二次函数图像及一元二次方程与二次函数关系
22.2.1二次函数与一元二次方程
(3)若王强再一次从此处击球,要想让球飞行的最大 高度不变且球刚好进洞,则球飞行路线应满足怎样的抛 物线,求出其解析式.
解:(1) y 1 x2 8 x 1 (x 4)2 16
55
5
5
⸫抛物线开口向下,顶点为
4,16 5
,对称轴为x=4
(2)令y=0 ,得: 1 x2 8 x 0 55
(3)指出(2)的图像中,使y<0时, x的取值范围及使y >0时, x的取值范围
例2:王强在一次高尔夫球的练习中,在某处击球,其
飞行路线满足抛物线 y 1 x2 8 x ,其中y(m)是 55
球的飞行高度,x(m)是球飞出的水平距离,结果球离
球洞的水平距离还有2m.
(1)请写出抛物线的开口方 向、顶点坐标、对称轴.
的值永远为正的条件是__a_>_ 0,△<0 __
3.求抛物线 y=−2(x+1)2+8 ①与y轴的交点坐标; ②与x轴的两个交点间的距离.③何时y>0?
(1)抛物线y=x2+2x−3与x轴的交点有( C)
A.0个 B.1个
C.2个
D.3个
(2)抛物线y=mx2−3x+3m+m2经过原点,则其顶点坐标
图象:是一条抛物线。
图象的特点:(1)开口方向,开口大小; (2)对称轴; (3)顶点(最低点或最高点)。
y
y
o
x
o
x
二次函数y=ax2的图象与y=ax2+k的图象的关系
二次函数y=ax2+k的图象可由二次函数y=ax2 的图象向上(或向下)平移得到:
当k>0时,抛物线 y=ax2向上平移|k|个单 位,得y=ax2+k
二次函数与一元二次方程二次函数优秀ppt课件
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
九年级二次函数与一元二次方程的联系和区别
二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
关于一元二次函数,一元二次方程,一元二次不等式及其关系
1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。
1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。
当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。
二次函数与一元二次方程的联系
二次函数与一元二次方程的联系二次函数和一元二次方程是高中数学中的重要概念,它们之间存在着密切的联系。
本文将从几何关系和代数关系两个方面来探讨二次函数与一元二次方程之间的联系。
一、几何关系1. 二次函数的几何意义:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
它的图像是一条开口向上或向下的抛物线。
对称轴为x = -b/2a,顶点的纵坐标为c - b^2/4a。
抛物线在对称轴上下方呈现关于对称轴对称的特点。
2. 一元二次方程的几何意义:一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为常数且a ≠ 0。
它表示抛物线与x轴的交点位置,也就是方程的解。
如果方程有两个不相等的实数根,则抛物线与x 轴有两个交点;如果方程有一个实数根,则抛物线与x轴有一个切点;如果方程没有实数根,则抛物线与x轴没有交点。
3. 二次函数与一元二次方程的联系:二次函数的图像与一元二次方程的解之间存在着密切的联系。
通过解一元二次方程可以确定二次函数的图像与x轴的交点位置,而通过分析二次函数的图像可以得到一元二次方程的解的情况。
二次函数与一元二次方程的解是一一对应的关系。
二、代数关系1. 二次函数的表达式与一元二次方程:已知二次函数f(x) = ax^2 + bx + c,将其与y = f(x)进行等价转化,可以得到一元二次方程ax^2 + bx + c = y。
这意味着,我们可以通过二次函数的表达式来推导出一元二次方程。
反过来,已知一元二次方程ax^2 + bx + c = 0,将其与y = 0进行等价转化,可以得到二次函数f(x) = ax^2 + bx + c。
这意味着,我们可以通过一元二次方程来确定二次函数的表达式。
2. 二次函数的性质与一元二次方程的解:二次函数的性质可以帮助我们判断一元二次方程的解的情况。
比如,当二次函数开口向上且顶点在x轴上方时,一元二次方程有两个不相等的实数根;当二次函数开口向下且顶点在x轴下方时,一元二次方程无实数根;当二次函数开口向上且顶点在x轴上时,一元二次方程有一个实数根。
一元二次不等式与二次函数、一元二次方程的关系
bds04_2.2(3) 一元二次不等式与二次函数、一元二次方程的关系课题名称 2.2(3) 一元二次不等式与二次函数、一元二次方程的关系课时 2 课型新授一教学目标知识与技能:1. 通过二次函数的图像了解一元二次不等式与相应的二次函数、一元二次方程的内在联系.2. 能通过二次函数的图像与对应的一元二次方程,直观地求出一元二次不等式的解集.3. 理解转化的思想,即理解一元二次不等式是如何转化为用相应的二次函数图像与一元二次方程的根来进行求解的.过程与方法:1. 教学过程中注重知识的形成过程,把握学生的认知规律.2. 强调数形结合的解题方法.情感态度与价值观:1.借助图像来求解抽象的问题,提高学生学习的兴趣和解题的正确率.2.通过学习使学生学会分析和归纳复杂事物的能力,结合工学交替等途径,为日后进入职场奠定基础.二教学重点与难点教学重点:1.一元二次函数的图像.2. 通过二次函数的图像与对应的一元二次方程,解一元二次不等式. 教学难点:1. 数形结合的方法.三教学方法启发式教学. 类比的方法,归纳的方法. 四教学手段利用多媒体课件bds04、黑板等.五教学过程【新课导入】一元二次不等式与二次函数、一元二次方程的关系:解一元二次不等式是否一定要转化为一元一次不等式组来解呢? 其实不然!因为一元二次不等式与二次函数、一元二次方程三者之间存在着密不可分的“亲缘”关系, 你可以借助二次函数的图像及相应一元二次方程的根,解决一元二次不等式的解的问题. 【示范例题】 例4 已知二次函数223y x x =--(1) 画出此二次函数的图像; (2) 求当x 取何值时,y =0;(3) 求当x 在何范围内取值时,y <0; (4) 求当x 在何范围内取值时,y >0. 解 (1) 图像如下图所示:(2) 由y =0,得 2-2-30xx =解此一元二次方程,得11x =-,23x = ∴当1x =-或3x =时,y =0.(3) 由图可知,当-1<x <3时,二次函数图像在x 轴的下方. ∴当-1<x <3时,y <0.(此时,2230xx --<)(4) 由图可知,当x <-1或x >3时,二次函数图像在x 轴的上方. ∴当 x <-1或x >3时,y>0.(此时,2-2-30x x >)提问:不等式2230x x --<的解集是? 不等式2230xx -->的解集是?例5 利用在例题4学到的知识,解不等式:28230x x -->解 不等式对应的二次函数为2823y x x =--令y=0,对应方程28230x x --=的根为: 121324x x =-=, 当12x <-或 34x >时,y >0. ∴不等式28230x x -->的解集为13,,24⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.例6 解不等式:22-20x x -+>解二次项系数为负,∴原不等式两边同乘以-1,得:2220x x -+<对应方程: 2220xx -+=的判别式()2241240∆=--⨯⨯=-<对应二次函数:222y x x =-+的图像如图所示:a >0开口向上,0∆<,图像位于x 轴上方;∴不等式222<0x x -+的解集为φ.即原不等式22-20x x -+>的解集为φ.例7 解不等式:2440x x -+>解 对应方程: 244=0xx -+的判别式()244140∆=--⨯⨯=对应二次函数:244y x x =-+的图像如图所示:a >0开口向上,0∆=,图像与x 轴有一个交点;∴不等式2440x x -+>的解集为()(),22,-∞+∞.【双基讲解】一元二次不等式的解法:解一元二次不等式的关键是看不等式对应的二次函数图像.这种方法解一元二次不等式:20ax bx c ++>或()200ax bx c a ++<>的步骤是:(1)计算判别式24b ac ∆=-;(2)根据判别式的值的情况分别求解. 这里涉及的情况如下表所示:例8 解不等式:(1) 22520x x -+≤;(2) ()()841x x x +>-;(3)()()2124x x +-<-.解 (1) 解不等式: 22520x x -+≤()254229∆=--⨯⨯=方程22520xx -+=的两个根为:12122x x ==,∴不等式的解集为1,22⎡⎤⎢⎥⎣⎦. (2) 解不等式: ()()841xx x +>-解 原不等式化简得:2440x x ++>244140∆=-⨯⨯=方程2440x x ++=有两个相等的实数根:122x x ==-∴不等式的解集为()(),22,-∞--+∞.(3) 解不等式:()()2124x x +-<-解 原不等式化简得: 22320x x -+<()2342270∆=--⨯⨯=-< ∴方程22320x x -+=没有实数根,∴原不等式的解集为φ.【巩固练习】 课堂练习2.2(3)1. 写出下列一元二次不等式对应的二次函数和一元二次方程. (1) 23100xx -->; (2) ()()2130x x -+<;(3)251360x x -+-≥; (4) ()24221x x x +-<-.2. 已知二次函数2-3-10y x x =(1) 画出此二次函数的图像; (2) 求当x 取何值时,y = 0; (3) 求当x 在何范围内取值时,y < 0; (4) 求当x 在何范围内取值时,y > 0. 3. 解下列不等式: (1) 27120xx -+>; (2) 22530x x +-<;(3)22150x x --+≥; (4) ()24421x x x +-<-.六 课堂小结1. 利用二次函数的图像、一元二次方程和一元二次不等式之间的关系求解一元二次不等式;2. 利用上述关系给出了一个一般性的求解方法.七 布置作业由老师根据学生的具体情况灵活布置八 教学后记根据上课的具体情况,由老师书写教案编制人:周芸辉。
《二次函数与一元二次方程》二次函数PPT教学课件
情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1
两
(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,
二次函数与方程的关系
二次函数与方程的关系二次函数和二次方程是数学中常见的概念,它们之间存在着密切的关系。
本文将从定义、图像、性质以及解析式等角度,探讨二次函数与方程之间的关系。
一、二次函数的定义二次函数是指一个自变量为x的函数,其一般形式为f(x)=ax^2+bx+c,其中a、b、c是实数且a≠0。
其中x是自变量,f(x)是因变量。
二次函数的图像为抛物线。
二、二次方程的定义二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c是实数且a≠0。
其中x是未知数。
三、二次函数的图像二次函数的图像是抛物线,其开口的方向由二次项系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(xv, yv),其中xv=-b/2a,yv=f(xv)。
四、二次方程的解对于二次方程ax^2+bx+c=0,可以通过求解得到其根的解。
根的个数和判别式Δ有关,Δ=b^2-4ac。
1. 当Δ>0时,方程有两个不相等的实根。
根的公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。
2. 当Δ=0时,方程有两个相等的实根。
根的公式为x=-b/2a。
3. 当Δ<0时,方程没有实根,有两个共轭复根。
根的公式为x1=(-b+i√|Δ|)/2a,x2=(-b-i√|Δ|)/2a。
五、二次函数与二次方程的联系1. 抛物线的顶点坐标:二次函数的解析式中,顶点的横坐标xv=-b/2a对应着二次方程的根的公式中x1和x2的值。
2. 方程的解与函数的零点:二次方程的实根对应着二次函数与x轴(y=0)的交点,也就是函数的零点。
可以通过求解方程获得函数的零点。
3. 方程求解问题:通过建立二次方程解题可以推导出二次函数的性质和特点,例如最值点、单调性等。
六、结论通过上述分析可以看出,二次函数和方程之间存在着密切的关联。
二次函数的图像为抛物线,方程的解对应着函数的零点。
掌握了二次函数和方程的关系,可以更好地理解和应用二次函数和方程在实际问题中的应用。
初中数学 一元二次方程的根与二次函数的图像与y轴的交点有什么关系
初中数学一元二次方程的根与二次函数的图像与y轴的交点有什么关系一元二次方程的根与二次函数的图像与y轴的交点之间有着紧密的关系。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数,且a ≠ 0。
而二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为实数,且a ≠ 0。
下面我们将详细说明一元二次方程的根与二次函数的图像与y轴的交点之间的关系:1. 根与交点的定义:一元二次方程的根是指满足方程的解,即使得方程成立的x值。
二次函数的图像与y轴的交点是指图像与y轴相交的点,即二次函数的x轴截距。
2. 根与交点的关系:一元二次方程的根可以帮助确定二次函数图像与y轴的交点的个数和位置。
具体而言,一元二次方程的根的个数和性质决定了二次函数图像与y轴的交点的个数和位置。
-当一元二次方程有两个不同的实根时,对应的二次函数图像与y轴有一个交点。
这意味着二次函数图像与y轴相交于某一点,该点的横坐标对应于一元二次方程的根。
-当一元二次方程有两个相同的实根时,对应的二次函数图像与y轴有一个交点。
这意味着二次函数图像与y轴相切于某一点,该点的横坐标对应于一元二次方程的根。
-当一元二次方程没有实根时,对应的二次函数图像与y轴没有交点。
这意味着二次函数图像与y轴平行,而不会相交。
例如,考虑一元二次方程x^2 - 4x + 4 = 0。
通过求解该方程,我们可以得到一个实根x = 2。
因此,对应的二次函数y = x^2 - 4x + 4将与y轴在x = 2处相交。
通过解一元二次方程,我们可以找到二次函数图像与y轴的交点的横坐标。
这些交点的横坐标对应于一元二次方程的根。
3. 交点个数与二次函数图像形状的关系:交点的个数与二次函数图像的形状有关。
具体而言,交点的个数和位置可以帮助我们确定二次函数图像的开口方向和开口程度。
-当二次函数图像与y轴有一个交点时,开口方向取决于二次函数的系数a的正负。
二次函数与二元一次方程、不等式的解的对应关系
二次函数与二元一次方程、不等式的解的对应关系二次函数与二元一次方程、不等式的解的对应关系在数学领域中,二次函数与二元一次方程、不等式的解之间存在着密切的对应关系。
本文将从简单到复杂的角度,全面评估这一主题,并据此撰写一篇有价值的文章,以便读者更深入地理解这一关系。
一、二次函数的基本形式我们首先来了解二次函数的基本形式。
二次函数通常具有以下标准形式:f(x) = ax^2 + bx + c。
其中,a、b、c分别代表二次项系数、一次项系数和常数项。
1. 二次函数图像的特点二次函数的图像是一个抛物线,其开口方向由二次项系数a的正负决定。
当a > 0时,图像开口向上;当a < 0时,图像开口向下。
二次函数的顶点坐标为:(-b/2a, f(-b/2a))。
2. 二次函数的零点二次函数的零点即为方程f(x) = 0的解,也就是函数图像与x轴的交点。
要求出二次函数的零点,可以使用求根公式或配方法,进而得到对应的解。
二、二元一次方程、不等式的基本形式接下来,我们将了解二元一次方程和不等式的基本形式,以及它们与二次函数解之间的联系。
1. 二元一次方程的一般形式二元一次方程一般可表示为:ax + by = c。
在解二元一次方程时,通常采用代入、相消、加减消元法等方法,最终得到方程的解。
2. 二元一次不等式的一般形式二元一次不等式的一般形式为:ax + by > c或ax + by < c。
解二元一次不等式时,同样可以通过代入法等方式,最终得到不等式的解集合。
三、二次函数与二元一次方程、不等式解的对应关系了解了二次函数和二元一次方程、不等式的基本形式后,接下来我们来探讨它们之间的对应关系。
1. 二次函数的解与二元一次方程的关系对于二次函数f(x) = ax^2 + bx + c,其解即为方程f(x) = 0的解。
而方程f(x) = 0可以化为ax^2 + bx + c = 0的形式,与一元二次方程的形式一致。
二次函数与二次方程二次不等式的关系
二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。
知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。
研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。
二次函数与一元二次方程的关系
二次函数与一元二次方程的关系二次函数和一元二次方程是高中数学中经常涉及的重要概念。
二次函数是指函数的表达式为二次多项式的函数,而一元二次方程则是指仅含有一个未知数的二次方程。
本文将探讨二次函数与一元二次方程之间的紧密联系。
一、二次函数的定义与图像特征二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数且a≠0。
其中,a决定函数的开口方向和形状,b则决定了函数图像在x轴上的平移,c则表示函数图像在y轴上的平移。
二次函数在坐标平面上呈现出的图像一般为抛物线。
当a>0时,抛物线开口向上,成为顶点向上的抛物线;当a<0时,抛物线开口向下,成为顶点向下的抛物线。
而顶点坐标则可以通过二次函数的顶点公式来求得:顶点坐标为(-b/2a, f(-b/2a))。
二、一元二次方程的定义与解法一元二次方程是指只含有一个未知数的二次方程,一般的形式为ax² + bx + c = 0,其中a、b、c为实数且a≠0。
解一元二次方程的一种常见的方法是使用求根公式,即二次方程的根公式:x = (-b±√(b²-4ac))/2a。
根据一元二次方程的判别式Δ = b²-4ac的值可以推断出方程的解的情况。
当Δ>0时,方程有两个不同的实数解;当Δ=0时,方程有两个相同的实数解;当Δ<0时,方程无实数解,但可以有复数解。
三、二次函数与一元二次方程的关系二次函数与一元二次方程有许多紧密的联系。
事实上,二次函数的图像与一元二次方程的解之间存在着深刻的关联。
首先,对于二次函数f(x) = ax² + bx + c来说,它的图像与x轴的交点就对应了一元二次方程ax² + bx + c = 0的解。
也就是说,如果求得二次函数的根,就可以得到对应一元二次方程的解。
其次,二次函数的顶点坐标(-b/2a, f(-b/2a))可以提供一元二次方程的最值情况。
二次函数与二次方程的关系分析
二次函数与二次方程的关系分析二次函数和二次方程是高中数学中重要的概念,它们之间存在着密切的关系。
本文将从不同角度分析二次函数和二次方程的关系。
一、二次函数与二次方程的定义首先,我们来了解二次函数和二次方程的定义。
二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a不等于0。
二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为常数,且a不等于0。
二、二次函数与二次方程的图像关系二次函数的图像是一条抛物线,而二次方程的解则是抛物线与x轴的交点。
具体来说,二次函数f(x) = ax^2 + bx + c的图像在平面直角坐标系中呈现出开口朝上或开口朝下的抛物线形状。
而对应的二次方程ax^2 + bx + c = 0的解则是抛物线与x轴的交点,也就是方程的根。
如果二次方程有两个不相等的实数根,则抛物线与x轴有两个交点;如果二次方程有一个重根,则抛物线与x轴有一个切点;如果二次方程没有实数根,则抛物线与x轴没有交点。
三、二次函数与二次方程的性质关系二次函数和二次方程之间还存在着一些性质关系。
首先,二次函数的导数是一次函数,即f'(x) = 2ax + b。
而对应的二次方程的判别式D = b^2 - 4ac可以通过导数的性质来解释。
当二次函数的导数大于0时,函数在该点上升;当导数小于0时,函数在该点下降;当导数等于0时,函数取得极值。
而判别式D大于0时,二次方程有两个不相等的实数根;当D小于0时,二次方程没有实数根;当D等于0时,二次方程有一个重根。
另外,二次函数的对称轴是一个直线,它通过抛物线的顶点。
对应的二次方程的对称轴可以通过顶点的横坐标来确定。
对称轴的方程为x = -b/2a。
通过对称轴的性质,我们可以快速求得二次函数的顶点坐标和二次方程的解。
四、二次函数与二次方程的应用关系二次函数和二次方程在实际问题中有着广泛的应用。
例如,抛物线的形状可以用来描述物体的抛射轨迹,二次函数可以用来建立物体的运动模型。
二次函数的图像及一元二次方程与二次函数的关系
第十五讲二次函数的图像与性质二次函数 y ax2bx c 图象的画法1、二次函数的表示方法:1.一般式: y ax2bx c 〔 a ,b, c 为常数,a0 〕;2.顶点式: y a( x h )2k 〔 a , h , k 为常数,a0 〕;五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式 y a(x h)2k ,y ax2bx c= a(x2b ca x2b b2(b2ca( xb24ac b2 x)x( ))a)4aa a a2a2a2a由此可见函数 y ax 2bx c 的图像与函数y ax 2的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。
2、二次函数y ax2bx c 的图像特征〔1〕二次函数y ax 2bx c ( a≠0)的图象是一条抛物线;3、二次函数 y ax2bx c 的性质1. 当a0 时,抛物线开口向上,对称轴为x b,顶点坐标为 b ,4ac b 2.2a2a4a 当 x b时, y 随x的增大而减小;2a当 x b时, y 随x的增大而增大;2a当 x b时, y 有最小值4acb2.2a4a2.当 a0 时,抛物线开口向下,对称轴为x b,顶点坐标为 b ,4ac b2.2a2a4a 当 x b时, y 随x的增大而增大;2a当 x b时, y 随x的增大而减小;2ab时, y 有最大值4ac2当 x b.2a4a3.常数项 c⑴当 c0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;y 轴交点的纵坐标为负.⑶当 c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与总结起来, c 决定了抛物线与y 轴交点的位置.例1 函数 y= x2 -2x -3 ,〔1〕把它写成y a(x m) 2k 的形式;并说明它是由怎样的抛物线经过怎样平移得到的(2〕写出函数图象的对称轴、顶点坐标、开口方向、最值;(3〕求出图象与坐标轴的交点坐标;(4〕画出函数图象的草图;( 5 ) 设图像交x 轴于 A、 B 两点,交y 轴于 P 点,求△ APB 的面积;〔6〕根据图象草图,说出x 取哪些值时,①y=0;②y<0;③y>0.例 2、求抛物线y 1 x23x5的对称轴和顶点坐标。
二次函数与一元二次方程不等式的关系课件
根据 yx2 2x3 图象回答下列问题.
• 当 x 取何值时,y<0?
y
• 当 x 取何值时,y>0?
• 能否用含有x的不等式来 描述两个问题?
x y=x2-2x-3
例题精讲
3.已知二次函数y=-x2+3x+4的图象如图;
(1)方程-x2+3x+4=0的解
y
是_x_=-1,x_=_4_
4
(2)不等式-x2+3x+4>0的解集 3 2
x
探究
探究2:抛物线与X 轴的交点个数能不能用一元
二次方程的知识来说明呢?
Y b2-4ac<0
b2-4ac=0
b2-4ac>0
O
X
结论2:抛物线y=ax2+bx+c与x轴的交点个数可由 一元二次方程ax2+bx+c=0的根的情况说明:
y=ax2+bx+c的图 方程ax2+bx+c=0的
象和x轴交点
当x=x1或x=x2时,y=0 当x1<x<x2时,y<0 当x<x1或x>x2时,y>0
1、如图求当x为何值时,y>0,y=0,y<0
y
O
-2
1x
2、、若x为任意实数,则二次函数 y=x2+2x+3的函数值y的取值范围
是 y≥2。
⊿=b2-4ac
y=ax2+bx+c (a>0)图像
⊿>0
y
⊿=0
<1>①-x2+x+2=0; ②-x2+x+2>0; ③-x2+x+2<0.
专题03 一元二次方程与二次函数的图象、性质(解析版)
专题03 一元二次方程与二次函数的图象、性质【知识点梳理】 知识点1:根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=.① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1)当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. 知识点2:根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =, 则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac c x x a a a a a-+---=⋅===.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知 x 1+x 2=-p ,x 1·x 2=q , 即p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0. 知识点3:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到. 同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0) 知识点4:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a-.【题型归纳目录】 题型1:根的判别式题型2:根与系数的关系(韦达定理) 题型3:二次函数图像的伸缩变换 题型4:二次函数图像的平移变换【典型例题】 题型1:根的判别式例1.已知关于x 的一元二次方程(k -2)x 2-2kx +k +1=0,若该方程有两个不相等的实数根,求k 的取值范围. 【答案】2k ->且2k ≠ 【解析】 【分析】直接利用一元二次方程根的判别式大于0即可求解. 【详解】解:∵关于x 的一元二次方程22210()k x kx k --++=有两个不相等的实数根, ∴224(2)4(2)(1)480b ac k k k k ∆=-=---+=+>,且20k -≠; 解得,2k ->且2k ≠. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 例2.已知x 1,x 2是关于x 的一元二次方程x 2-4mx +4m 2-9=0的两实数根. (1)若这个方程有一个根为-1,求m 的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m 的取值范围;(3)已知Rt △ABC 的一边长为7,x 1,x 2恰好是此三角形的另外两边的边长,求m 的值.【答案】(1)m的值为1或-2 (2)-2<m<1(3)m m=49 24【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角△ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的两实数根,这个方程有一个根为-1,∴将x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值为1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴231 231 mm+-⎧⎨--⎩><解得-2<m<1.∴m的取值范围是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的两根分别为2m+3,2m-3.若Rt△ABC的斜边长为7,则有49=(2m+3)2+(2m-3)2.解得m=∵边长必须是正数,∴m若斜边为2m+3,则(2m+3)2=(2m-3)2+72.解得m=49 24.综上所述,m m =4924.【点睛】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.例3.关于x 的一元二次方程x 2﹣3x +k =0有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值. 【答案】(1)94k ≤ (2)32m =【解析】 【分析】(1)根据一元二次方程根的判别式求解即可;(2)根据(1)确定2k =,从而求出方程2320x x -+=的解为121=2x x =,,然后分相同的根为1x =时和2x =时,两种情况讨论求解即可. (1)解:∵关于x 的一元二次方程x 2﹣3x +k =0有实数根, ∴()22=4=340b ac k ∆---≥, ∴94k ≤; (2) 解:∵94k ≤, k 是符合条件的最大整数, ∴2k =,∴方程230x x k -+=即为2320x x -+=, 解方程2320x x -+=得:121=2x x =,,∵一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根 当这个相同的根为1x =时, ∴1130m m -++-=, ∴32m =; 当这个相同的根为2x =时,∴()4123m m -++-, ∴1m =,∵当1m =时,方程(m ﹣1)x 2+x +m ﹣3=0即为20x -=不是一元二次方程, ∴32m =. 【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的解等等,熟知一元二次方程根的判别式是解题的关键.例4.已知关于x 的一元二次方程2(21)20mx m x m --+-=有两个不相等的实数根. (1)求m 的取值范围;(2)若方程有一个根是0,求方程的另一个根. 【答案】(1)14m > 且0m ≠ (2)另一个根为32【解析】 【分析】(1)由一元二次方程定义和根的判别式与根之间的关系,列不等式组求解即可. (2)将x =0代入原方程,求出m ,再解方程即可. (1)解:∵2(21)20mx m x m --+-=是一元二次方程, 0m ∴≠ ,∵一元二次方程2(21)20mx m x m --+-=有两个不相等的实数,240b ac > ,即:2(21)4(2)0m m m > ,整理得:410m > , 14m >, 综上所述:14m > 且0m ≠. (2)∵方程有一个根是0,将x =0代入方程得:20m -= ,2m ∴= ,则原方程为:2230x x -= ,解得:1230,2x x ==, ∴方程的另一个根为32.【点睛】本题考查了一元二次方程的定义以及一元二次方程根的判别式与根的关系:0>方程有两个不相等的实数根 , =0方程有两个相等的实数根,0<方程没有实数根,方程有实数根.熟练掌握根的判别式与根的关系是解题关键,一元二次方程的二次项系数不能为0是易错点. 例5.已知关于x 的一元二次方程2240x mx m -+-=. (1)求证:方程总有两个实数根;(2)2x =是方程的一个根吗?若方程有一个实数根为负数,求正整数m 的值. 【答案】(1)见解析(2)x =2是方程的一个根,1m = 【解析】 【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可. (1)证明:∵Δ=(-m )2-4×(2m -4) =m 2-8m +16 =(m -4)2, ∵(m -4)2≥0,∴方程总有两个实数根. (2)解:把x =2代入方程左边,得左边=22-2m +2m -4=0=右边, ∴x =2是方程x 2-mx +2m -4=0的一个根; 用因式分解法解此方程x 2-mx +2m -4=0, 可得(x -2)(x -m +2)=0, 解得x 1=2,x 2=m -2,若方程有一个根为负数,则m -2<0, 故m <2, ∴正整数m =1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.题型2:根与系数的关系(韦达定理)例6.已知关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根1x ,2x .(1)求m 的取值范围;(2)若120x x ⋅=,求方程的两个根. 【答案】(1)14m <且0m ≠ (2)10x =,232x =-【解析】 【分析】(1)根据一元二次方程的定义及方程有两个不相等的实数根,得到根的判别式大于0,从而到关于m 的不等式,求出m 的范围即可;(2)利用根与系数的关系可得122m x x m+⋅=,根据120x x ⋅=可得关于m 的方程,整理后即可解出m 的值,最后求出方程的根. (1)解:∵关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根,∴0>且0m ≠,即()()221420m m m +-⨯⨯+>且0m ≠, 解得:14m <且0m ≠. (2)∵关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根1x ,2x ,∴122m x x m+⋅=, ∵120x x ⋅=, ∴20m m+=, 解得:2m =-,经检验:2m =-是分式方程的解, ∴当2m =-时,方程为:2230x x --=, 解得:10x =,232x =-.【点睛】本题考查了根的判别式,根与系数的关系,一元二次方程以及分式方程等知识.关键是掌握一元二次方程根的情况与判别式的关系:⑴0>⇔方程有两个不相等的实数根;⑵0=⇔方程有两个相等的实数根;⑶0<⇔方程没有实数根.以及根与系数的关系:1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b x x a +=-,12c x x a⋅=. 例7.已知关于x 的一元二次方程2(31)210ax a x a -+++=. (1)求证:无论a 为任何非零实数,此方程总有两个实数根; (2)若该方程的两个实数根分别为1x 、2x ,且212x x -=,求a 的值. 【答案】(1)见解析;(2)11a =,213a =-【解析】 【分析】(1)利用一元二次方程根的判别式判断即可;(2)利用一元二次方程根与系数的关系,结合完全平方公式的变形求值即可. (1)解:∵一元二次方程2(31)210ax a x a -+++=,2(31)4(21)a a a ∆=+-+,221a a =++2(1)0a =+≥∴无论a 为任何非零实数,此方程总有两个实数根; (2)解:依题意得,1231a a x x ++=,1221a ax x +=, ∵212x x -=,∴21212()44x x x x +-=,∴2314(21)()4a a a a++-=,即23210a a --=, (3a +1)(a -1)=0,解得11a =,213a =-;【点睛】本题考查了一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-及根与系数的关系12b x x a+=-,12c x x a=.例8.若α=20x x t -+=的根;(1)则方程的另外一个根β=______,t =______;(2)求()()323211ααββ-+-+的值.【答案】1- (2)1【解析】【分析】 (1)根据一元二次方程根与系数的关系求解即可;(2)根据,αβ是为一元二次方程210x x --=的根,可得3232αααβββ-=-=,,代入代数式化简,进而根据一元二次方程根与系数的关系代入求解即可.(1)解:∵α=20x x t -+=的根,设方程的另外一个根为β, ∴1βα+=1β∴==1t αβ∴=⋅==-1-; (2) ,αβ是为一元二次方程210x x --=的根210αα∴--=,210ββ--=21αα∴-=,21ββ-=,0α≠,0β≠,32ααα∴-=,32βββ-=,∴()()323211ααββ-+-+()()11αβ=++1αβαβ=+++1αβ+=,1αβ=-,∴原式1111=-+=【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的意义,掌握一元二次方程根与系数的关系是解题的关键.例9.已知关于x 的一元二次方程()22230x m x m --+=有两个不相等的实数根.(1)求m 的取值范围;(2)若此方程的两实数根12,x x 满足()()12117x x --=,求m 的值.【答案】(1)34m <(2)1m =-【解析】【分析】(1)一元二次方程有两个不相等的实数根,则0∆>,由此求得m 的取值范围;(2)由12(1)(1)7x x --=得1212()17x x x x -++=,利用一元二次方程根与系数的关系进行求解.(1) 解:关于x 的一元二次方程22(23)0x m x m --+=有两个不相等的实数根, ∴22(23)40m m ∆=-->, 解得34m <. (2)解:根据题意得,212x x m =,1223x x m +=-.12(1)(1)7x x --=,∴1212()17x x x x -++=,即2(23)17m m --+=,解得1m =-或3m =, 又34m <, ∴1m =-.【点睛】本题考查了一元二次方程的判别式,一元二次方程根与系数的关系,熟练掌握两根之和与两根之积的表达式是解决本题的关键.例10.已知关于x 的一元二次方程22430x kx k -+=.(1)求证:该方程总有两个实数根;(2)若0k >,且该方程的两个实数根的差为3,求k 的值.【答案】(1)见解析 (2)32【解析】【分析】(1)根据方程的系数结合根的判别式可得出24=b ac ∆-结合偶次方的非负性可得出Δ≥0,进而可证出:无论k 为何实数,方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=4k ,x 1x 2=3k 2,结合(x 1-x 2)2=9,即可得出关于k 的方程,解之即可得出结论.(1)∵222(4)4134k k k ∆=-⨯⨯=,且无论k 为何实数,240k ≥∴Δ≥0∴该方程总有两个实数根;(2)方法一:设该方程两个实数根分别为()1212,x x x x ≥,则有124x x k +=,1223x x k ⋅=123x x -=则()2129x x -= ()2121249x x x x ⋅+-= 2216129k k -=294k = 解得:32k =± ∵0k >. ∴32k 方法二:()()30x k x k --=解得:1x k =,23x k = 由题意得:123x x -=33k k -=,解得:32k =± ∵0k >.∴32k 【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当Δ=0时,一元二次方程有两个实数根”;(2)利用根与系数的关系结合(x 1-x 2)2=1,找出关于k 的方程.题型3:二次函数图像的伸缩变换例11.已知二次函数y =ax 2+bx ﹣2(a ≠0)的图象与x 轴交于点A 、B ,与y 轴交于点C .(1)若点A 的坐标为(4,0)、点B 的坐标为(﹣1,0),求a +b 的值;(2)若y =ax 2+bx ﹣2的图象的顶点在第四象限,且点B 的坐标为(﹣1,0),当a +b 为整数时,求a 的值.【答案】(1)1a b +=- (2)13,1,22a = 【解析】【分析】(1)代入A 、B 坐标,求出a 、b 的值即可得解;(2)根据抛物线顶点在第四象限,又与x 轴有两个交点,得到抛物线的开口向上,即a >0,根据顶点在第四象限得出02b a->,求出a 的取值范围,进而得出a +b 的取值范围,即可求解. (1)代入A 、B 坐标,可得: 1642020a b a b +-=⎧⎨--=⎩, 解得1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, 则a +b =-1;(2)∵抛物线顶点在第四象限,又与x 轴有两个交点,∴抛物线的开口向上,即a >0,且抛物线对称轴02b xa>, ∵抛物线过B 点(-1,0),∴代入B 点坐标可得:a -b -2=0,则有b =a -2,∴2022b a a a --=->, 解得a <2,∴02a <<,∵a +b =a +a -2=2a -2,∴2222a --<<,∵a +b 是整数,∴a +b =a +a -2=2a -2为整数,∴2a -2可以为-1,0,1,∴a 可以为12,1,32. 【点睛】本题考查了求解抛物线与x 轴的交点、抛物线函数图象的坐标特征等知识,根据抛物线顶点在第四象限,又与x 轴有两个交点,得到抛物线的开口向上,即a >0,是解答本题的关键.例12.抛物线212y x bx c =-++交x 轴于A 、B 两点,交y 轴正半轴于点C ,对称轴为直线32x =-.(1)如图1,若点C 坐标为(0,2),则b =_______,c =_________;(2)若点P 为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP 面积最大时,点P 坐标和四边形ABCP 的最大面积;(3)如图2,点D 为抛物线的顶点,过点O 作MN CD ∥别交抛物线于点M ,N ,当3MN CD =时,求c 的值.【答案】(1)32-,2; (2)点P (-2,3),四边形ABCP 的最大面积为9; (3)94. 【解析】【分析】(1)根据解析式和对称轴可求出b ,根据C 点坐标即可求出c;(2)求出1:22AC l y x =+,过点P 作x 轴的垂线,交AC 于点Q ,设点213(,2)22P x x x --+,(0)x <,求出24(0)APC S x x x =--<△,进一步求出S 四边形ABCP 22=45(2)9APC ABC S S x x x +=--+=-++△△,即可求出结果;(3)求出直线CD 的解析式为:34y x c =-+,进一步可得直线MN 的解析式为:34y x =-,分别过C ,N 作x 轴的平行线,过D ,M 作y 轴的平行线交于点G ,H ,证明MHN DGC ∽△△,即可求出结果. (1)解:由题意可知:∵322b x a =-=-,∴32b =-, ∵点C 坐标为(0,2),∴2c =;(2) 解:令2130222y x x ==--+,整理得(1)(4)0x x -+=, 解得1x =或4x =-,∴(4,0)A -,(1,0)B ,∵(0,2)C ,∴5AB =,2OC =, ∴152ABC S AB OC =⨯=△, ∵(4,0)A -,(0,2)C , ∴1:22AC l y x =+, 过点P 作x 轴的垂线,交AC 于点Q ,设点213(,2)22P x x x --+,(0)x <则点1(,2)2Q x x +, 2213112(2)22222PQ x x x x x =--+-+=--,∴21()4(0)2APC APQ PCQ C A S S S PQ x x x x x =+=⨯-=--<△△△, ∴S 四边形ABCP 22=45(2)9APC ABC S S x x x +=--+=-++△△,∵10-<,函数图象开口向下,又0x <,∴当2x =-时,S 四边形ABCP 最大 = 9,此时点(2,3)P -,∴当点(2,3)P -时,四边形ABCP 的最大面积,最大面积为9;(3) 解:∵221313()222298y x x c x c =--+=-+++, ∴39,28D c ⎛⎫+ ⎪⎝⎭-, 又∵(0,)C c ,∴设直线CD 的解析式为1y kx b =+(k≠0) ,代入点D ,C 的坐标得119382c b c k b =⎧⎪⎨+=-+⎪⎩, 解得134k b c⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为:34y x c =-+, ∵MN CD ∥,∴直线MN 的解析式为:34y x =-, 由题意,联立2132234y x x c y x ⎧=--+⎪⎪⎨⎪=-⎪⎩, 得:213024x x c +-=,解得:x =932c ⎛⎫≥- ⎪⎝⎭,由题意,N xM x ,M N x x -= 分别过C ,N 作x 轴的平行线,过D ,M 作y 轴的平行线交于点G ,H ,∴G H ∠=∠,DCG MOA MNH ∠=∠=∠,∴MHN DGC ∽△△, ∴CG CD NH MN=, ∵ MN =3CD , ∴13CG CD NH MN ==, ∵39(,)28D c -+,(0,)C c , ∴32CG = , ∴39322NH =⨯= ,又∵M N NH x x =- ∴94c =. 【点睛】本题考查二次函数综合,难度较大,解题的关键是熟练掌握二次函数图象及性质,一次函数,相似三角形的判定及性质知识点.例13.二次函数2y ax bx c =++(a ,b ,c 是常数,0ab ≠).当2b x a=-时,函数y 有最小值1-.(1)若该函数图象的对称轴为直线1x =,并且经过()0,0点,求该函数的表达式.(2)若一次函数y ax c =+的图象经过二次函数2y ax bx c =++图象的顶点.①求该二次函数图象的顶点坐标.②若()(),,,a p c q 是该二次函数图象上的两点,求证:p q >.【答案】(1)22y x x =-(2)①顶点坐标为(-1,-1);②证明见解析【解析】【分析】(1)先确定顶点坐标,再设出该函数的顶点式解析式,将点(0,0)的坐标代入解析式中求出a ,即可求解;(2)①将顶点1),2(b a --代入y ax c =+,再利用2414ac b a-=-,进行转化后,求出12b a -=-即可求解; ②设函数表达式为()211y a x =+-,代入两点坐标后得到p 和q 的表达式,利用作差法比较大小即可.(1)解:由题意,得函数图象的顶点坐标为()1,1-,所以可设函数表达式为()211y a x =--,把()0,0代入,解得1a =,所求函数的表达式为22y x x =-.(2) ①由题意,将顶点1),2(b a --代入y ax c =+, 化简,得12b c =+. 又因为2414ac b a-=-, 所以2b a =,1c a =-.所以12b a-=-, 所以顶点坐标为()1,1--. ②由①可知,函数顶点坐标为()1,1--,1c a =-,所以可设函数表达式为()211y a x =+-.所以()()22311,1111p a a q a a a =+-=-+-=-. ()()2321112p q a a a a a -=+---=+. 因为函数有最小值,所以0a >,所以0p q ->,所以p q >.本题考查了二次函数的图像与性质、一次函数及其图象、作差法比较大小等,解题的关键是牢记函数的顶点式解析式和顶点坐标公式等.例14.已知点P 是二次函数()22111y x m m m =--++--图像的顶点.(1)小明发现,对m 取不同的值时,点P 的位置也不同,但是这些点都在某一个函数的图像上,请协助小明完成对这个函数的表达式的探究:①将下表填写完整:②描出表格中的五个点,猜想这些点在哪个函数的图像上?求出这个图像对应的函数表达式,并加以验证,(2)若过点(0,2),且平行于x 轴的直线与()22111y x m m m =--++--的图像有两个交点A 和B ,与②中得到的函数的图像有两个交点C 和D ,当AB CD =时,直接写出m 的值等于________;(3)若2m ≥,点Q 在二次函数()22111y x m m m =--++--的图像上,横坐标为m ,点E 在②中得到的函数的图像上,当90EPQ ∠=︒时,求出E 点的横坐标(用含m 的代数式表示).【答案】(1)①(0,﹣1),(1,1),(2,5),表格见解析,②在二次函数图像上,二次函数表达式是21y x x =+-,验证见解析;; (3)2322m m -+【解析】(1)点P 是二次函数()22111y x m m m =--++--[]2(1)x m =---21m m +--图像的顶点,得到点P 的坐标表示为(m -1,21m m --),分别带入m 的值求解P 点的坐标,描出表格中的五个点,猜想这些点在一个二次函数图像上,设二次函数的表示为2y ax bx c =++,把(0,﹣1),(1,1),(2,5)分别代入,利用待定系数法求出函数表达式,把x =m -1代入函数表达式验证即可;(2)根据题意求出AB 和CD 的长度,利用AB =CD ,列出方程并解方程即可求得m 的值;(3)求出点Q 的坐标,设点E 的坐标为(t ,21t t +-),利用两点间距离公式表示出2PE 、2PQ 、2QE ,由勾股定理得到2PE +2PQ =2QE ,整理后即可表示出点E 的横坐标(1)解:∵点P 是二次函数()22111y x m m m =--++--[]2(1)x m =---21m m +--图像的顶点 ,∴点P 的坐标表示为(m -1,21m m --)当m =1时,m -1=0,21m m --=21111--=-,此时P 点坐标是(0,﹣1);当m =2时,m -1=1,21m m --=22211--=,此时P 点坐标是(1,1);当m =3时,m -1=2,21m m --=23315--=,此时P 点坐标是(2,5);填写表格如下:故答案为:(0,﹣1),(1,1),(2,5);②描出表格中的五个点,如图所示,猜想这些点在一个二次函数图像上,设二次函数的表示为2y ax bx c =++,把(0,﹣1),(1,1),(2,5)分别代入得11425c a b c a a c =-⎧⎪++=⎨⎪++=⎩解得111a b c =⎧⎪=⎨⎪=-⎩∴函数表达式为21y x x =+-当x =m -1时,2221(1)111y x x m m m m =+-=-+--=--,∴点P 在二次函数21y x x =+-的图像上,猜想成立.(2)解:∵过点(0,2),且平行于x 轴的直线与()22111y x m m m =--++--的图像有两个交点A 和B , ∴当y =2时,()22211x m m m =--++--,方程整理得()2213x m m m -+=--解得11x m =-21x m =-∴AB =|12x x -|=∵过点(0,2),且平行于x 轴的直线与抛物线21y x x =+-有两个交点C 和D ,∴当y =2时,221x x =+-,解得1x =,2x CD =|12x x -∵AB =CD∴整理得244250m m --=解得1m =2m =; (3)解:∵点Q 在二次函数()22111y x m m m =--++--的图像上,横坐标为m ,∴当x =m 时,y =()222112m m m m m m --++--=--,∴点Q 的坐标是(m ,22m m --),∵点E 在②中得到的函数的图像上,∴可设点E 的坐标为(t ,21t t +-)由(1)知点P 的坐标表示为(m -1,21m m --),则22222(1)[(1)(1)]PE m t m m t t =--+---+-,22222(1)[(1)(2)]2PQ m m m m m m =--+-----=,22222()[(2)(1)]QE m t m m t t =-+---+-,∵90EPQ ∠=︒∴△EPQ 是QE 为斜边的直角三角形,由勾股定理得2PE +2PQ =2QE ,∴2222(1)[(1)(1)]m t m m t t --+---+-+2=2222()[(2)(1)]m t m m t t -+---+-解得t =2322m m -+. ∴点E 的横坐标是2322m m -+. 【点睛】此题是二次函数综合题,主要考查了二次函数的顶点式、待定系数法求二次函数解析式、一元二次方程的解法、坐标系中两点间距离、勾股定理等知识,运算量较大,具备良好的计算能力是解答此题的关键. 题型4:二次函数图像的平移变换例15.已知关于x 的方程ax 2+(3a +1)x +3=0.(1)求证:无论a 取任何实数时,该方程总有实数根;(2)若抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,求a 值以及此时抛物线的顶点H 的坐标;(3)在(2)的条件下,直线y =﹣x +5与y 轴交于点C ,与直线OH 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,请直接写出它的顶点横坐标h 的值或取值范围.【答案】(1)证明过程见详解.(2)a =1,(﹣2,﹣1)(3)h =72或﹣52≤h<2 【解析】【分析】(1)分别讨论当a =0和a ≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断; (2)令y =0,则 ax 2+(3a +1)x +3=0,求出两根,再根据抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,求出a 的值,即可求顶点坐标;(3)分两种情况讨论,通过特殊位置可求h 的范围,由平移的抛物线与直线CD (含端点C )只有一个公共点,联立方程组可求h 的值,即可求解.(1)解:当a =0时,原方程化为x +3=0,此时方程有实数根 x =﹣3.当a ≠0时,原方程为一元二次方程.∵∆=(3a +1)2﹣12a =9a 2﹣6a +1=(3a ﹣1)2≥0.∴此时方程有两个实数根.综上,不论a 为任何实数时,方程 ax 2+(3a +1)x +3=0总有实数根.(2)∵令y =0,则 ax 2+(3a +1)x +3=0.解得 x 1=﹣3,x 2=﹣1a .∵抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,∴a =1.∴抛物线的解析式为y =x 2+4x +3=(x +2)2﹣1.∴顶点H 坐标为(﹣2,﹣1);(3)∵点O (0,0),点H (﹣2,﹣1)∴直线OH 的解析式为:y =12x ,∵现将抛物线平移,保持顶点在直线OD 上.∴设平移后的抛物线顶点坐标为(h ,12h ),∴解析式为:y =(x ﹣h )2+12h ,∵直线y =﹣x +5与y 轴交于点C ,∴点C 坐标为(0,5)当抛物线经过点C 时,∴5=(0﹣h )2+12h ,∴h 1=﹣52,h 2=2, ∴当﹣52≤h<2时,平移的抛物线与射线CD (含端点C )只有一个公共点; 当平移的抛物线与直线CD (含端点C )只有一个公共点, 联立方程组可得251()2y x y x h h =-+⎧⎪⎨=-+⎪⎩,∴x 2+(1﹣2h )x +h 2+12h ﹣5=0,∴∆=(1﹣2h )2﹣4(h 2+12h ﹣5)=0, ∴h =72, ∴抛物线y =(x ﹣72)2+74与射线CD 的唯一交点为(3,2),符合题意; 综上所述:平移的抛物线与射线CD (含端点C )只有一个公共点,顶点横坐标h =72或﹣52≤h<2. 【点睛】此题考查了根的判别式、二次函数与x 轴的交点问题、二次函数与不等式的关系;解题的关键是第(3)题要根据CD 是射线,分情况讨论.例16.已知抛物线()2430y ax ax a =-+≠的图象经过点()2,0A -,过点A 作直线l 交抛物线于点()4,B m .(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移()0n n >个单位,使顶点落在直线l 上,求m ,n 的值.【答案】(1)2134y x x =-++;()2,4(2)3;2【解析】【分析】(1)把点()2,0A -代入()2430y ax ax a =-+≠,求出a 的值即可;再运用顶点坐标公式求出顶点坐标即可; (2)把C ()4,m 代入2134y x x =-++可求出m 的值;再运用待定系数法求出直线AB 的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将()2,0A -代入243y ax ax =-+得:0483a a =++,解得14a =-, ∴抛物线的函数表达式为2134y x x =-++, ∵121224b a -=-=⎛⎫⨯- ⎪⎝⎭,2214314441444ac b a ⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭, ∴顶点坐标为()2,4;(2)把C ()4,m 代入2134y x x =-++得, 4433m =-++=,设直线AB 的解析式为y kx b =+,将()2,0A -,()4,3B 代入y kx b =+得0234k b k b =-+⎧⎨=+⎩, 解得121k b ⎧=⎪⎨⎪=⎩, ∴直线AB 的解析式为112y x =+, ∵顶点的横坐标为2,∴把2x =代入112y x =+得:2y =, ∴422n =-=.【点睛】本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.例17.将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P 是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图1,点P 在线段AC 上方的抛物线H 上运动(不与A ,C 重合),过点P 作PD AB ⊥,垂足为D ,PD 交AC 于点E .作PF AC ⊥,垂足为F ,求PEF 的面积的最大值;(3)如图,点M 是抛物线H 的对称轴L 上的一个动点,是否存在点M ,使得以点A ,M ,C 为顶点的三角形是直角三角形?若存在,求出所有符合条件的点M 的坐标;若不存在,说明理由.【答案】(1)2(1)4y x =-++ (2)8164(3)存在点1M ⎛- ⎝⎭,2M ⎛- ⎝⎭,3(1,2)M --,4(1,4)M - 【解析】【分析】(1)根据题意设抛物线2:(1)4H y a x =++,根据点A 的坐标,待定系数法求二次函数解析式即可; (2)根据题意求得直线AC 的解析式为3y x ,设()2,23P m m m --+,则(,3)E m m +,进而根据二次函数的性质求得PE 的最大值,进而根据21124PEF S PF EF PE =⋅=即可求解; (3)设(1,)M m -,(3,0)A -,(0,3)C ,则224MA m =+,221(3)MC m =+-,218AC =,分①当90AMC ∠=︒时,222MA MC AC +=,即2241(3)18m m +++-=,②当90MAC ∠=︒时,222MA AC MC +=,即224181(3)m m ++=+-,③当90MCA ∠=︒时,222MA MC AC =+即224181(3)m m +=++-,解方程求解即可.(1)解:由题意得抛物线的顶点坐标为(1,4)-,∴抛物线2:(1)4H y a x =++,将(3,0)A -代入,得:2(31)40a -++=,解得:1a =-,∴抛物线H 的表达式为2(1)4y x =-++;(2)如图1,由(1)知:223y x x =--+,令0x =,得3y =,∴(0,3)C ,设直线AC 的解析式为y mx n =+,∵(3,0),(0,3)A c -,∴303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线AC 的解析式为3y x ,设()2,23P m m m --+,则(,3)E m m +, ∴2223923(3)324PE m m m m m m ⎛⎫=--+-+=--=-++ ⎪⎝⎭, ∵10-<, ∴当32m =-时,PE 有最大值94, ∵3,90OA OC AOC ==∠=︒,∴AOC △是等腰直角三角形,∴45ACO ∠=︒,∵PD AB ⊥,∴90ADP ∠=︒,∴ADP AOC ∠=∠,∴PD //OC ,∴45PEF ACO ∠=∠=︒,∵PF AC ⊥,∴PEF 是等腰直角三角形,∴PF EF ==, ∴21124PEF S PF EF PE =⋅=, ∴当32m =-时,219814464PEF S ⎛⎫=⨯= ⎪⎝⎭最大值; (3)∵2y x 2x 3=-++.∴设(1,)M m -,(3,0)A -,(0,3)C ∴224MA m =+,221(3)MC m =+-,218AC = ①当90AMC ∠=︒时,222MA MC AC += 即2241(3)18m m +++-=,解得m =∴1M ⎛- ⎝⎭,2M ⎛- ⎝⎭②当90MAC ∠=︒时,222MA AC MC +=,即224181(3)m m ++=+- 解得2m =-,即3(1,2)M --③当90MCA ∠=︒时,222MA MC AC =+即224181(3)m m +=++- 解得4m =,即4(1,4)M -综上所述:在抛物线的对称轴上存在点1M ⎛- ⎝⎭,2M ⎛- ⎝⎭,3(1,2)M --,4(1,4)M -,使以A 、M 、C 为顶点的三角形为直角三角形.【点睛】本题考查了二次函数综合,面积问题,直角三角形问题,勾股定理,解一元二次方程,掌握二次函数的性质,一次函数的性质,勾股定理,并能分类讨是解题的关键.例18.如图,已知抛物线2y x bx c =++与x 轴交于点A 和点B ,与y 轴交于点(0,3)C ,且3OC OA =.点E 是对称轴左侧的抛物线上一点,过点E 作EF x ∥轴,交抛物线于点F .(1)若3EF =,求抛物线的解析式以及点E 的坐标;(2)若点E 沿抛物线向下移动,使得对应的EF 的取值范围为1213EF ≤≤,求移动过程中点F 的纵坐标F y 的取值范围.【答案】(1)2y x 2x 3=-++;17,24E ⎛⎫- ⎪⎝⎭(2)153324F y -≤≤- 【解析】 【分析】(1)利用已知条件求出A 的坐标,用待定系数法即可求出抛物线解析式;设点()()12,,,E x n F x n ,利用E 是对称轴左侧的抛物线上一点,EF =3,得到213x x -=,利用抛物线的对称轴为直线x =1,得到1212x x +=,联立即可求得1x 的值,再代入抛物线即可求出答案;(2)设点()()12,,,F F E x y F x y ,利用E 是对称轴左侧的抛物线上一点,得到EF =21x x -,利用抛物线的对称轴为直线x =1,得到1212x x +=,则122x x =-,可得222EF x =-,利用已知条件求出2x 的取值范围,结合图象,再利用抛物线解析式即可得出结论. (1)解:点(0,3)C ,3OC ∴=,3OC OA =,1OA ∴=, ∴点(1,0)A -,抛物线2y x bx c =-++与x 轴交于点(1,0)A -,与y 轴交于点(0,3)C ,230(1)(1)c b c =⎧⎨=--+⨯-+⎩解得:23b c =⎧⎨=⎩ ∴抛物线的解析式为2y x 2x 3=-++, EF x ∥轴,∴设点()()12,,,E x n F x n ,点E 是对称轴左侧的抛物线上一点,3EF =, 213x x ∴-=,2223(1)4y x x x =-++=--+,∴抛物线的对称轴:直线1x =,1212x x +∴=, ∴2112312x x x x -=⎧⎪⎨+=⎪⎩ 解得:121252x x ⎧=-⎪⎪⎨⎪=⎪⎩当112x =-时,211723224n ⎛⎫⎛⎫=--+⨯-+= ⎪ ⎪⎝⎭⎝⎭∴点17,24E ⎛⎫- ⎪⎝⎭.(2)EF x ∥轴,∴设点()()12,,,F F E x y F x y ,2223(1)4y x x x =-++=--+,∴抛物线的对称轴:直线1x =, 1212x x +∴=, 122x x ∴=-,()21222222EF x x x x x ∴=-=--=-, 1213EF ≤≤,2122213x ∴≤-≤,21572x ∴≤,当7x =时,2F 727332y =-+⨯+=-,当152x =时,2F 151515323224y ⎛⎫=-+⨯+=- ⎪⎝⎭,∴移动过程中点F 的纵坐标F y 的取值范围:153324F y -≤≤-.【点睛】本题考查了二次函数的图象和性质,待定系数法确定二次函数的解析式,抛物线上点的坐标的特征,抛物线与x 轴的交点,配方法求得抛物线的对称轴,利用点的坐标表示相应线段的长度是解题的关键. 例19.已知抛物线2:=++l y x bx c 与x 轴交于A ,B 两点,点A 在点B 的左侧,其对称轴为直线26x AB ==,. (1)抛物线l 的函数表达式为__________.(2)设抛物线l 与y 轴交于点C ,直线2x =与BC 的交点为M .将抛物线l 向左平移(0)m m >个单位得到抛物线l ',l '与直线2x =交于点N .当点N 在点M 下方时,m 的取值范围是___________.【答案】(1)245y x x =--(2)0m << 【解析】 【分析】(1)由对称轴为直线2x =,6AB =,可得,A B 坐标,将,A B 坐标代入2y x bx c =++,求出,b c 的值,进而可得抛物线l 的函数表达式;(2)如图,将0x =代入245y x x =--,求出C 点坐标,设直线BC 的解析式为y kx b =+,待定系数法求解析式为5y x =-,将2x =代入求出M 的点坐标,平移后的l '的解析式为()229y x m =-+-,设()2,N a ,3a <-,。
二次函数、一元二次方程、一元二次不等式关系
课题二次函数、一元二次方程、一元二次不等式的关系教课知识目标理解二次函数的图像、一元二次方程及一元二次不等式之间的关系,能利用二次函数图像求对应一元二次不等式的解集 .目标能力目标培育学生的识图、画图、用图能力,领会数形联合思想 .感情目标培育学生的勇于研究的精神,体验事物广泛联系的辩证观.教课正确理解三个二次之间的关教课研究三个二次之间关系的过程 .系.要点难点教法讲解法、议论法 .学法课后反应教课环节及内容设计思路一、知识回首复习一元二次不等一般地,我们把含有一个未知数,而且未知数的最高次式的定义,教师发问,学数为二次的整式不等式叫做一元二次不等式.生回想口答 .其一般形式为ax2 bx c 0 或 ax 2 bx c 0此中 a, b,c 为实数,且 a 0.能使一元二次不等式成立的未知数x 值的会合叫作一元二次不等式的解集.二、研究新知1.二次函数、一元二次方程、一元二次不等式的关系察看二次函数 y x22x 3 的图像(如图).当x 1或 x 3 时,函数图像在x轴上方, y 0 ;当x1 或 x 3 时,函数图像在x轴上, y 0;从一个详细的二次函数下手,用“五点法”画出二次函数的草图,经过察看图像,成立相应的一元二次方程与一元二次不等式之间的关系,进而解决相应的一元二次方程的根和一元二次不等式的解集 .师生合作,以问题串的方式层层解决 .当 1 x 3 时,函数的图像都在x 轴下方,y0.(1)方程x22x 3 0 的解是二次函数y x22x 3 的图像与 x 轴交点的横坐标,即x1 1 , x2 3 .(2)不等式x22x 3 0 的解集是二次函数y x22x 3的图像位于x 轴上方部分的点的横坐标x 值的范围,即, 1 U 3,.(3)不等式x22x 3 0 的解集是二次函数y x22x 3 的图像位于x 轴下方部分的点的横坐标x 值的范围,即1,3 .一般地,当 a 0 时,函数 y ax 2bx c ,方程ax 2bx c 0 ,不等式 ax2bx c 0 , ax2bx c0 之间的关系如表所示 .000学生经过小组合作剖析、沟通,以表格的形式梳理概括三个两次之间的关系,有助于学生的理解 .二次函数y ax2 bx c 的图像( a 0 )一元二次方程ax2bx c0 的根( a 0 )一元二次不等式ax2bx c0的解的会合( a0 )一元二次不等式ax2bx c0的解的会合( a0 )一元二次不等式ax2bx c ⋯0的解的会合( a0 )一元二次不等式ax2bx c , 0的解的会合有两个实根有两个相等x x1或 x x2实根无实根( x1x2)x x1x2( , x1 ) U ( , x1) U ( , )( x2 , ) (x1, )(x1, x2 )例 1 是依据一元二次不等式的定义判断一元( , x1 ] U ( , ) 二次不等式 .教师采纳抢[ x2 , ) ( , ) 答的形式来调换学生学习的踊跃性 .[ x1, x2 ] x1( a0 )若a 0 ,将一元二次不等式两边同时乘以 1,进而转变成a 0 的状况解决,但注意不等号要改变方向 .2.例题剖析例 1判断以下式子哪些是一元二次不等式:(1) 2x2 3x 4 0 ;(2) x 3 2 ;x(3) x2 5x 0 ;(4) 2x 2 3x 2 ;(5)x22x 5 0 ;(6) 2x2x 10 .解(1)不是 .(2)不是 .(3)是 .(4)是 .(5)是 .(6)不是 .例 2 写出以下一元二次不等式对应的一元二次方程和二次函数,作出对应二次函数的图像,察看二次函数图像,例 2 和例 3 是在研究写出一元二次不等式的解集.三个二次之间关系的基(1) x2 3x 0 ;(2) x2 2x 1 0 .础上,对详细问题的应用 .解 (1)对应的一元二次方程为x2 3x 0 . 教师指引对二次函数图对应的二次函数为 y x2 3x . 像的察看,要点是依据图像解决不等式的解集,学函数 y x2 3x 的图像如图(1)所示.生议论操作,师生一同总能够看出,二次函数图像在x 轴下方的点的横坐标的范结解题的思路和书写格围为 0 x 3 ,因此一元二次不等式 x2 3x 0 解集为0,3 .式.(1) (2)(2)对应的一元二次方程为x2 2x 1 0 .对应的二次函数为y x2 2x 1.(2)所示.函数y x2 2x 1的图像如图能够看出,二次函数的图像在x 轴上方的点的横坐标的1 ,因此一元二次不等式x2 2x 1 0 的解范围为x 1或x集为,1 U 1, .例 3 写出不等式x2 13x 30 ,0 对应的一元二次方程,作出对应的二次函数的图像,并写出不等式的解集.解对应的一元二次方程为x213x 300 .2对应的二次函数y x 13x30 .函数 y x213x 30 图像如下图.察看图像知不等式的解集为3,10 .三、稳固练习1.判断题(1)二次函数就是一元二次不等式.()(2)假如二次函数y3x22x 5 的图像与x轴没有交点,那么方程 3x22x 5 0 无解.()(3) 如果方程3x2 2x 5 0 无解,那么不等式3x2 2x 5 0 无解. ()(4)不等式x2 4x 5 0 能够转变为 x2 4x 5 0 .()2.写出以下不等式对应的二次函数,作出对应函数的图像,察看函数图像,并写出不等式的解集.(1)x2 2x 3 ⋯0 ;(2)x2 3x 4 0 .练习由学生自行达成,判断由学生口答,解答题请学生板演解题过程,请其余学生增补评论 .经过概括本节所学知识,帮助学生梳理三个二次之间的关系 .学生总结,教师增补 .四、概括小结二次函数的图像分为作图、识图、用图三个层面的要求,而作二次函数的图像又是联系与解决一元二次方程及一元二次不等式问题的“纽带” ,是“数形联合”数学思想方法的重要“载体” .经过本节课能掌握用二次函数的图像解决一元二次方程及一元二次不等式问题 .五、课后作业1.阅读教材章节练习册。
初中数学 一元二次方程的系数与二次函数的顶点坐标有何关系
初中数学一元二次方程的系数与二次函数的顶点坐标有何关系一元二次方程的系数与二次函数的顶点坐标之间存在着密切的关系。
在本文中,我将详细阐述一元二次方程的系数与二次函数的顶点坐标的关系,并探讨每个系数对顶点坐标的影响。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数且a ≠ 0。
这个方程也可以表示为y = ax^2 + bx + c的二次函数的图像。
顶点是指二次函数图像上的一个特殊点,也是图像的最高点或最低点。
顶点坐标的一般形式为(h, k),其中h和k分别表示顶点的横坐标和纵坐标。
1. 系数a的影响:-系数a决定了二次函数图像的开口方向和凹凸性质。
当a > 0时,二次函数图像开口向上,顶点坐标的纵坐标k表示图像的最低点;当a < 0时,二次函数图像开口向下,顶点坐标的纵坐标k表示图像的最高点。
2. 系数b的影响:-顶点的横坐标h可以通过公式h = -b / (2a) 来计算。
可以观察到,系数b的相反数除以2a后得到顶点的横坐标h。
-系数b决定了顶点在x轴方向的平移位置。
当b > 0时,顶点向左平移;当b < 0时,顶点向右平移。
3. 系数c的影响:-系数c对顶点的横纵坐标没有直接影响。
系数c决定了二次函数图像在y轴方向的平移,而顶点的横纵坐标只与系数a和b相关。
综上所述,一元二次方程的系数a、b与二次函数的顶点坐标之间有着直接的关系。
系数a 决定了二次函数图像的开口方向和凹凸性质,从而确定了顶点坐标的纵坐标k。
而系数b的相反数除以2a后得到顶点的横坐标h,系数b决定了顶点在x轴方向的平移位置。
需要注意的是,顶点坐标的计算公式h = -b / (2a) 只适用于标准形式的一元二次方程。
对于一般形式的一元二次方程,需要进行配方法或其他方式进行化简后才能得到顶点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五讲 二次函数的图像与性质
二次函数2y ax bx c =++图象的画法 1、二次函数的表示方法:
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,
c bx ax y ++=2
=a b ac a b x a a c a b a b x a b
x a a c x a b x a 44)2()2()2()(222222
-+
+=⎥⎦⎤⎢⎣
⎡+-++=++ 由此可见函数c bx ax y ++=2的图像与函数2
ax y =的图像的形状、开口方向均相同, 只是位置不同,可以通过平移得到。
2、二次函数c bx ax y ++=2
的图像特征
(1)二次函数 c bx ax y ++=2( a ≠0)的图象是一条抛物线; 3、二次函数2y ax bx c =++的性质
1. 当0a >时,抛物线开口向上,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.
当2b
x a
<-时,y 随x 的增大而减小; 当2b
x a
>-
时,y 随x 的增大而增大; 当2b
x a
=-时,y 有最小值244ac b a -.
2. 当0a <时,抛物线开口向下,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.
当2b
x a
<-时,y 随x 的增大而增大; 当2b
x a
>-
时,y 随x 的增大而减小; 当2b
x a
=-时,y 有最大值244ac b a -.
3. 常数项c
⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;
⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.
例1 已知函数y= x 2 -2x -3 ,
(1)把它写成k m x a y ++=2
)(的形式;
并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;
( 5 ) 设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.
例2、求抛物线2
5
3212-+-=x x y 的对称轴和顶点坐标。
变式:
2、
例3、已知关于x 的二次函数的图像的顶点坐标为(-1,2),且图像过点(1,-3)。
(1)求这个二次函数的解析式;
(2)求这个二次函数的图像与坐标轴的交点坐标。
变式:
二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:
① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12
x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离
2214b ac
AB x x a
-=-=
. ② 当0∆=时,图象与x 轴只有一个交点;
③ 当0∆<时,图象与x 轴没有交点.
1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;
3. 二次函数常用解题方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,
b ,
c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的
内在联系:
二次函数解析式的表示方法
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式一般来说,有如下几种情况:
1. 已知抛物线上三点的坐标, 一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值, 一般选用顶点式;
3. 已知抛物线与x 轴的两个交点的横坐标, 一般选用两根式;
4. 已知抛物线上纵坐标相同的两点, 常选用顶点式.
例1、抛物线y=x 2
-8x+c 的顶点在x 轴上,则c 等于( )
A .-16
B .-4 C.8 D.16 例2、已知抛物线2
234
y x kx k =+-(k 为常数,且k >0)
.证明:此抛物线与x 轴总有两个交点;
练习1、已知关于x 的二次函数y=2x 2
-(3m+1)x +m (m>1). 证明使y=0的x 的值有两个;
0∆> 抛物线与x 轴有
两个交点
二次三项式的值可正、可零、可负
一元二次方程有两个不相等实根
0∆= 抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 0∆<
抛物线与x 轴无交点
二次三项式的值恒为正 一元二次方程无实数根.
例3、已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m + 4.
探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.
例4、已知:关于x 的函数772
--=x kx y 的图象与x 轴总有交点,k 的取值范围是( )
A 、k >47
B 、k ≥47且k ≠0
C 、k ≥47-
D 、k >4
7
-且k ≠0
练习1、关于x 的一元二次方程02
=--n x x 没有实数根,则抛物线n x x y --=2
的顶
点在( )。
A .第一象限 B.第二象限 C.第三象限 D.第四象限
例5、抛物线2
y x bx c =-++的部分图象如图所示,则方程02
=++-c bx x 的两根
为
.
练习:二次函数y=ax 2+bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:
(1) 写出方程ax 2+bx +c =0的两个根; (2) 写出不等式ax 2+bx +c >0的解集;
(3) 写出y 随x 的增大而减小的自变量x 的取值范值;
(4) 若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取什范围。
例7:抛物线m x y x
++=
-22
与X 轴的一个交点是A(3,0)
,另一个交点是B ,且与y 轴交于点C ,
(1)求m 的值;
(2)求点B 的坐标;
1 3 2
2
练习:
课后练习:。