小学数学奥数基础教程(四年级)--03
小学四年级奥数教程30讲(经典讲解)
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学奥数基础教程(四年级)目30讲全[1]
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学奥数基础教程(四年级)目30讲全[1] (1)
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学奥数基础教程四年级目30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学四年级奥数基础教程大全
第一章:加减法1.1加法加法是数学中的基本运算之一、在小学四年级奥数中,加法是最基础的数学运算之一、在进行加法运算时,需要掌握竖式加法和横式加法的运算方法。
此外,还需掌握十进位的加法运算。
1.2减法减法是数学中的基本运算之一、在小学四年级奥数中,减法也是一项重要的数学运算。
减法的运算方法有竖式减法和横式减法两种。
同时,对于借位和退位也需要掌握。
第二章:乘除法2.1乘法乘法是数学中的基本运算之一、在小学四年级奥数中,乘法的运算方法主要有竖式乘法和横式乘法两种。
此外,还需掌握乘法的分配律和乘法的交换律等基本概念。
2.2除法除法是数学中的基本运算之一、在小学四年级奥数中,除法也是一项重要的数学运算。
除法的运算方法有竖式除法和横式除法两种。
此外,还需掌握整除和余数的概念。
第三章:整数3.1正整数和负整数在小学四年级奥数中,要了解正整数和负整数的概念和区别。
同时,还需掌握负整数的加法和减法运算方法。
3.2相反数和绝对值相反数是指两个数绝对值相等、符号相反的两个数。
绝对值是指一个数离原点的距离。
在小学四年级奥数中,需要了解相反数和绝对值的概念,并能够进行相反数和绝对值的计算。
第四章:分数4.1分数的基本概念在小学四年级奥数中,要了解分数的基本概念,包括分数的组成、分子和分母的含义等。
4.2分数的大小比较在小学四年级奥数中,要学会比较分数的大小,包括相同分母的分数和相同分子的分数的大小比较。
第五章:小数5.1小数的基本概念在小学四年级奥数中,要了解小数的基本概念,包括小数点的使用、小数的读法和写法等。
5.2小数的大小比较在小学四年级奥数中,要学会比较小数的大小,包括相同整数部分和相同小数部分的小数的大小比较。
第六章:面积和周长6.1面积的计算在小学四年级奥数中,要学会计算简单图形的面积,包括长方形、正方形和三角形等。
6.2周长的计算在小学四年级奥数中,要学会计算简单图形的周长,包括长方形、正方形和三角形等。
第七章:逻辑推理7.1逻辑判断在小学四年级奥数中,要学会进行简单的逻辑推理和判断,包括找出规律和填入合适的数字等。
小学数学奥数基础教程(四年级)目录
小学数学奥数基础教程(四年级)目录
(含答案)
.
word文档下载地址
.
文档贡献者:与你的缘
.
第1讲速算与巧算(一)
练习1
第2讲速算与巧算(二)
练习2
第3讲高斯求和
练习3
第4讲数的整除性(一)
练习4
第5讲弃九法
练习5
第6讲数的整除性
练习6
第7讲找规律(一)
练习7
第8讲找规律(二)
练习8
第九讲数字迷(一)
练习9
第10讲数字迷(二)
练习10
第11讲归一问题与归总问题
练习11
第12讲年龄问题
练习12
第13讲鸡兔同笼问题与假设法
练习13
第14讲盈亏问题与比较法(一)
练习14
第15讲盈亏问题与比较法(二)
练习15
第16讲数阵图(一)
练习16
第17讲数阵图(二)
练习17
第18讲数阵图(三)
练习18
第19讲乘法原理
练习19
第20讲加法原理(一)
练习20
第21讲加法原理(二)
练习21
第22讲还原问题(一)
练习22
第23讲还原问题(二)
练习23
第24讲页码问题
练习24
第25讲智取火柴
练习25
第26讲逻辑问题(一)
练习26
第27讲逻辑问题(二)
练习27
第28讲逻辑问题(二)
练习28
第29讲抽屉原理(一)
练习29
第30讲抽屉原理(二)
练习30。
小学数学奥数基础教程(四年级)目30讲全[1]
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
学生版数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
小学数学奥数基础教程(四年级) 30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学四年级奥数教程30讲(经典讲解)
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学奥数基础教程(四年级)--03
小学数学奥数基础教程(四年级)本教程共30讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯小学奥数四年级上册含答案第03讲_基本直线形面积公式
第三讲基本直线形面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形.在有关直线形的计算中,计算周长和计算面积是最常见的两类.我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积.№1. 正方形和长方形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如下图:例题1如下图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜.其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形.请问:剩下的栽种苦瓜的田地面积是多少?「分析」左上角是面积为16的正方形,那么它的边长是多少?你还能求出哪些线段的长度呢? 练习1如图,有一块长方形田地被分成了四小块,分别栽种了冬瓜、西瓜、南瓜、黄瓜,其中冬瓜地的面积是24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的宽面积是多少?№2. 平行四边形的面积如下图,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来.为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如下图.这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段.在平行四边形中,这两条线段分别叫做底和高.于是我们有:如图所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离.36 1824底当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如下面左图所示.同样得到相对于这条底的若干条高,如下面右图所示,这些高也是相等的,都等于左右两条平行线间的距离.要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高.例题2下图是由两个边长分别为4和7的正方形拼成的,请求出阴影平行四边形的面积.「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?练习2如图,大正方形里有一个小正方形还有一个阴影平行四边形.如果大正方形的边长是20厘米,小正方形的边长是8厘米.那么阴影平行四边形的面积是多少?BCF底高高高№3. 三角形的面积三角形中也有相对应的底和高.过三角形的一个顶点向所对的边做一条垂线,所得的垂线段叫做三角形的高,所对的边叫做三角形的底.每个三角形有三组对应的底和高.要计算三角形的面积,同样要利用底和高的长度.观察下图,我们把一个三角形倒过来和原图形拼在一起,可以得到一个平行四边形.平行四边形的底与三角形的底相等,高也与三角形的高相等.而平行四边形的面积等于“⨯底高”,正好是三角形面积的2倍,所以我们有三角形面积公式:从形状上讲,三角形有三类:锐角三角形、直角三角形、钝角三角形.由于三角形的形状多变,在初学阶段要找准三角形相对应的底和高很不容易.因此要想算出三角形的面积,最关键的还在于准确地找到底与相应的高............下面是一个简单的作图练习,大家不妨画一画.例题3如下图所示,两个正方形并排放在一起,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:阴影三角形的面积是多少?「分析」阴影部分是三角形,应该选哪条边作为底呢?相应的高是多少呢? 练习3右图是由两个边长分别为4和6的正方形拼成的,请求出阴影三角形的面积.№4. 梯形的面积三角形和平行四边形都有“底”和“高”的概念,梯形中也有.在梯形中,平行的一组对边分别叫做上底和下底,不平行的一组对边叫做腰,上底和下底之间的距离叫做梯形的高.如下图所示,把两个相同的梯形拼在一起,可以得到一个平行四边形.从图中可以看出,这个平行四边形的面积是梯形面积的2倍.同时平行四边形的底由梯形的上底和下底拼接而成,高与梯形的高相等.所以:86下底例题4一个正方形和一个长方形按下图的方式排放,已知正方形的面积是49平方厘米,长方形的长为11厘米,宽为8厘米,那么阴影部分的面积是多少?「分析」阴影部分是梯形,要求面积,关键是找清楚它的上底、下底、高分别是多少.练习4如下图,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:图中的阴影图形的面积是多少平方厘米?例题5如下图所示,两个边长10厘米的正方形相互错开3厘米,那么图中阴影平行四边形的面积是多少?「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?例题6如图,把两个正方形拼在一起,小正方形的边长是5厘米,大正方形的边长是7厘米.请问:阴影部分的面积是多少? 「分析」阴影部分由两个三角形组成,你能分别求出这两个三角形的面积吗?以哪条边作为底最容易计算呢?11课堂内外小欧拉与大羊圈欧拉是著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就.不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生.小欧拉因为问老师天上星星有多少颗,老师也答不上来,只知道天上的星星是上帝镶上去的.小欧拉感觉上帝真是太粗心了,竟然忘记了星星的数目!在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考.小欧拉没有与上帝“保持一致”,老师就让他离开学校回家.回家后无事,他就帮助爸爸放羊,成了一个牧童.他一面放羊,一面读书.他读的书中,有不少数学书.爸爸的羊渐渐增多了,达到了100只.原来的羊圈有点小了,爸爸决定建造一个新的羊圈.他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米.正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用.若要围成长40米,宽15米的羊圈,其周长将是110米.父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米.小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划.他有办法.父亲不相信小欧拉会有办法,听了没有理他.小欧拉急了,大声说,只要稍稍移动一下羊圈的桩子就行了.父亲听了直摇头,心想:“世界上哪有这样简单的事情?”但是,小欧拉却坚持说,他一定能两全齐美.父亲终于同意让儿子试试看.小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁.他以一个木桩为中心,将原来的40米边长截短,缩短到25米.父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了.”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米.经这样一改,原来计划中的羊圈变成了一个25米边长的正方形.然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了.”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光.面积也足够了,而且还稍稍大了一些.父亲心里感到非常高兴.孩子比自己聪明,真会动脑筋,将来一定大有出息.父亲感到让这么聪明的孩子放羊实在是太可惜了.后来,他想办法让小欧拉认识了一个大数学家伯努利.通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生.这一年,小欧拉13岁,是这所大学最年轻的大学生.作业1. 在下面的每个平行四边形与三角形中,作出以AB 为底的高.2. 如图,大正方形被分成三块区域.左上角的正方形面积为4,右上角的长方形面积为6,请问:大正方形的面积是多少?3.下图中,大正方形的面积是64,小正方形的面积是36.求平行四边形的面积.4. 下面两幅图都是边长为8和6的两个正方形拼成的,根据图中所示的线段长度,求两个阴影三角形的面积.5. 如图,两个正方形并排放在一起,小正方形的边长是9厘米,大正方形的边长是13厘米.请问阴影梯形的面积是多少平方厘米?66 846BD C第三讲基本直线形面积公式1.例题1答案:8平方米详解:方法一:正方形的面积是16平方米,所以正方形的边长是4米,黄瓜的面积是28平方米,黄瓜的宽是4米,长就是2847÷=米.豆角的面积是32平方米,豆角的宽是4米,所以长是3248÷=米.所以苦瓜的宽是÷=米,莴笋的宽是8米,面积是72平方米,所以长是7289⨯=平方米;方法二:豆角是茄子面积的2倍,972-=米,长是4米,所以苦瓜的面积是248所以莴笋是黄瓜和苦瓜面积和的2倍,黄瓜和苦瓜的面积是72236÷=平方米,所以苦瓜的面积是36288-=平方米.2.例题2答案:28详解:阴影平行四边形的底BC是4,高FG是7,所以平行四边形的面积是4728⨯=.3.例题3答案:42平方厘米详解:阴影三角形的底是6厘米,高是6814+=厘米,所以阴影三角形的面积是614242⨯÷=平方厘米.4.例题4答案:30平方厘米详解:阴影部分是一个梯形,这个梯形的上底是正方形上面的边,正方形的面积是49平方厘米,所以正方形的边长是7厘米,梯形的下底是长方形的宽即8厘米,梯形的高即长方形长与正方形边长之差,为1174-=厘米,所以梯形的面积是()+⨯÷=平方厘米.7842305.例题5答案:91平方厘米详解:由于两个大小一样的正方形错开了3厘米,可以知道图中两个小的直角三角形的直角边都是3厘米,所以阴影平行四边形的底就是1037+=厘米,所以其面积-=厘米,高就是10313是71391⨯=平方厘米.6.例题6答案:12平方厘米详解:小正方形的边长是5厘米,大正方形的边长是7厘米.阴影部分是由两个三角形组成的,这两个三角形的底都是752-=厘米,左面三角形的高是5厘米,右面三角形的高是7厘米,所以面积分别是2525⨯÷=平方厘米,2727+=平⨯÷=平方厘米,所以阴影部分的面积是5712方厘米.7.练习1答案:12平方米详解:西瓜地是正方形,面积为36平方米,所以边长为6米;冬瓜地面积为24平方米,长为6米,所以宽为2464÷=米;南瓜地面积为18平方米,长为6米,所以宽为1863÷=米;黄瓜地长为4米,宽为3米,所以面积为4312⨯=平方米.8. 练习2答案:96平方厘米详解:阴影平行四边形的底是小正方形边长即8厘米,高是两正方形边长之差,即20812-=厘米,所以平行四边形的面积是81296⨯=平方厘米.9. 练习3答案:30简答:阴影三角形的底是6,高是6410+=,所以阴影三角形的面积是610230⨯÷=.10. 练习4答案:14平方厘米简答:阴影部分是一个梯形,这个梯形的上底是小正方形的边长,即6厘米;梯形的下底是大正方形的边长即8厘米,梯形的高即两正方形边长之差,为862-=厘米,所以梯形的面积是()682214+⨯÷=平方厘米.11. 作业1答案:如图所示简答:12. 作业2答案:25简答:小正方形的边长为2,小长方形的长为3,那么大正方形的边长为5,面积为5525⨯=.13. 作业3答案:48简答:小正方形的边长为6,大正方形的边长为8,平行四边形的面积是6848⨯=.14. 作业4答案:24;18简答:左图阴影三角形的底选为6,高为8,面积是68224⨯÷=.右图阴影三角形的底选为6,高为6,面积是66218⨯÷=.15.作业5答案:242平方厘米简答:梯形的上底为小正方形的边长,即9厘米.梯形的下底为大正方形的边长,即13厘米.梯形的高为大、小正方形边长和为22厘米.梯形的面积为(913)222242+⨯÷=平方厘米.6.。
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)(1990-2016)湖南和君教育发展有限公司二零一七年一月目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
小学数学奥数基础教程四年级
小学数学奥数基础教程四年级本教程共30讲高斯求和德国着名数学家高斯幼年时代聪明过人;上学时;有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后;全班同学都在埋头计算;小高斯却很快算出答案等于5050..高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51..1~100正好可以分成这样的50对数;每对数的和都相等..于是;小高斯把这道题巧算为1+100×100÷2=5050..小高斯使用的这种求和方法;真是聪明极了;简单快捷;并且广泛地适用于“等差数列”的求和问题..若干个数排成一列称为数列;数列中的每一个数称为一项;其中第一项称为首项;最后一项称为末项..后项与前项之差都相等的数列称为等差数列;后项与前项之差称为公差..例如:11;2;3;4;5; (100)21;3;5;7;9; (99)38;15;22;29;36;…;71..其中1是首项为1;末项为100;公差为1的等差数列;2是首项为1;末项为99;公差为2的等差数列;3是首项为8;末项为71;公差为7的等差数列..由高斯的巧算方法;得到等差数列的求和公式:和=首项+末项×项数÷2..例1 1+2+3+ (1999)分析与解:这串加数1;2;3;…;1999是等差数列;首项是1;末项是1999;共有1999个数..由等差数列求和公式可得原式=1+1999×1999÷2=1999000..注意:利用等差数列求和公式之前;一定要判断题目中的各个加数是否构成等差数列..例2 11+12+13+ (31)分析与解:这串加数11;12;13;…;31是等差数列;首项是11;末项是31;共有31-11+1=21项..原式=11+31×21÷2=441..在利用等差数列求和公式时;有时项数并不是一目了然的;这时就需要先求出项数..根据首项、末项、公差的关系;可以得到项数=末项-首项÷公差+1;末项=首项+公差×项数-1..例3 3+7+11+ (99)分析与解:3;7;11;…;99是公差为4的等差数列;项数=99-3÷4+1=25;原式=3+99×25÷2=1275..例4 求首项是25;公差是3的等差数列的前40项的和..解:末项=25+3×40-1=142;和=25+142×40÷2=3340..利用等差数列求和公式及求项数和末项的公式;可以解决各种与等差数列求和有关的问题..例5 在下图中;每个最小的等边三角形的面积是12厘米2;边长是1根火柴棍..问:1最大三角形的面积是多少平方厘米 2整个图形由多少根火柴棍摆成分析:最大三角形共有8层;从上往下摆时;每层的小三角形数目及所用火柴数目如下表:由上表看出;各层的小三角形数成等差数列;各层的火柴数也成等差数列..解:1最大三角形面积为1+3+5+…+15×12=1+15×8÷2×12=768厘米2..2火柴棍的数目为3+6+9+…+24=3+24×8÷2=108根..答:最大三角形的面积是768厘米2;整个图形由108根火柴摆成..例6 盒子里放有三只乒乓球;一位魔术师第一次从盒子里拿出一只球;将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球;将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球;将每只球各变成3只球后放回到盒子里..这时盒子里共有多少只乒乓球分析与解:一只球变成3只球;实际上多了2只球..第一次多了2只球;第二次多了2×2只球……第十次多了2×10只球..因此拿了十次后;多了2×1+2×2+…+2×10=2×1+2+…+10=2×55=110只..加上原有的3只球;盒子里共有球110+3=113只..综合列式为:3-1×1+2+…+10+3=2×1+10×10÷2+3=113只..练习31.计算下列各题:12+4+6+ (200)217+19+21+ (39)35+8+11+14+ (50)43+10+17+24+…+101..2.求首项是5;末项是93;公差是4的等差数列的和..3.求首项是13;公差是5的等差数列的前30项的和..4.时钟在每个整点敲打;敲打的次数等于该钟点数;每半点钟也敲一下..问:时钟一昼夜敲打多少次5.求100以内除以3余2的所有数的和..6.在所有的两位数中;十位数比个位数大的数共有多少个答案与提示练习1.110100;2336;3440;4780..2.1127.. 提示:项数=93-5÷4+1=23..3.2565.. 提示:末项=13+5×30-1=158..4.180次.. 解:1+2+…+12×2+24=180次..5.1650.. 解:2+5+8+…+98=1650..6.45个..提示:十位数为1;2;…;9的分别有1;2;…;9个..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数基础教程(四年级)
本教程共30讲
高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:
(1)1,2,3,4,5, (100)
(2)1,3,5,7,9, (99)
(3)8,15,22,29,36, (71)
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
根据首项、末项、公差的关系,可以得到
项数=(末项-首项)÷公差+1,
末项=首项+公差×(项数-1)。
例3 3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,
项数=(99-3)÷4+1=25,
原式=(3+99)×25÷2=1275。
例4 求首项是25,公差是3的等差数列的前40项的和。
解:末项=25+3×(40-1)=142,
和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。
解:(1)最大三角形面积为
(1+3+5+…+15)×12
=[(1+15)×8÷2]×12
=768(厘米2)。
(2)火柴棍的数目为
3+6+9+…+24
=(3+24)×8÷2=108(根)。
答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。
例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。
第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。
因此拿了十次后,多了
2×1+2×2+…+2×10
=2×(1+2+ (10)
=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+…+10)+3
=2×[(1+10)×10÷2]+3=113(只)。
练习3
1.计算下列各题:
(1)2+4+6+ (200)
(2)17+19+21+ (39)
(3)5+8+11+14+ (50)
(4)3+10+17+24+ (101)
2.求首项是5,末项是93,公差是4的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。
6.在所有的两位数中,十位数比个位数大的数共有多少个?
答案与提示练习
1.(1)10100;(2)336;(3)440;(4)780。
2.1127。
提示:项数=(93-5)÷4+1=23。
3.2565。
提示:末项=13+5×(30-1)=158。
4.180次。
解:(1+2+…+12)×2+24=180(次)。
5.1650。
解:2+5+8+…+98=1650。
6.45个。
提示:十位数为1,2,…,9的分别有1,2,…,9个。