?=; 1313111{,}{}{}43123.(34)e (,)0,.,0,0,x y k f x y x y -+=?>>??其它(1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独⽴?解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=??.当x ≤0或y ≤0时,有 0),(=y x F ;当,0>>y x 时,34340(,)12e d e d (1e )(1e )x即 34(1e )(1e ),0,0,(,)0,.其它x y x y F x y --?-->>=??(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--.(4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞>==所以 33e ,0,()0,其它.x X x f x -?>=??类似地, 有44e ,0,()0,其它.y Y y f y -?>=?显然2),(),()(),(R y x y f x f y x f Y X ∈??=, 故X 与Y 相互独⽴. 4.解已知),(Y X 的分布律为注意到41260}1{}1{=++====Y P X P , ⽽0}1,1{===Y X P ,可见P{X=1, Y=1}≠P{X=1}P{Y=1}. 因此X与Y不相互独⽴.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P 3 112161121=++=, 3(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 2 1}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P .即min{,}U X Y =的分布律为(5) W U =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,。

某大学概率论与数理统计期末考试试题3详细解答

某大学概率论与数理统计期末考试试题3详细解答

1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为解:3.0)(=+B A B A P 即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P .2、已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.(20分)解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===. 3、已知连续型随机变量X 的分布函数为),(,arctan )(∞-∞∈+=x x B A x F ,求(1)常数A 和B ,(2))11(<<-X p ,(3)概率密度)(x f 。

(20分)4、已知随机变量),(Y X 的分布律为(20分)问:(1)当βα,为何值时,X 和Y 相互独立。

(2)求{}12>=Y X P 。

5、设随机变量X 服从)1,0(N 分布,求随机变量Xe Y =的概率密度函数。

(10分)6、向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.(20分)解: (1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ----=--=-=-⎰;(2)22818x y EZ E e dxdy π+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰222888r r r reedr dr +∞---+∞+∞-∞=-+==⎰1、(10分)将3粒黄豆随机地放入4个杯子,求杯子中盛黄豆最多为一粒的概率八分之三(20分)设随机变量X 的概率密度为1,02,()0,.ax x f x +≤≤⎧=⎨⎩其它求(1)常数a ; (2)X 的分布函数()F x ; (3)(13).P X <<3、(10分)设随机变量X 在区间)2,0(上服从均匀分布,求随机变量2X Y =在区间)4,0(内的概率密度为)(y f Y2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________. 答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤==-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.答案:2λ=,-4{min(,)1}1e P X Y ≤=-解答:2(1)1(1)P X P X ee λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->> 41e -=-.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.答案:1111ln ni i x n θ==-∑解答: 似然函数为111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( )答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( )答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02, 求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数, 求X 的分布列、分布函数、数学期望和方差.解:X 的概率分布为3323()()()0,1,2,3.55kkkP X k C k -===即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它. 当 0z <或1z >时()0Z f z = 01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.Z 的分布函数为200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ------=-=-⎰;(2)22818x y EZ E edxdy π+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰222888r r rre e dr dr+∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm)2~(,)X Nμσ,今抽取容量为16的样本,测得样本均值10x=,样本方差20.16s=. (1)求μ的置信度为0.95的置信区间;(2)检验假设2:0.1Hσ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t nαα--+-0.02510,0.4,16,0.05,(15) 2.132X s n tα=====所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)2:0.1Hσ≤的拒绝域为22(1)nαχχ≥-.221515 1.6240.1Sχ==⨯=,20.05(15)24.996χ=因为220.052424.996(15)χχ=<=,所以接受H.。

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。

2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。

A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。

故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。

A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。

6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。

选择A。

7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。

计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。

8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。

概率论与数理统计习题三及答案

概率论与数理统计习题三及答案
2
当 x 0, y 1 时, F x, y 1 dx0
0 2
2 x 1
4dy 1
(2)X 的边缘密度函数为
f X x f x, y dy

3
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 x0 = 2 0, 其他 Y 的边缘密度函数为
=
0
2 x 1
4dy,
1 42 x 1, x 0 2 0, 其他
f Y y f x, y dx

=
y 1 4dx, 0 y 1
2
0
0,
其他
=
21 y , 0 y 1 0,
其他
1 1 1 1 4 1 1 1 1 (3)f , 4 , 而 f X 2, f Y , 易见 f , f X f Y , 4 3 4 3 3 4 3 4 3
或写成 X\Y 1 2 3 1 0 2 3
1 6 1 12
1 6 1 6 1 6
1 12 1 6
0
P X Y P X 1, Y 1 P X 2, Y 2 P X 3, Y 3
1
1 。 6
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案

1 x 2 x 1 x 0, y 2 x 1 时, F x, y 1 dx0 4dy 4 x 2 4 x 1 ; 2 2
y 0
当 x 0,0 y 1 时, F x, y 0 dy y 1 4dx 2 y y 2 ;

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,434636F F F F −−+ππππππsin sin sin sin sin 0sin sin 0sin4346361).4=−−+=i i i i题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+−.,0,0,0,)43(其他y x A y x e 求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+−∞−∞===∫∫∫∫得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v −∞−∞=∫∫(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x −+−−⎧⎧−−>>⎪==⎨⎨⎩⎪⎩∫∫其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y −+−−=<≤<≤==−−≈∫∫5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<−−.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞−∞−∞=−−==∫∫∫∫故 18R = (2) 13{1,3}(,)d d P X Y f x y y x −∞−∞<<=∫∫130213(6)d d 88k x y y x =−−=∫∫ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=∫∫∫∫如图1.542127d (6)d .832x x y y =−−=∫∫(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=∫∫∫∫如图b240212d (6)d .83xx x y y −=−−=∫∫题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>−.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y −⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y i 独立5515e 25e ,00.20,0.20,0,y y x y −−⎧⎧×<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y −≤≤=∫∫∫∫如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x−==−+≈∫∫∫7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>−−−−.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y −+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x −≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧−−≤≤⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧−⎧−+≤≤⎪=⎨⎨⎩⎪⎩∫其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<−.,0,0,其他e y x y 求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫e d e ,0,=0,.0,y x x y x +∞−−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫0e d e ,0,=0,.0,yy x x y y −−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞−∞−∞∫∫∫∫如图2112-14=d d 1.21xx cx y y c ==∫∫得 214c =. (2) ()(,)d X f x f x y y +∞−∞=∫212422121(1),11,d 840,0,.x x x x x y y ⎧⎧−−≤≤⎪⎪==⎨⎨⎪⎪⎩⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y 求条件概率密度f Y |X (y |x ),f X |Y(x |y ).题11图【解】()(,)d X f x f x y y +∞−∞=∫1d 2,01,0,.xxy x x −⎧=<<⎪=⎨⎪⎩∫其他 111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y −+∞−∞⎧=+−<<⎪⎪⎪===−≤<⎨⎪⎪⎪⎩∫∫∫其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪−⎪⎪==−<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===×=≠===i 故X 与Y 不独立 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===×i 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立. 14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>−.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y −⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y −⎧<<>⎪=⎨⎪⎩i 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y Δ=−≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=∫∫21/2001d e d 21(1)(0)]0.1445.x y x y−==Φ−Φ=∫∫15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a ) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==∫∫∫∫ 33610231010=d 2z zy yzy +∞⎛⎞−=⎜⎟⎝⎠∫题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b ) 3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==∫∫∫∫336231010101=d 12y y zy z +∞⎛⎞−=−⎜⎟⎝⎠∫即 11,1,2(),01,20,.Z z z zf z z ⎧−≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202), 从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥i 之间独立34{180}{180}P X P X ≥≥i 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =−<−<−<−<i i i44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡−⎤⎛⎞=−<=−Φ⎜⎟⎢⎥⎝⎠⎣⎦=−Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=−ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====−==∪∪ ∪ 于是0{}{,},ik P Z i P X k Y i k X Y =====−∑相互独立{}{}ik P X k P Y i k ===−∑i()()ik p k q i k ==−∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====−∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =−−−+=−=−===−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞=⎜⎟⎝⎠∑∑∑i方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则 X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i −=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为V =max (X ,Y ) 0 1 2 3 4 5 P 00.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是U =min (X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y>X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=∫∫∫∫π2π/405π42π/401d d π1d d πRR r rR r r R θθ=∫∫∫∫3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=−≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=−≤≤=−=−=∫∫21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===∫(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d 1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩∫其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和x 2 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===−= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====i ,从而11111{}{,}.624P X x P X x Y y =×==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==−−=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====−===−=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,mmn mn P Y m X n p p m n n −===−≤≤= .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ie C (1),,0,1,2,.!mm n mnnp p n m n n n λλ−−=−≤≤=i 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎟⎟⎠⎞⎜⎜⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤−=+≤−=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤−+≤−0.3(1)0.7(2).F u F u =−+−由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u ′′′==−+−0.3(1)0.7(2).f u f u =−+−25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= −0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =−,可得0.1a c −+=−.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为−2,−1,0,1,2,{2}{1,1}0.2P Z P X Y =−==−=−=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =−==−=+==−=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===−=+==+==−=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z −2 −1 0 1 2 P0.2 0.1 0.3 0.3 0.1(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

概率论与数理统计第三__课后习题答案

概率论与数理统计第三__课后习题答案

习题一:写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ;(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。

答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。

答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。

答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。

答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。

答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。

答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。

真题考试:2020 概率论与数理统计(经管类)真题及答案(3)

真题考试:2020 概率论与数理统计(经管类)真题及答案(3)

真题考试:2020 概率论与数理统计(经管类)真题及答案(3)共56道题1、设随机变量X的分布律为F(x)为X的分布函数,则F(O.5)=(单选题)A. 0B. 0.2C. 0.25D. 0.3试题答案:D2、已知X与Y的协方差Cov(X,Y)=-1/2,则Cov(一2X,Y)= 【】(单选题)A. -1/2B. 0C. 1/2D. 1试题答案:D3、设随机变量x的分布律为(单选题)A. 1/4B. 1/2C. 3/4D. 1试题答案:C4、设二维随机变量(X,Y)的分布律为则P{X=1}=(单选题)A. 0.1B. 0.3C. 0.2D. 0.4试题答案:D5、设总体X~ N(μ,σ2),x1,x2...x n为来自该总体的样本,X为样本均值,S2为样本方差,则μ的极大似然估计为(单选题)A.B.C.D.试题答案:A6、设随机变量X的分布函数为F(x),则下列结论正确的是(单选题)A. F(+∞)=-1B. F(+∞)=0C. F(-∞)=0D. F(-∞)=1试题答案:C7、设随机变量X在[-2,2]上服从均匀分布,则P{X≥1}= (单选题)A. 0B. 1/4C. 1/2D. 1试题答案:B8、设随机变量X的概率密度为(单选题)A. 0B. 1/3C. 1/2D. 3试题答案:D9、(单选题)A.B.C.D.试题答案:A10、(单选题)A. t(5)B. t(4)C. F(1,5)D. F(5,1)试题答案:A11、设二维随机变量(X,Y)的分布律为则P{X=1}=(单选题)A. 0.1B. 0.3C. 0.2D. 0.4试题答案:D12、设随机变量X~B(3,0.2),则P{X>2}= 【】(单选题)A. 0.008B. 0.488C. 0.512D. 0.992试题答案:A13、(单选题)A.B.C.D.试题答案:C14、设事件A与B互不相容,且P(A)=0.4,P(B)=0.2,则P(A U B)= 【】(单选题)B. 0.2C. 0.4D. 0.6试题答案:D15、设X1,X2...X10是来自总体X的样本,且X ~ N(0,1),(单选题)A.B.C.D.试题答案:B16、设随机变量X与Y的相关系数为0.5,D(X)=9,D(Y)=4,则D(3X-Y)= 【】(单选题)A. 5B. 23C. 67D. 85试题答案:C17、设二维随机变量(X,Y)的分布函数为F(x,y),则(X,Y)关于X的边缘分布函数Fx(x)=(单选题)A.B.C.试题答案:A18、(单选题)A. 1/6B. 1/4C. 1/3D. 1/2试题答案:B19、设随机变量X服从参数为1/2的指数分布,则E(2X-1)= 【】(单选题)A. 0B. 1C. 2D. 4试题答案:C20、(单选题)A. N(-1,3)B. N(-1,9)C. N(1,3)D. N(1,9)试题答案:B21、(单选题)B.C.D.试题答案:A22、在假设检验过程中,增大样本容量,则犯两类错误的概率【】(单选题)A. 都增大B. 都减小C. 都不变D. 一个增大,一个减小试题答案:B23、设随机变量X~B(3,0.3),则P{X=2}= 【】(单选题)A. 0.189B. 0.21C. 0.441D. 0.7试题答案:A24、设α是假没检验中犯第一类错误的概率,H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计C一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. 4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. 5. 样本均值的平方2X不是总体期望平方2μ的无偏估计.6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. 二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。

(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。

(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ;(c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10. (4)设),,,(21nXX X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。

(a))1,0(~N X ; (b))1,0(~N X n ;(c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F X Xn ni i .(5)设),,,(21nXX X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。

(a)∑=-=ni iX X n1221)(1σ; (b)∑=--=ni iX X n 1222)(11σ;(c)∑=-=ni iX n1223)(1μσ; (d)∑=--=ni iX n 1224)(11μσ.三、填空题(18分,每题3分)(1)设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .(2)设随机变量X 服从(-2,2)上的均匀分布,则随机变量2X Y =的概率密度函数为=)(y f Y .(3)设随机变量)0;3,1;2,0(~),(22N Y X ,则概率)12(≥-Y X P = . (4)设随机变量),(Y X 的联合分布律为),(Y X )0,1( )1,1( )0,2( )1,2(P4.0 2.0 a b若8.0)(=XY E ,则=),cov(Y X . (5)设(621,,,X XX )是来自正态分布)1,0(N 的样本,264231)()(∑∑==+=i i i i X X Y当c = 时, cY 服从2χ分布,)(2χE = .(6)设某种清漆干燥时间),(~2σμN X (单位:小时),取9=n 的样本,得样本均值和方差分别为33.0,62==SX ,则μ的置信度为95%的单侧置信区间上限为: .四、计算与应用题(54分,每题9分)1. 某厂卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花. 到目的地时发现丢失1箱,不知丢失哪一箱. 现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率.2. 设随机变量(,)X Y 的联合密度函数⎩⎨⎧<<<=他其,20),(xy x A y x f求 (1) 常数A ; (2) 条件密度函数)(x y f XY ; (3) 讨论X 与Y 的相关性.3.设随机变量)1,0(~U X (均匀分布),)1(~E Y (指数分布),且它们相互独立,试求Y X Z -=2的密度函数)(z f Z .4.某彩电公司每月生产20万台背投彩电,次品率为0.0005. 检验时每台次品未被查出的概率为0.01. 试用中心极限定理求检验后出厂的彩电中次品数超过3台的概率.5.设总体X 的概率分布列为:X 0 1 2 3 P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3 求 (1) p 的矩估计值; (2) p 的极大似然估计值 .6.某冶金实验室对锰的熔化点作了四次试验,结果分别为12690C 12710C 12630C 12650C设数据服从正态分布),(2σμN ,以5α= % 的水平作如下检验:(1) 这些结果是否符合于公布的数字12600C ?(2) 测定值的标准差是否不超过20C ? 须详细写出检验过程.五、证明题(6分)设随机变量X 与Y 相互独立,且都服从参数为3的泊松(Poisson)分布,证明X Y +仍服从泊松分布,参数为6. 附表:标准正态分布数值表 2χ分布数值表 t 分布数值表6554.0)4.0(=Φ 815.7)3(205.0=χ 1824.3)3(025.0=t 950.0)645.1(=Φ 348.9)3(2025.0=χ 3534.2)3(05.0=t 975.0)960.1(=Φ 448.9)4(205.0=χ 8595.1)8(05.0=t 9772.0)0.2(=Φ 143.11)4(2025.0=χ 306.2)8(025.0=t附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表6103.0)28.0(=Φ 488.9)4(205.0=χ 1315.2)15(025.0=t 975.0)96.1(=Φ 711.0)4(295.0=χ 7531.1)15(05.0=t 9772.0)0.2(=Φ 071.11)5(205.0=χ 1199.2)16(025.0=t 9938.0)5.2(=Φ 145.1)5(295.0=χ 7459.1)16(05.0=t概率论与数理统计C 答案一. 是非题是 是 非 非 是 是 是 . . 二. 选择题(b)(a)(b)(d)(c).三. 填空题(18分,每题3分)[ 方括弧内为B 卷答案 ] 1. 4/7 . 2. ⎩⎨⎧<<=他其40)4/(1)(y y y f Y3. 0.8446 .4. 0.1 .5. 1/3 ; 2 .6. 上限为 6.356 . 四. 计算与应用题1. A 任取2箱都是民用口罩,k B k 3,2,1=k 分别表示民用口罩,医用口罩,消毒棉花.3685110321)()()(29252925292431=⋅+⋅+⋅==∑=C C C C C C B A P B P A P k k k.83368363)(/21)(/)()()(2924111=÷=⋅==A P C C A P B A P B P A B P2. (1) .4/1=A(2) ⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-他其202/)4/1(),()(x x dy dy y x f x f xxX当20<<x 时,⎩⎨⎧<<-==他其)2/(1)(),()(x y x x x f y x f x y f X XY(3) ⎰==202,3/4)2/()(dx x X E ⎰⎰==-20,0)4/()(xxdy y dx Y E⎰⎰==-20,0)4/()(xxdy y xdxXY E 0)()()(),c o s (=-=Y E X E XY E Y X所以X 与Y 不相关.3. ⎩⎨⎧<<=他其101)(x x f X ⎩⎨⎧<≥=-00)(y y e y f yY⎰∞∞--=dx z x f x f z f Y X Z )2()()(⎩⎨⎧>-<<0210z x x ⎩⎨⎧><<⇒2/10z x x ⇒得z 轴上的分界点0与2 ⎪⎪⎩⎪⎪⎨⎧≥<<-=≤-==⎰⎰------2202/)1(02/)1()(12/2)2(102)2(z z edx ez e e dx ez f z z x z z x z Z 4. 设 ⎩⎨⎧=他其出台彩电为次品且未被查第01i X i 5102~1⨯=i6105)(-⨯=i X E , )1051(105)(66--⨯-⨯=i X D经检验后的次品数 ∑⨯==51021i i X Y ,1)(=Y E ,61051)(-⨯-=Y D ,由中心极限定理,近似地有 )1051,1(~6-⨯-N Y.0228.0)2(11051131)3(1)3(6=Φ-≈⎪⎪⎭⎫⎝⎛⨯--Φ-≈≤-=>-Y P Y P 5. (1) 28/1681===∑=i iXX , 令 X p X E =-=43)(,得 p 的矩估计为 4/14/)3(ˆ=-=X p. (2) 似然函数为4281)]3()[2()]1()[0()()(=======∏=X P X P X P X P x XP p L i i42)21()1(4p p p --=)21ln(4)1ln(2ln 64ln )(ln p p p p L -+-++=令 0218126])(ln [=----='pppp L , 0314122=+-⇒p p12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p6. 由样本得 1267=X , 65.33/40)(31412==-=∑=i iX XS .(1) 要检验的假设为 1260:,1260:10≠=μμH H )检验用的统计量 )1(~/0--=n t nS X T μ,拒绝域为 1824.3)3()1(025.02==-≥t n t Tα.1824.3836.34/65.3126012670>=-=T ,落在拒绝域内,故拒绝原假设0H ,即不能认为结果符合公布的数字12600C.(2) 要检验的假设为 2:,2:10>≤σσH H检验用的统计量 )1(~)1(2222--=n Sn χσχ,拒绝域为 815.7)3()1(205.022==->χχχαn815.7104/4020>==χ,落在拒绝域内,故拒绝原假设0H ,即不能认为测定值的标准差不超过20C. 五、 证明题 (6分)由题设 3!3)(-==em m X P m,3!3)(-==en n Y P n, ,2,1,0,=m n∑∑==-===-====+ik i k k i Y P k XP k i Y k XP i Y X P 0)()(),()(∑∑=--=---⋅-=-⋅=ik ki k ik ki kk i k i i eek i ek 0603333!)(!!!1!)(3!366!6)33(!1--=+=ei i e ii, ,2,1,0=i所以 Y X +仍服从泊松分布,参数为6.。

相关文档
最新文档