全等三角形专题训练题.doc
全等三角形经典题型50题(含答案)

全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。
由于 BC=ED,CF=DF,∠ BCF=∠ EDF。
因此三角形 BCF 全等于三角形 EDF(边角边 )。
因此 BF=EF,∠ CBF=∠ DEF。
连结 BE。
在三角形BEF 中 ,BF=EF。
因此∠ EBF=∠ BEF。
又由于∠ ABC=∠AED。
因此∠ABE=∠AEB。
因此 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
因此三角形 ABF 和三角形 AEF全等。
因此∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
全等三角形的性质专项练习30题

(936)全等三角形的性质专项练习30题(有答案)o k(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形的性质专项练习30题(有答案)1.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论(请写出三个以上的结论)2.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.3.如图,AB=DC,AC=DB,你能说明图中∠1=∠2的理由吗4.已知:AB=DE,AF=CD,∠A=∠D,EF=BC,试说明:BF∥CE.5.已知△ABC≌△DEF,其中AB=2cm,BC=3cm,AC=4cm,则△DEF的三边长DE= _________ cm,EF= _________ cm,DF= _________ cm.6.如图,△ABC≌△ADE,∠B=40°,∠E=30°,∠BAE=80°,求∠BAC、∠DAC的度数.7.如图,△AOC≌△BOD,试证明AC∥BD.8.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.9.如图,△ABD≌△EBD,△DBE≌△DCE,B,E,C在一条直线上.(1)BD是∠ABE的平分线吗为什么(2)DE⊥BC,BE=EC吗为什么10.附加题:如图△ABC≌△DBC,∠A=110°,则∠D=_________ .11.如图,已知△AEC≌△BFD,则AD _________ BC.(填“>”、“=”或“<”).12.如图,△ABC≌△DEC,∠A:∠ABC:∠BCA=3:5:10,(1)求∠D的度数;(2)求∠EBC的度数.13.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.14.如图,已知△ABD≌△ACE.求证:BE=CD.15.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长.16.如图,△ABC≌△BDE,M、M′分别为AB、DB中点,直线MM′交CE于K.试探索CK与EK的数量关系.17.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.18.如图,已知△ABC≌△ADE,BC的边长线交AD于F,交AE于G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.19.如图,△ABC≌△DEC,∠1与∠2相等吗请说明理由.20.如图,△ABC≌△EBD.求证:∠1=∠2.21.如图,△ABC≌△ADE,∠CAD=10度,∠B=∠D=25度,∠EAB=120度,试求∠ACB的度数.22.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.23.如图:△ABF≌△DCE,写出相等的线段.24.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.25.如右图所示,已知△ABD≌△ACE,试说明BE=CD.26.如图,△ABC≌△EFD,你能从图中找到几组平行线请写出,并选择一组说明理由.27.如图,点B、E、C、F在一条直线上,BC=EF AB∥DE,请你添加一个条件_________ ,使△ABC≌△DE F.并写出证明过程.28.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.29.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.30.如图,△ABC≌△ADE,B点的对应顶点是D点,若∠BAD=100°,∠CAE=40°,求∠BAC的度数.参考答案1.∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE.2.∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°3.证明:在△ABC和△DCB中,AB=DC,AC=DB,BC=BC,∴△ABC≌△DCB(SSS),∴∠1=∠2.4.∵AB=DE,AF=CD,∠A=∠D,则可得△ABF≌△DEC,∴BF=EC,又EF=BC,∴可得四边形BCEF是平行四边形,∴BF∥EC5.∵△ABC≌△DEF∴AB=DE,BC=EF,AC=DF∴DE=2cm,EF=3cm,DF=4cm.6.①∵△ABC≌△ADE,∴∠B=∠D=40°,∠E=∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=110°;②∵∠BAE=80°,∠BAC=∠DAE=110°∴∠BAD=∠DAE﹣∠BAE=30°,∴∠DAC=∠BAC+∠BAD=110°+30°=140°7. ∵△AOC≌△BOD,∴∠A=∠B(全等三角形对应角相等).∴AC∥BD(内错角相等,两直线平行)8.△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.9.(1)∵△ABD≌△EBD,∴∠ABD=∠EBD,∴BD是∠ABE的平分线;(2)∵△DBE≌△DCE,∴∠DEB=∠DEC,∵∠DEB+∠DEC=180°,∴∠DEB=∠DEC=90°,∴DE⊥BC,∵△DBE≌△DCE,∴BE=E C.10.解:∵△ABC≌△DBC,∠A=110°∴∠D=∠A=110°.11.∵△AEC≌△BFD∴AC=BD(全等三角形对应边相等)∴AC+CD=BD+CD,即AD=BC.12.(1)∵∠A+∠ABC+∠BCA=180°,∠A:∠ABC:∠BCA=3:5:10,∴∠A=180°×=30°,∠ABC=180°×=50°,∠BCA=180°×=100°,又∵△ABC≌△DEC,∴∠D=∠A=30°;(2)∵△ABC≌△DEC,∴∠E=∠ABC=50°,∵∠BCA=100°,∴∠EBC=∠BCA﹣∠E,=100°﹣50°=50°13.∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC14.∵△ABD≌△ACE,∴AB=AC,AD=AE,∴AC﹣AD=AB﹣AE,即CD=BE15.∵△ABC≌△DEF∴BC=EF=2又∵FC=BF﹣BC∴FC=3﹣2=116.CK与EK的数量关系为相等,理由如下:延长MK到N,使得NK=MM',连接EM′、CM、EN,如图,可得NK+KM'=MM'+M'K,即NM'=MK,∵△ABC≌△BDE,M、M′分别为AB、DB中点,∴EM'=CM,BM'=BM,∠EM'D=∠CMB,由BM'=BM得:∠BM'M=∠BMM'=∠KM'D,∴∠NM'E=∠CMK,在△EM'N和△CMK中,NM'=MK,∠NM'E=∠CMK,EM'=CM,∴△EM'N≌△CMK,(SAS)∴CK=EN,∠N=∠CKM=∠NKE,∴EK=EN,∴CK=EK.17.∵△BCF≌△C BE,∴∠FBC=∠ECB=70°,∴∠BAC=180°﹣∠FBC﹣∠ECB=40°,AB=AC,∵BE,CF分别是AC,AB边上的高线,BE,CF相交于O,∵AD⊥BC,∴∠1=∠2=∠BAC=20°18.∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.∵∠ACB=105°,∴∠CAB=180°﹣105°﹣25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°.∠AGB=∠ACB﹣∠GAC=105°﹣50°﹣10°=45°19.由题意:∵△ABC≌△DEC,∴BC=EC.∴∠1=∠220.∵△ABC≌△EBD.∴∠A=∠E.又∵∠AOD=∠BOE,∴∠A+∠AOD+∠1=∠E+∠BOE+∠2=180°,∴∠1=∠221.∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°﹣∠CAB﹣∠B=180°﹣55°﹣25°=100°,即∠ACB的度数是100°22.已知,△ABC的周长是40cm,AB=10cm,BC=16cm,∴AC=△ABC的周长﹣AB﹣BC=40﹣10﹣16=14(cm),∵△ABC≌△DEF,∴DF=AC=14cm,所以边DF的长度为14cm23.∵△ABF≌△DCE,∴AB=DC,BF=CE,AF=DE,∠DEC=∠AFE,∴OE=OF,∴AF﹣FO=DE﹣OE,∴AO=DO,∵BF=CE,∴BF﹣FE=CE﹣EF,∴EB=FC.24.由题意得:∠BAC=∠DAE=30°,AB=AD,∠BAE=90°,∴∠CAD=30°,∴∠ABD=60°,∴△ABD是等边三角形.故可得:BD=AD=525.∵△ABD≌△ACE,∴AD=AE,AC=AB,∴AE﹣AB=AD﹣AC,即BE=CD26.AB∥EF,AC∥ED.∵△ABC≌△EFD,∴∠B=∠F,∠ACB=∠EDF,∴AB∥EF,AC∥ED27.∠ACB=∠F或AB=DE或∠A=∠D.以下证明添加条件为AB=DE时,△ABC≌△DEF.∵AB∥DE,∴∠B=∠DEF.在△ABC和△DEF中,∴△ABC≌△DEF28.∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD,∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=229.∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=230.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠CAE=∠DAE﹣∠CAE,即∠BAE=∠DAC,∵∠BAD=100°,∠CAE=40°,∴∠BAE=(∠BAD﹣∠CAE)=(100°﹣40°)=30°,∴∠BAC=∠BAE+∠CAE=30°+40°=70。
全等三角形的练习题(100题)

1、如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.2、如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?3、如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF4、如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.5、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l 于点C,BD⊥l交l于点D.求证:AC=OD.6、如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.7、如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.8、如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB9、如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF10、如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.11、如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.12、已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.13、已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.14、如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.15、在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:。
初中数学 三角形全等的判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD⊥BC,垂足为D,BD=CD。
求证:△ABD≌△ACD。
2、如图(2):AC∥EF,AC=EF,AE=BD。
求证:△ABC≌△EDF。
3、如图(3):DF=CE,AD=BC,∠D=∠C。
求证:△AED≌△BFC。
4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。
求证:(1)∠B=∠C,(2)BD=CE(5)在一次数学课上,李老师在黑板上画出图6,并写下了四个等式①AB = DC ②BE =CE③∠B =∠C④∠BAE =∠CDE..要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形;请你试着完成李老师提出的要,并说明理由。
(写出一种即可)已知:求证:△AED是等腰三角形5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。
求证:AC⊥CE。
6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。
求证:(1)AF=EG,(2)BF∥DG。
7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。
求证:(1)MN平分∠AMB,(2)∠A=∠CBM。
8、如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。
求证:△ABE≌△DCF。
9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
(6)复习“全等三角形”的知识时李老师布置了一道作业题“如图①已知:在△ABC 中,AB=AC,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP;则BQ=CP..”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP”仍然成立..请你就图②给出证明。
三角形全等判定专题训练题

三角形全等判定专题训练题1.给定三角形ABC,AD垂直于BC,垂足为D,且BD=CD。
证明△ABD≌△ACD。
2.给定平行四边形ABCD,AC=EF,AC平行于EF,且F在AD上。
证明△ABC≌△EDF。
3.给定三角形ABC和DEF,DF=CE,AD=BC,∠D=∠C。
证明△AED≌△BFC,其中AE=BD。
4.给定等腰直角三角形ABC,AB=AC,AD=AE,AB垂直于AC,AD垂直于AE。
证明∠B=∠C且BD=CE。
6.给定四边形ABCDE,CG=CF,BC=DC,AB=ED,且A、B、C、D、E在同一直线上。
证明AF=EG且BF平行于DG。
7.给定三角形ABC,AC垂直于BC,___平分∠ABC,且交AC于点M,N是AB的中点,且BN=BC。
证明___平分∠AMB且∠A=∠___。
8.给定四边形ABCD,AC=DB,BE平行于CF,AE平行于DF。
证明△ABE≌△DCF。
9.给定三角形ABC,AE和BC相交于点M,F在AM上,BE平行于CF,且BE=CF。
证明AM是△ABC的中线。
10.给定四边形ABCD,且∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。
证明AB=AC。
11.给定三角形ABC和△DBC,且∠1=∠2,∠3=∠4,P是BC上的任意一点。
证明PA=PD。
12.给定四边形ABCD,AB平行于CD,OA=OD,且F、D、O、A、E在同一直线上,AE=DF。
证明EB平行于CF。
13.给定三角形ABC和△EDC,且△ABC≌△EDC。
证明BE=AD。
14.给定等腰直角三角形ABC,AC=BC,AE是BC的中线,CF⊥AE于F,BD⊥CB交CF的延长线于点D。
证明AB=BD。
15、证明:由图可知,∠BAC=90°,且AB=2AC,因此由勾股定理可得BC=√5AC,而DE=AC,BF=2AC,EF=BC-AC=√5AC-AC=(√5-1)AC,因此AE=AC+EF=2AC+(√5-1)AC=(1+√5)AC,所以△ABC≌△AED。
全等三角形练习题(含答案)

全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形练习题(含答案)

全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
八年级数学全等三角形专题训练

15.△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠ DEF= . 16.如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则 AC= . 17.已知△ABC≌△DEF,且△DEF 的周长为 12,若 AB=5,BC=4, AC= . 18.如图,△ABC≌△ADE,BC 的延长线交 DE 于 F,∠B=30°,∠ AED=110°,∠DAC=10°,则∠DFB 的度数为 .
八年级数学全等三角形专题训练
一.选择题(共 12 小题)
1.下列各组的两个图形属于全等图形的是 ( )
A.
B.Biblioteka C.D.2.下列判断正确的个数是( )
(1)能够完全重合的两个图形全等;
(2)两边和一角对应相等的两个三角形全等;
(3)两角和一边对应相等的两个三角形全等;
(4)全等三角形对应边相等.
A.15° B.20° C.25° D.30° 【考点】全等三角形的性质. 【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以 ∠BAD=∠CAE,然后求出∠BAD 的度数,再根据△ABG 和△FDG 的内角和都 等于 180°,所以∠DFB=∠BAD. 【解答】解:∵△ABC≌△ADE, ∴∠B=∠D,∠BAC=∠DAE, 又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD, ∴∠BAD=∠CAE, ∵∠DAC=60°,∠BAE=100°,
A.1 个B.2 个C.3 个D.4 个 【考点】全等三角形的性质. 【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即 可. 【解答】解:∵△ABC≌△AEF, ∴AC=AF,故①正确; ∠EAF=∠BAC,
全等三角形证明题集锦

三角形全等的判定专题训练题1、如图(1):AD ⊥BC ,垂足为D ,BD=CD .求证:△ABD ≌△ACD .2、如图(2):AC ∥EF ,AC=EF ,AE=BD .求证:△ABC ≌△EDF .3、 如图(3):DF=CE ,AD=BC ,∠D=∠C .求证:△AED ≌△BFC .4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE .求证:AC ⊥CE .(图1)D CB AF E D C B A F E (图3)DC BA E(图4)D CBA EDBA6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上. 求证:(1)AF=EG ,(2)BF ∥DG .7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC . 求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM .8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF .求证:△ABE ≌△DCF .9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF .求证:AM 是△ABC 的中线.10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE . 求证:AB=AC .GF E(图6)D CBA NM(图7)CBA F E (图8)D CBA MF E(图9)C BAE (图10)DC B A11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点.求证:PA=PD.12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF.求证:EB∥CF.13、如图(13)△ABC≌△EDC.求证:BE=AD.14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D.(1)求证:AE=CD,(2)若BD=5㎝,求AC的长.15、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=12AB,延长AC到E,使CE=AC.求证:△ABC≌△AED.P4321(图11)DBAOFE(图12)DCBAE(图13)DCBAFE(图14)DC BAE16、如图(16)AD ∥BC ,AD=BC ,AE=CF .求证:(1)DE=DF ,(2)AB ∥CD .17、如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F . 求证:(1)BE=AC ,(2)BF ⊥AC .18、如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥GD 于E ,BF ⊥CD 交CD 的延长线于F .求证:AE=EF+BF .19、如图:AB=DC ,BE=DF ,AF=DE .求证:△ABE ≌△DCF .20、如图;AB=AC ,BF=CF .求证:∠B=∠C . F (图16)EDCB A F (图17)E DCB AF(图18)EDC BA F(图19)E DC BA FE D C BA21、如图:AB ∥CD ,∠B=∠D ,求证:AD ∥BC .22、如图:AB=CD ,AE=DF ,CE=FB .求证:AF=DE .23、如图:AB=DC ,∠A=∠D .求证:∠B=∠C .24、如图:AD=BC ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE=BF .求证:(1)AF=CE ,(2)AB ∥CD .25、如图:CD ⊥AB 于D ,BE ⊥AC 于E ,OD=OE . 求证:AB=AC .(图21)D CBAF(图22)E D CB A (图23)D CB AF(图24)E D C BA O (图25)ED C BA26、如图:在△ABC 中,AB=AC ,AD 和BE 都是高,它们相交于点H ,且AH=2BD . 求证:AE=BE .27、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG . 求证:(1)AD=AG ,(2)AD ⊥AG .28、如图:AB=AC ,EB=EC ,AE 的延长线交BC 于D .求证:BD=DC .29、如图:△ABC 和△DBC 的顶点A 和D 在BC 的同旁,AB=DC ,AC=DB ,AC 和DB 相交于O . 求证:OA=OD .H(图26)EDC B A GHF(图27)E D C B AED C BAO DC B A30、如图:AB=AC ,DB=DC ,F 是AD 的延长线上的一点.求证:BF=CF .31、如图:AB=AC ,AD=AE ,AB 、DC 相交于点M ,AC 、BE 相交于点N ,∠DAC=∠EAC . 求证:AM=AN .32、如图:AD=CB ,AE ⊥BD ,CF ⊥BD ,E 、F 是垂足,AE=CF .求证:AB=CD .33、如图:在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直AB ,AC ,垂足为E ,F .求证:EB=FC .34、如图:CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE ,CD 相交于点O . 求证:(1)当∠1=∠2时,OB=OC .(2)当OB=OC 时,∠1=∠2. FD C BAN M ED CBAFED C B AFE DC B AE D A35、如图:在△ABC 中,∠BAC=90°,∠ABD=12∠ABC ,BC ⊥DF ,垂足为F ,AF 交BD 于E .求证:AE=EF .36、如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点.求证:点O 在∠A 的平分线上.37、如图:在△ABC 中,∠B ,∠C 相邻的外角的平分线交于点D .求证:点D 在∠A 的平分线上.38、如图:AD 是△ABC 中∠BAC 的平分线,过AD 的中点E 作EF ⊥AD 交BC 的延长线于F ,连结AF .求证:∠B=∠CAF .39、如图:AD 是△ABC 的中线,DE ⊥AC 于E ,DF ⊥AB 于F ,且BF=CE ,点P 是AD 上一点,PM ⊥AC于M ,PN ⊥AB 于N . 求证:(1)DE=DF ,(2)PM=PN .FED C B AO C BA D CB A FE DC B AA40、如图:在△ABC 中,∠A=60°,∠B ,∠C 的平分线BE ,CF 相交于点O . 求证:OE=OF .41、如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D . 求证:(1)OC=OD ,(2)DF=CF .42、如图:在△ABC 中,∠C=90°,AC=BC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=12BD ,DF ⊥AB 于F .求证:CD=DF .43、如图:AB=FE ,BD=EC ,AB ∥EF .求证:(1)AC=FD ,(2)AC ∥EF ,(3)∠ADC=∠FCD .FOECB AOFEDCBAF ED CB AE D C B A44、如图:AD=AE ,∠DAB=∠EAC ,AM=AN .求证:AB=AC .45、如图:AB=AC ,BD=CE .求证:OA 平分∠BAC .46、如图:AD 是△ABC 的BC 边上的中线,BE 是AC 边上的高,OC 平分∠ACB ,OB=OC .求证:△ABC 是等边三角形.47、如图△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N .(1)求证:MN=AM+BN .(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之间有什么关系?请说明理由. NM ED C BAO ED CBAO ED C B AN MCBA NMCBA。
全等三角形练习题

《全等三角形》单元练习题一.选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形 2.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2 B :3 C :5 D :2.53.如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个4.如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A :2 B :3 C :4 D :55.如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=( )A :70B :8°C :9°D :10°6.如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个7.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC(第2题)FECBA(第4题)EDCBA(第7题)FEDCB A(第3题)D CBA(第5题)DCBAFE (第6题)B A8.如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①②9.如图:直线a ,b ,c A :1个 B :2个 C10.如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是( ) A. 3 B. 4 C. 5 D. 611.如图1,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )(A)∠B=∠E,BC=EF (B )BC=EF ,AC=DF (C)∠A=∠D ,∠B=∠E (D )∠A=∠D ,BC=EF图1 图212.如图2,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组B .2组C .3组D .4组13.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边 14.下列各图中,不一定全等的是( )N MQ (第8题)CBAA .有一个角是45°腰长相等的两个等腰三角形 B. 周长相等的两个等边三角形 C. 有一个角是100°,腰长相等的两个等腰三角形 D. 斜边和一条直角边分别相等的两个直角三角形。
全等三角形的判定精选练习题(分专题)

全等三角形的判定(SSS)针对性训练题1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)针对性训练题1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA4、如图4,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,•根据_________可得到△AOD≌△COB,从而可以得到AD=_________.5、如图5,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵____________________________,∴△ABD≌△ACD()DC BA 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由. ⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形的判定(AAS)和(ASA)针对性训练题 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA和BC 的延长线于E ,F.求证:AE=CF. 例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?AEABDC EO12 3 AFDOBECABCDO【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''='A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A .N M ∠=∠ B. AB=CDC . AM=CND. AM ∥CN5.如图所示, ∠E =∠F =90°,∠B =∠C ,AE =AF , 给出下列结论①∠1=∠2 ②BE=CF ③△ACN ≌△ABM④CD=DN ,其中正确的结论是_________。
三角形全等证明题60题(有答案)

全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌"表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2。
八年级数学 《全等三角形》专题训练 (4)

八年级数学《全等三角形》专题训练1.下列各组条件中,可保证△ABC与△A'B'C'全等的是()A.∠A=∠A',∠B=∠B',∠C=∠C'B.AB=A'B',AC=A'C',∠B=∠B'C.AB=C'B',∠A=∠B',∠C=∠C'D.CB=A'B',AC=A'C',BA=B'C'2.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E3.如图,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.4.已知:如图,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD5.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.6.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.7.已知:如图,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.8.已知:如图,AB=AC,BE=CD.求证:∠B=∠C.9.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.10.如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°11.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙13.如图,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D=60°,则∠B的度数是()A.80° B.60° C.40° D.20°14.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.(2)如图,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.15.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等16.已知:如图所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.17.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.18.已知:如图,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:19.已知:如图,在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.20.如图,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.21.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.422.如图,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2 B.3 C.4 D.523.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.24.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE =OF.25.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.26.如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.27.已知:如图,AD=BC.AC=BD.试证明:∠CAD=∠DBC.28.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.29.如图,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:______________________________________________________,理由是:_____________________________________________________.30.角的平分线的性质是___________________________.它的题设是_________,结论是_____.31.如图,△ABC中,若∠B=∠C,BD=CE,CD=BF,则∠EDF=()A .90°-∠AB .A ∠-2190oC .180°-2∠AD .A ∠-2145o32.直角三角形全等的判定方法有_____ (用简写).33.已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF .求证:AB ∥DC .34.已知:如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC .(1)求证:AM 平分∠DAB ;(2)猜想AM 与DM 的位置关系如何?并证明你的结论.35.用三角板可按下面方法画角平分线:在已知∠AOB 的两边上,分别取OM =ON (如图),再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB ,请你说出其中的道理.36.已知:如图,在ΔABC 中,AD 是△ABC 的角平分线,E 、F 分别是AB 、AC 上一点,并且有∠EDF +∠EAF =180°.试判断DE 和DF的大小关系并说明理由.37.已知:如图,AC BD .求证:OA =OB ,OC =OD .分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______.在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC ∴______≌______ ( ).∴ OA =OB ,OC =OD ( ).38.如图0,△ABC 的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D 、E 、F ,使得△DEF ≌△ABC ,这样的三角形你能找到几个?请一一画出来.39.已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .40.在一池塘边有A、B两棵树,如图.试设计两种方案,测量A、B两棵树之间的距离.41.已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.42.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.43.已知:如图,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.44.如图,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.45.如图,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.646.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC47.如图,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?48.阅读下题及一位同学的解答过程:如图,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A ∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?49.如图,要判定ΔABC ≌ΔADE ,除去公共角∠A 外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B =∠D ,AB =AD ( );(2)_____,_____( );(3)_____,_____( );(4)_____,_____( );(5)_____,_____( );(6)_____,_____( );(7)_____,_____( ).50.已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .51.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.52.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31 B .mn 21 C .mn D .2mn53.已知:(1)如图,线段AC 、BD 交于O ,∠AOB 为钝角,AB =CD ,BF⊥AC 于F ,DE ⊥AC 于E ,AE =CF .求证:BO =DO .(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.54.已知:如图,∠AOB.求作:∠AOB的平分线OC.55.已知:如图,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.56.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.57.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?58.已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.59.如图所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____ (2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.60.利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?61.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形62.已知:如图,PM =PN ,∠M =∠N .求证:AM =BN .分析:∵PM =PN ,∴ 要证AM =BN ,只要证PA =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______ ∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.63.如图,△ABC ≌△BAD ,A 和B 、C 和D 是对应顶点,如果AB =5,BD =6,AD =4,那么BC 等于 ( )A .6B .5C .4D .无法确定64.如图,E 在AB 上,∠1=∠2,∠3=∠4,那么AC 等于AD 吗?为什么?65.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.66.如图,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.67.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN68.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.169.已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______.证明:∵BE =CF ( ),∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB∴______≌______( ).∴ ∠A =∠D (______).70.已知:如图,A 、B 、C 、D 四点在∠MON 的边上,AB =CD ,P 为∠MON 内一点,并且△PAB 的面积与△PCD 的面积相等.求证:射线OP 是∠MON 的平分线.71.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()72.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.73.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.74.填空(1)三角形的三条角平分线_____它到_____________.(2)三角形内....,到三边距离相等的点是______________.75.如图,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.证明:∵CE=DE,EA=EB,∴______+______=______+______,即______=______.在△ABC 和△BAD 中,=______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知∴△ABC ≌△BAD ( ).76.“三月三,放风筝”.图是小明制作的风筝,他根据DE =DF ,EH=FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.77.请分别按给出的条件画△ABC (标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么? ①∠B =120°,AB =2cm ,AC =4cm ;②∠B =90°,AB =2cm ,AC =3cm ;③∠B =30°,AB =2cm ,AC =3cm ;④∠B =30°,AB =2cm ,AC =2cm ;⑤∠B =30°,AB =2cm ,AC =1cm ;⑥∠B =30°,AB =2cm ,AC =1.5cm .78.已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD=CE.79.已知:如图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.80.已知:如图,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.81.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()82.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC =DF ,贝ΔABC 和ΔDEF 是否全等?答:______,理由是______.83.已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).84.已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;85.判定两直角三角形全等的“HL ”这种特殊方法指的是_____.86.如图,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( )A .PC =PDB .OC =ODC .∠CPO =∠DPOD .OC =PC87.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D=∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).88.如果ΔABC ≌ΔDEF ,则AB 的对应边是_____,AC 的对应边是_____,∠C 的对应角是_____,∠DEF 的对应角是_____.89.已知:如图,△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .90.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.91.已知:如图,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.92.画一画.已知:如图,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.93.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)。
(完整版)全等三角形练习题(很经典)

第十二章 全等三角形第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等 B 。
面积相等的两个三角形全等 C 。
完全重合的两个三角形全等 D.所有的等边三角形全等2。
如图所示,a ,b ,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE≌△ACD ,∠1=∠2,∠B=∠C,下列不正确的等式是( )A 。
AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4。
在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5。
如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE≌△BCD B。
△BGC≌△AFC C 。
△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两第3题图第5题图第2题图第6题图ABCD点C,D ,使CD=BC ,再作出BF 的垂线DE,使A,C ,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( )A.边角边 B 。
角边角 C 。
边边边 D 。
边边角7。
已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC≌△CED D.∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A 。
全等三角形经典题目测试含答案

全等三角形经典题目测试含答案(总19页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March一.选择题(共13小题,共39分)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4C.D.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.54.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.56.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题)A.330°B.315°C.310°D.320°8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()(第11题)(第12题)(第13题)A.3B.4C.5D.612.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个13.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C二.填空题(共7小题,共21分)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_________.(第14题)(第15题)15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=_________cm.(第16题)(第17题)(第18题)17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_________度.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:_________,使OC=OD(只添一个即可).20.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_________度.三.解答题(共6小题,共60分)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.24.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.25.如图,在∆ABC中,AB=AC,点D是BC的中点,点E在AD上.⑴求证:BE=CE;⑵若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:∆AEF≌∆BCF.26.(10分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.EAF ADE一.选择题(共13小题)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判定与性质.分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD考点:全等三角形的判定.分析:根据全等三角形的判定方法,对每个选项分别分析、解答出即可;解答:解:A、BC=BD,∠BAC=∠BAD,又由图可知AB为公共边,不能证明△ABC和△ABD全等,故本项错误,符合题意;B、∠C=∠D,∠BAC=∠BAD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;D、BC=BD,AC=AD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意.故选A.点评:本题主要考查了全等三角形的判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5考点:角平分线的性质;三角形的面积.分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.解答:解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.点评:本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.6.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°考点:全等三角形的判定与性质.专题:网格型.分析:利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.解答:解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.点评:考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP考点:角平分线的性质.分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.解答:解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.点评:本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组考点:全等三角形的判定.分析:要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.解答:解:根据全等三角形的判定方法可知:①AB=DE,BC=EF,AC=DF,用的判定方法是“边边边”;②AB=DE,∠B=∠E,BC=EF,用的判定方法是“边角边”;③∠B=∠E,BC=EF,∠C=∠F用的判定方法是“角边角”;④AC=DF,∠A=∠D,∠B=∠E,用的判定方法是“角角边”;因此能使△ABC≌△DEF的条件共有4组.故选D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定考点:全等三角形的判定与性质.分析:本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;因此只要证明△AMC≌△FNE,即可得出h1=h2.解答:解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.故选C.点评:本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.11.(2007•义乌市)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6考点:角平分线的性质.分析:已知条件给出了角平分线还有PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.12.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或夹已知角的另一边.解答:解:∠1=∠2,AC=AD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.13.(2005•乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C考点:角平分线的性质.分析:根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.解答:解:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选B.点评:本题考查的是三角形角平分线的性质及三角形全等的判定;做题时要结合已知条件在图形上的位置对选项逐个验证.二.填空题(共7小题)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=3cm.考点:全等三角形的判定与性质.分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.20.(2005•荆门)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.三.解答题(共6小题)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.考点:全等三角形的判定.专题:证明题.分析:根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.解答:证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.点评:本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.24.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.25.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.解答:解:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.26.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.考点:全等三角形的判定与性质.专题:证明题.分析:首先证明∠B=∠2,再加上条件AE=BC,∠FAF=∠BCA,可利用ASA证明△ABC≌△FEA,再根据全等三角形对应边相等可得AB=FE.解答:证明:∵EF⊥AB于点D,∴∠ADE=90°.∴∠1+∠2=90°,又∵∠C=90°,∴∠1+∠B=90°.∴∠B=∠2,在△ABC和△FEA中,,∴△ABC≌△FEA(ASA)∴AB=FE.。
全等三角形的证明及计算大题专项训练(30道)(含答案)

全等三角形的证明及计算大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,可深化学生对全等三角形工具的应用及构造全等三角形!1.(2021春•道里区期末)如图,点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF .(1)求证:△ADE ≌△CBF ;(2)直接写出图中所有相等的线段(AE =CF 除外).【解题思路】(1)利用ASA 证明△ADE ≌△CBF 即可;(2)根据△ADE ≌△CBF 即可得图中所有相等的线段.【解答过程】(1)证明:∵AD ∥BC∴∠DAC =∠BCA ,又∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°,∴∠EAD =∠FCB ,∵DE ∥BF ,∴∠E =∠F ,在△ADE 和△CBF 中,{∠EAD =∠FCB AE =CF ∠E =∠F,∴△ADE ≌△CBF (ASA ),(2)∵△ADE ≌△CBF ,∴ED =FB ,DA =BC ,EC =F A .∵AD ∥BC ,∴∠DAC =∠BCA ,在△ADC 和△CBA 中,{AD =CB ∠DAC =∠CBA AC =CA,∴△ADC ≌△CBA (SAS ),∴AB =CD ;∴图中所有相等的线段有:ED =FB ,DA =BC ,AB =CD ,EC =F A .2.(2021春•宁德期末)如图,AB ,CD 交于点O ,AC =DB ,∠ACD =∠DBA .(1)说明△AOC ≌△DOB 的理由;(2)若∠ACD =94°,∠CAO =28°,求∠OCB 的度数.【解题思路】(1)直接利用AAS 即可证明△AOC ≌△DOB ;(2)利用三角形外角的性质得到∠COB ,再根据△AOC ≌△DOB 得到OC =OB ,即可求得∠OCB .【解答过程】解:(1)在△AOC 和△DOB 中,{∠AOC =∠DOB ∠ACO =∠DBO AC =DB,∴△AOC ≌△DOB (AAS );(2)∵∠ACD =94°,∠CAO =28°,∴∠COB =∠ACD +∠CAO =122°,∵△AOC ≌△DOB ,∴OC =OB ,∴∠OCB =(180°﹣122°)÷2=29°.3.(2021春•沙坪坝区校级期末)如图,在△ABC 中,AC =BC ,点D 在AB 边上,点E 在BC 边上,连接CD ,DE .已知∠ACD =∠BDE ,CD =DE .(1)猜想AC 与BD 的数量关系,并证明你的猜想;(2)若AD =3,BD =5,求CE 的长.【解题思路】(1)利用AAS 证明△ADC ≌△BED ,即可得结论;(2)结合△ADC ≌△BED ,可得AC =BD =5,BE =AD =3,进而可得CE 的长.【解答过程】解:(1)AC =BD ,理由如下:∵AC =BC ,∴∠A =∠B ,在△ADC 和△BED 中,{∠A =∠B ∠ACD =∠BED CD =DE,∴△ADC ≌△BED (AAS ),∴AC =BD ;(2)由(1)知:△ADC ≌△BED ,∴AC =BD =5,BE =AD =3,∴BC =AC =5,∴CE =BC ﹣BE =2.4.(2021春•渝中区校级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.【解题思路】(1)根据平行线的性质得到∠ADF =∠C ,等量代换得到∠ABF =∠ADF ,由角平分线的定义得到∠BAF =∠CAF ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD =AB =8,BF =DF ,由线段的和差得到DE =AD =AE =8﹣5=3,根据三角形的周长公式即可得到结论.【解答过程】解:(1)∵FD ∥BC ,∴∠ADF =∠C ,∵∠ABF =∠C ,∴∠ABF =∠ADF ,∵AF 平分∠BAE ,∴∠BAF =∠CAF ,在△ABF 和△ADF 中,{∠BAF =∠DAF ∠ABF =∠ADF AF =AF,∴△ABF ≌△ADF (AAS );(2)∵△ABF ≌△ADF ,∴AD =AB =8,BF =DF ,∵AE =5,∴DE =AD ﹣AE =8﹣5=3,∴△EFD 的周长=EF +DF +DE =EF +BF +DE =BE +DE =7+3=10.5.(2021春•北碚区校级期末)如图,已知D 是AC 上一点,AB =DA ,AB +DC =ED ,AE =BC .(1)求证:△ABC ≌△DAE ,(2)若∠BAE =125°,求∠DCB 的度数.【解题思路】(1)根据SSS 证明三角形全等即可.(2)利用全等三角形的性质以及三角形内角和定理求解即可.【解答过程】(1)证明:∵DE =AB +DC ,AB =AD ,∴DE =AD +DC =AC ,在△ABC 和△DAE 中,{AB =AD AC =DE BA =AE,∴△ABC ≌△DAE (SSS ).(2)解:∵△ABC ≌△DAE ,∴∠EAD =∠B ,∴∠B +∠BAC =∠EAD +∠BAC =∠EAB =125°,∴∠DCB =180°﹣(∠B +∠BAC )=180°﹣125°=55°.6.(2021春•莱芜区期末)如图,已知AD 、BC 相交于点O ,AB =CD ,AM ⊥BC 于点M ,DN ⊥BC 于点N ,BN =CM .(1)求证:△ABM ≌△DCN ;(2)试猜想OA 与OD 的大小关系,并说明理由.【解题思路】(1)根据HL 可证明:△ABM ≌△DCN ;(2)根据AAS 证明△AMO ≌△DNO 可得结论.【解答过程】(1)证明:∵BN =CM ,∴BN +MN =MN +CM ,即CN =BM ,∵AM ⊥BC 于点M ,DN ⊥BC 于点N ,∴∠AMB =∠DNC =90°,在Rt △ABM 和Rt △DCN 中,{AB =CD BM =CN, ∴Rt △ABM ≌Rt △DCN (HL );(2)解:OA =OD ,理由如下:∵Rt △ABM ≌Rt △DCN ,∴AM =DN ,在△AMO 和△DNO 中,{∠AOM =∠DNO ∠AMO =∠DNO AM =DN,∴△AMO ≌△DNO (AAS ),∴OA =OD .7.(2021春•静安区期末)如图,已知四边形ABCD 中,AB ∥CD ,AD ∥BC .E 为BD 上一点,且BE =AD ,∠DEF =∠ADC ,EF 交BC 的延长线于点F .(1)AD 和BC 相等吗?为什么?(2)BF 和BD 相等吗?为什么?【解题思路】(1)根据平行线的性质和全等三角形的判定和性质得出△ABD 与△CDB 全等,进而利用全等三角形的性质解答即可;(2)根据平行线的性质和全等三角形的判定和性质得出△EFB 与△CDB 全等,进而解答即可.【解答过程】解:(1)AD =CB ,理由如下:∵AD ∥BC ,∴∠ABD =∠CDB ,同理可得,∠ADB =∠CBD ,在△ABD 与△CDB 中,{∠ABD =∠CDB BD =DB ∠ADB =∠CBD,∴△ABD ≌△CDB (ASA ),∴AD =CB ;(2)BF =BD ,理由如下:∵AD =CB ,BE =AD ,∴BC =BE ,∵∠DEF =∠ADC ,∴∠DEF ﹣∠DBF =∠ADC ﹣∠ADB ,即∠EFB =∠CDB ,在△EFB 与△CDB 中,{∠EFB =∠CDB BC =BE ∠FBE =∠DBC,∴△EFB ≌△CDB (ASA ),∴FB =DB .8.(2021春•沙坪坝区校级月考)如图,△ABC 中,CD ⊥AB ,垂足为D .BE ⊥AC ,垂足为G ,AB =CF ,BE =AC .(1)求证:AE =AF ;(2)求∠EAF 的度数.【解题思路】(1)利用SAS 证明△AEB ≌△F AC 可证明结论;(2)由全等三角形的性质可得∠E =∠CAF ,由余角的定义可求得∠EAF 的度数.【解答过程】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠CAD +∠ACD =∠CAD +∠EBA =90°,∴∠ACD =∠EBA ,在△AEB 和△F AC 中,{AB =FC ∠EBA =∠ACF BE =CA,∴△AEB ≌△F AC (SAS ),∴AE =F A ;(2)解:∵△AEB ≌△F AC ,∴∠E =∠CAF ,∵∠E +∠EAG =90°,∴∠CAF +∠EAG =90°,即∠EAF =90°.9.(2021春•铁岭月考)已知:如图,AB =AC ,∠1=∠2.(1)找出图中的所有全等三角形(直接写出);(2)求证:AD =AE .【解题思路】(1)直接根据全等三角形的判定可得答案;(2)先根据SAS 证得△ABF ≌△ACF ,再根据ASA 证得△BDF ≌△CEF ,然后根据全等三角形的性质可得结论.【解答过程】解:(1)△ABF ≌△ACF ,△BDF ≌△CEF ,△ADF ≌△AEF ,△ADC ≌△AEB ;(2)证明:在△ABF 和△ACF 中,{AB =AC ∠1=∠2AF =AF,∴△ABF ≌△ACF (SAS ),∴∠B =∠C ,BF =CF .在△BDF 和△CEF 中,{∠B =∠C BF =CF ∠BFD =∠CFE,∴△BDF ≌△CEF (ASA ),∴BD =CE ,∴AB ﹣BD =AC ﹣CE ,∴AD =AE .10.(2021•南岗区模拟)已知:在△ABC 和△DBE 中,AB =DB ,BC =BE ,其中∠ABD =∠CBE .(1)如图1,求证:AC =DE ;(2)如图2,AB =BC ,AC 分别交DE ,BD 于点F ,G ,BC 交DE 于点H ,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.【解题思路】(1)根据SAS 证明△ABC 与△DBE 全等,利用全等三角形的性质解答即可.(2)根据全等三角形的判定解答即可.【解答过程】证明:(1)∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即∠ABC =∠DBE ,在△ABC 与△DBE 中,{AB =DB ∠ABC =∠DBE BC =BE,∴△ABC ≌△DBE (SAS ),∴AC =DE ;(2)由(1)得△ABC ≌△DBE ,∴∠A =∠D ,∠C =∠E ,AB =DB ,BC =BE ,∴AB =BE ,∵AB =BC ,∴∠A =∠C ,∴∠A =∠E ,在△ABG 与△EBH 中,{∠A =∠E AB =BE ∠ABD =∠EBC,∴△ABG ≌△EBH (ASA ),∴BG =BH ,在△DBH 与△CBG 中,{BG =BH ∠DBH =∠CBG DB =CB,∴△DBH ≌△CBG (SAS ),∴∠D =∠C ,∵DB =CB ,BG =BH ,∴DG =CH ,在△DFG 与△CFH 中,{∠DFG =∠CFH ∠D =∠C DG =CH,∴△DFG ≌△CFH (AAS ).11.(2021•三水区一模)如图,AB =AC ,直线l 过点A ,BM ⊥直线l ,CN ⊥直线l ,垂足分别为M 、N ,且BM =AN .(1)求证△AMB ≌△CNA ;(2)求证∠BAC =90°.【解题思路】(1)由HL证明△AMB≌△CNA即可;(2)先由全等三角形的性质得∠BAM=∠ACN,再由∠CAN+∠ACN=90°,得∠CAN+∠BAM=90°,即可得出结论.【解答过程】证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,{AB=CABM=AN,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.12.(2021•广州模拟)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【解题思路】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答过程】(1)证明:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△BCE 和△CAD 中,{∠E =∠ADC ∠EBC =∠DCA BC =AC,∴△BCE ≌△CAD (AAS );(2)解:∵:△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD +DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.13.(2020春•越秀区校级期中)已知:△ABN 和△ACM 的位置如图所示,∠1=∠2,AB =AC ,AM =AN . 求证:(1)∠BAN =∠CAM ;(2)∠ODA =∠OEA .【解题思路】(1)由∠1=∠2,则∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)先证△ACM ≌△ABN (SAS ),得∠M =∠N ,再证△ADN ≌△AEM (ASA ),即可得出结论.【解答过程】证明:(1)∵∠1=∠2,∴∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)在△ACM 和△ABN 中,{AM =AN ∠CAM =∠BAN AC =AB,∴△ACM ≌△ABN (SAS ),∴∠M =∠N ,在△ADN 和△AEM 中,{∠DAN =∠EAM AN =AM ∠N =∠M,∴△ADN ≌△AEM (ASA ),∴∠NDA =∠MEA ,即∠ODA =∠OEA .14.(2020•江北区模拟)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB ,交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =2,CF =1时,求AC 的长.【解题思路】(1)根据平行线的性质得到∠B =∠FCD ,∠BED =∠F ,由AD 是BC 边上的中线,得到BD =CD ,于是得到结论;(2)根据全等三角形的性质得到BE =CF =1,求得AB =AE +BE =3,于是得到结论.【解答过程】证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,在△BDE 和△CDF 中,{∠B =∠FCD ∠BED =∠F BD =CD,∴△BDE ≌△CDF (AAS );(2)∵△BDE ≌△CDF ,∴BE =CF =1,∴AB =AE +BE =2+1=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =3.15.(2020秋•萧山区月考)如图,已知在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线上一点,CG =AB ,连接AG ,AF .(1)试说明∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系?并请说明理由.【解题思路】(1)根据的等角的余角相等,即可证明∠ACG =∠ABF ;(2)根据SAS 推出△ABF ≌△GCA 即可解决问题;【解答过程】(1)证明:∵BD 、CE 是△ABC 的高,∴∠ADB =∠AEC =90°,∴∠ABF +∠BAD =90°,∠GCA +∠BAD =90°,∴∠ABF =∠GCA ,(2)结论:AF =AG ,AF ⊥AG .理由如下:在△ABF 和△GCA 中,{AB =CG ∠ABF =∠GCA BF =AC,∴△ABF ≌△GCA (SAS ),∴AF =AG ,∠GAC =∠AFB ,∵∠AFB=∠ADB+∠F AD,∠GAC=∠GAF+∠F AD,∴∠GAF=∠ADF,∵∠ADF=90°,∴∠GAF=90°,∴AG⊥AF,AG=AF.16.(2021•张家界模拟)如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.【解题思路】(1)由平行线的性质得出∠ABE+∠C=180°,得出∠ABE=90°=∠C,再证出BE=CD,由SAS证明△ABE≌△BCD即可;(2)由全等三角形的性质得出AE=BD,证出∠ABF+∠BAE=90°,得出∠AFB=90°,即可得出结论;(3)由全等三角形的性质得出BE=CD=1,求出CE=BC﹣BE=1,得出CE=CD,△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积,即可得出答案.【解答过程】(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,{AB=BC∠ABE=∠CBE=CD,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=12(1+2)×2−12×2×1−12×1×1=3 2.17.(2020秋•台江区校级期中)如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC 于点F,AE=BD.(1)求证:C是DE的中点;(2)求证:AB=2CF.【解题思路】(1)过D 作DH ⊥AC 的延长线与H ,根据全等三角形的判定证得△AEF ≌△BDH ,得到EF =DH ,再证得△EFC ≌△DHC 得到CE =CD ,即可证得即可证得结论;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,根据全等三角形的性质得到AF =BH ,CF =CH ,再根据线段的和差即可证得结论.【解答过程】证明:(1)过D 作DH ⊥AC 的延长线与H ,∴∠EFC =∠DHC =90°,在△AEF 和△BDH 中,{∠A =∠DBC ∠AFE =∠BHD =90°AE =BD,∴△AEF ≌△BDH (AAS ),∴EF =DH ,在△EFC 和△DHC 中,{∠FCE =∠HCD ∠EFC =∠DHC =90°EF =DH,∴△EFC ≌△DHC (AAS ),∴CE =CD ,∴C 是DE 的中点;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,∴AF =BH ,CF =CH ,∴AB +BF =BF +FH ,FH =2FC ,∴AB =FH ,∴AB =2CF .18.(2021春•铁岭月考)如图,△AOC 和△BOD 中,OA =OC ,OB =OD ,∠AOC =∠BOD =α(0<α<90°),AD 与BC 交于点P .(1)求证:△AOD ≌△COB ;(2)求∠APC (用含α的式子表示);(3)过点O 分别作OM ⊥AD ,ON ⊥BC ,垂足分别为点M 、N ,请直接写出OM 和ON 的数量关系.【解题思路】(1)由∠AOC =∠BOD ,可得∠AOD =∠COB ,然后根据SAS 可得结论;(2)根据全等三角形的性质得∠OAD =∠OCB ,再根据三角形外角性质可得答案;(3)根据全等三角形的性质得∠MAO =∠NCO ,由垂直定义得∠AMO =∠CNO ,再根据全等三角形的判定与性质可得结论.【解答过程】解:(1)∵∠AOC =∠BOD ,∴∠AOC +∠COD =∠BOD +∠COD ,∴∠AOD =∠COB ,在△AOD 和△COB 中,{OA =OC ∠AOD =∠COB OD =OB,∴△AOD ≌△COB (SAS );(2)由(1)可知△AOD ≌△COB ,∴∠OAD =∠OCB ,令AD 与OC 交于点E ,则∠AEC =∠OAD +∠AOC =∠OCB +∠APC ,∴∠AOC =∠APC ,∵∠AOC =α,∴∠APC =α;(3)∵△AOD ≌△COB ,∴∠P AP =∠BCO ,即∠MAO =∠NCO ,∵OM ⊥AD ,ON ⊥BC ,∴∠AMO =∠CNO =90°,在△AOM 和△CON 中,{∠MAO =∠NCO ∠AMO =∠CNO OA =OC,∴△AOM ≌△CON (AAS ),∴OM =ON .19.(2020秋•花都区月考)如图所示,BD 、CE 是△ABC 的高,点P 在BD 的延长线上,CA =BP ,点Q 在CE 上,QC =AB .(1)探究P A 与AQ 之间的关系;(2)若把(1)中的△ABC 改为钝角三角形,AC >AB ,∠A 是钝角,其他条件不变,上述结论是否成立?画出图形并证明你的结论.【解题思路】(1)由条件可得出∠1=∠2,可证得△APB ≌△QAC ,可得结论;(2)根据题意画出图形,结合(1)可证得△APB ≌△QAC ,可得结论.【解答过程】(1)结论:AP =AQ ,AP ⊥AQ 证明:∵BD 、CE 是△ABC 的高, ∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAB =90°,∠2+∠CAB =90°, ∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,而∠DAP +∠P =90°,∴∠DAP +∠QAC =90°,即∠QAP =90°,∴AQ ⊥AP ;即AP =AQ ,AP ⊥AQ ;(2)上述结论成立,理由如下:如图所示:∵BD 、CE 是△ABC 的高,∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAE =90°,∠2+∠DAB =90°, ∵∠CAE =∠DAB ,∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,∵∠PDA =90°,∴∠P +∠P AD =90°,∴∠QAC +∠P AD =90°,∴∠QAP =90°,∴AQ ⊥AP ,即AP =AQ ,AP ⊥AQ .20.(2020春•萍乡期末)在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE ,设∠BAC =∠1,∠DCE =∠2.(1)如图①,当点D 在线段BC 上移动时,试说明:∠1+∠2=180°;(2)如图②,当点D 在线段BC 的延长线上移动时,请猜测∠1与∠2有怎样的数量关系?并说明理由.【解题思路】(1)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理可得结论;(2)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理和平角的定义可得结论.【解答过程】证明:(1)∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∴∠BAC +∠ACB +∠ACE =∠BAC +∠BCE =180°,∴∠1+∠2=180°;(2)∠1=∠2,理由如下:∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∠ACE +∠ACB +∠DCE =180°,∴∠1=∠2.21.(2020春•揭阳期末)已知△ABC ,点D 、F 分别为线段AC 、AB 上两点,连接BD 、CF 交于点E .(1)若BD ⊥AC ,CF ⊥AB ,如图1所示,试说明∠BAC +∠BEC =180°;(2)若BD 平分∠ABC ,CF 平分∠ACB ,如图2所示,试说明此时∠BAC 与∠BEC 的数量关系;(3)在(2)的条件下,若∠BAC =60°,试说明:EF =ED .【解题思路】(1)根据余角的性质得到∠DEC =∠BAC ,由于∠DEC +∠BEC =180°,即可得到结论;(2)根据角平分线的性质得到∠EBC =12∠ABC ,∠ECB =12∠ACB ,于是得到结论;(3)作∠BEC 的平分线EM 交BC 于M ,由∠BAC =60°,得到∠BEC =90°+12∠BAC =120°,求得∠FEB =∠DEC =60°,根据角平分线的性质得到∠BEM =60°,推出△FBE ≌△EBM ,根据全等三角形的性质得到EF =EM ,同理DE =EM ,即可得到结论.【解答过程】解:(1)∵BD ⊥AC ,CF ⊥AB ,∴∠DCE +∠DEC =∠DCE +∠F AC =90°,∴∠DEC =∠BAC ,∠DEC +∠BEC =180°,∴∠BAC +∠BEC =180°;(2)∵BD 平分∠ABC ,CF 平分∠ACB ,∴∠EBC =12∠ABC ,∠ECB =12∠ACB ,∠BEC =180°﹣(∠EBC +∠ECB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠BAC )=90°+12∠BAC ;(3)作∠BEC 的平分线EM 交BC 于M ,∵∠BAC =60°,∴∠BEC =90°+12∠BAC =120°,∴∠FEB =∠DEC =60°,∵EM 平分∠BEC ,∴∠BEM =60°,在△FBE 与△EBM 中,{∠FBE =∠EBM BE =BE ∠FEB =∠MEB,∴△FBE ≌△EBM (ASA ),∴EF =EM ,同理DE =EM ,∴EF =DE .22.(2020秋•淇滨区校级期中)(1)如图1所示,△ACB 和△ECD 都是等腰三角形,A 、C 、D 三点在同一直线上,连接BD 、AE ,并延长AE 交BD 于点F ,试判断AE 与BD 的数量关系及位置关系,并证明你的结论.(2)若△ECD 绕顶点C 顺时针转任意角度后得到图2,图1中的结论是否仍然成立?请说明理由.【解题思路】(1)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AEC =90°,求出∠DBC +∠BEF =90°,根据三角形内角和定理求出∠BFE =90°即可;(2)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AOC =90°,求出∠DBC +∠BOE =90°,根据三角形内角和定理求出∠BFO =90°即可.【解答过程】(1)AE ⊥BD .证明:在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE ≌△BCD (SAS ),∴∠CAE =∠DBC ,∵∠ACB =90°,∴∠CAE +∠AEC =90°,∵∠CAE =∠DBC ,∠AEC =∠BEF ,∴∠DBC +∠BEF =90°,∴∠BFE =180°﹣90°=90°,∴AE ⊥BD ;(2)解:结论还成立,理由是:∵∠ACB =∠ECD ,∴∠ACB +∠BCE =∠ECD +∠BCE ,即∠ACE =∠BCD ,在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE≌△BCD(SAS),∴∠CAE=∠DBC,∵∠ACB=90°,∴∠CAE+∠AOC=90°,∵∠CAE=∠DBC,∠AOC=∠BOE,∴∠DBC+∠BOE=90°,∴∠BFO=180°﹣90°=90°,∴AE⊥BD.23.(2020秋•蒙阴县期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE之间有怎样的数量关系,并加以证明.【解题思路】(1)根据余角和补角的性质易证得∠DAC=∠ECB,已知∠ADC=∠CEB=90°,AC=CB,根据全等三角形的判定AAS即可证明△ADC≌△CEB,根据各边的相等关系即可得DE=AD+BE.(2)同理可证得△ADC≌△CEB,再根据各边的相等关系可得DE=AD﹣BE.【解答过程】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°﹣90°=90°,∴∠DAC=∠ECB;在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(AAS)①,(7分)∴DC=EB,AD=CE,∴DE=AD+BE.(9分)(2)解:同理可得△ADC≌△CEB①;(11分)∴AD=CE,CD=BE,∴DE=AD﹣BE②.(14分)24.(2018秋•环翠区期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为BE+DF=EF.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】【解题思路】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1中,延长CB至M,使BM =DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图2中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF(SAS),推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF(SAS),可得结论.【解答过程】解:(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1,延长CB至M,使BM=DF,连接AM,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,{AB =AD ∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠4+∠4=∠EAF ,∴∠GAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△F AE 中,{AM =AF ∠MAE =∠FAE AE =AE,∴△MAE ≌△F AE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,{BM =DF ∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∵∠EAF =12∠BAD ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,{AM =AF ∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF (SAS ),∴EM =EF ,即BE ﹣BM =EF ,即BE ﹣DF =EF ,∴EF +DF =BE .25.(2021春•和平区期末)如图,在△ABC 中,AC =BC ,点D 在边AB 上,AB =4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC =∠AEC =180°﹣∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为 3 ;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为 48 .【解题思路】(1)①连接BC ,由已知及∠AEC =180°﹣∠AED ,可得到∠ACB =∠AED .再证明∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA ;②利用“ASA ”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC =S △ECA ,所以S △ECA +S △BDF =12=S △FBC +S △BDF =S △DBC ,根据AB =4BD ,可得到S △DBC =14S △ABC =12,从而可得△ABC 的面积.【解答过程】解:(1)①∠FBC =∠ECA ,理由如下:连接BC ,如右图.∵∠BFC =∠AEC =180°﹣∠ACB ,且∠AEC =180°﹣∠AED ,∴∠ACB =∠AED .由外角定理可得∠AED =∠ACD +∠CAE ,又∠ACB =∠ACD +∠BCF ,∴∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA .②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,{∠FBC =∠ECA BC =CA ∠BCF =∠CAE,∴△FBC ≌△ECA (ASA ).(2)由(1)中②可知,FC =AE =11,BF =CE ,又EF =8,∴CE =FC ﹣EF =11﹣8=3,∴BF =3,故答案为:3.(3)由(1)中结论可知S△FBC=S△ECA,∴S△ECA+S△BDF=12=S△FBC+S△BDF=S△DBC,又AB=4BD,∴S△DBC=14S△ABC=12,∴S△ABC=48.故答案为:48.26.(2020•岱岳区一模)已知∠ABC=90°,点D是直线AB边上的点,AD=BC.(1)如图1,点D在线段AB上,过点A作AF⊥AB,且AF=BD,连接DC、DF、CF,试判断△CDF 的形状并说明理由;(2)如图2,点D在线段AB的延长线上,点F在点A的左侧,其他条件不变,以上结论是否仍然成立?请说明理由.【解题思路】(1)利用SAS证明△F AD≌△DBC,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)利用SAS证明△F AD和△DBC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出结论.【解答过程】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠B=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠CDB=90°,∴∠FDC=180°﹣90°=90°,又∵DF=DC,∴△CDF是等腰直角三角形;(2)仍然成立,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠DBC=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,即∠FDC=90°,又∵DF=DC,∴△CDF是等腰直角三角形.27.如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【解题思路】(1)延长AE ,BF 交于点F ,即可求证△ADE ≌△FCE ,即可求得CF =AD ,AB =BF ,即可求得AB =AD +BC ;(2)不成立,新的结论为:AB +BC =AD .延长AE ,BF 交于点F ,可证△ADE ≌△FCE 和AB =BF ,即可解题.【解答过程】解:(1)延长AE ,BF 交于点F ,∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF =BC +CF ,∴AB =BC +AD ;(2)不成立,新结论为:AB =AD ﹣BC .延长AE ,BF 交于点F ,证明:∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF +BC =CF ,∴AB +BC =AD .28.(2021春•章丘区期末)如图,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上.①如图1,若∠BCA =90°,α=90°,则BE = CF ;②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 关系的条件 α+∠BCA =180° ,使①中的结论们然成立,并说明明理由;(2)如图3,若线CD 经过∠BCA 的外部,a =∠BCA ,请提出关于EF ,BE ,AF 三条线段数量关系的合理猜想,并简述理由.【解题思路】(1)由∠BCA =90°,∠BEC =∠CF A =α=90°,可得∠CBE =∠ACF ,从而可证△BCE ≌△CAF ,故BE =CF .(2)若BE =CF ,则可使得△BCE ≌△CAF .根据题目已知条件添加条件,再使得一对角相等,△BCE ≌△CAF 便可得证.(3)题干已知条件可证△BCE ≌△CAF ,故BE =CF ,EC =F A ,从而可证明EF =BE +AF .【解答过程】解:(1)∵∠BEC =∠CF A =α=90°,∴∠BCE +∠CBE =180°﹣∠BEC =90°.又∵∠BCA =∠BCE +∠ACF =90°,∴∠CBE =∠ACF .在△BCE 和△CAF 中,{∠BEC =∠CFA ,∠CBE =∠ACF ,BC =AC .∴△BCE ≌△CAF (AAS ).∴BE =CF .(2)α+∠BCA =180°,理由如下:∵∠BEC =∠CF A =α,∴∠BEF =180°﹣∠BEC =180°﹣α.又∵∠BEF =∠EBC +∠BCE ,∴∠EBC +∠BCE =180°﹣α.又∵α+∠BCA =180°,∴∠BCA =180°﹣α.∴∠BCA =∠BCE +∠ACF =180°﹣α.∴∠EBC =∠FCA .在△BCE 和△CAF 中,{∠CBE =∠ACF ,∠BEC =∠CFA ,BC =CA .∴△BCE ≌△CAF (AAS ).∴BE =CF .(3)EF =BE +AF ,理由如下:∵∠BCA =α,∴∠BCE +∠ACF =180°﹣∠BCA =180°﹣α.又∵∠BEC =α,∴∠EBC +∠BCE =180°﹣∠BEC =180°﹣α.∴∠EBC =∠FCA .在△BEC 和△CF A 中,{∠EBC =∠FCA ,∠BEC =∠FCA ,BC =CA .∴△BEC ≌△CF A (AAS ).∴BE =CF ,EC =F A .∴EF =EC +CF =F A +BE ,即EF =BE +AF .29.(2020春•南岸区期末)在∠MAN 内有一点D ,过点D 分别作DB ⊥AM ,DC ⊥AN ,垂足分别为B ,C .且BD =CD ,点E ,F 分别在边AM 和AN 上.(1)如图1,若∠BED =∠CFD ,请说明DE =DF ;(2)如图2,若∠BDC =120°,∠EDF =60°,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.【解题思路】(1)根据题目中的条件和∠BED =∠CFD ,可以证明△BDE ≌△CDF ,从而可以得到DE =DF ;(2)作辅助线,过点D 作∠CDG =∠BDE ,交AN 于点G ,从而可以得到△BDE ≌△CDG ,然后即可得到DE =DG ,BE =CG ,再根据题目中的条件可以得到△EDF ≌△GDF ,即可得到EF =GF ,然后即可得到EF ,BE ,CF 具有的数量关系.【解答过程】解:(1)∵DB ⊥AM ,DC ⊥AN ,∴∠DBE =∠DCF =90°,在△BDE 和△CDF 中,∵{∠BED =∠CFD ,∠DBE =∠DCF ,BD =CD ,∴△BDE ≌△CDF (AAS ).∴DE =DF ;(2)EF =FC +BE ,理由:过点D 作∠CDG =∠BDE ,交AN 于点G ,在△BDE 和△CDG 中,{∠EBD =∠GCD BD =CD ∠BDE =∠CDG,∴△BDE ≌△CDG (ASA ),∴DE =DG ,BE =CG .∵∠BDC =120°,∠EDF =60°,∴∠BDE +∠CDF =60°.∴∠FDG =∠CDG +∠CDF =60°,∴∠EDF =∠GDF .在△EDF 和△GDF 中,{DE =DG ∠EDF =∠GDF DF =DF,∴△EDF ≌△GDF (SAS ).∴EF =GF ,∴EF=FC+CG=FC+BE.30.(2021春•揭东区期末)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.【解题思路】(1)求出∠ACE=∠DCB,根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可;(3)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可.【解答过程】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵{AC=CD∠ACE=∠DCB CE=CB,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.。
全等三角形测试题共三套附答案

全等三角形姓名一.填空题(每题3分,共30分)1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.3. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.7.已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.4321EDBA9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.AB CD12AA'B CC'二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC 和BC,CD 和CA,BD 和AB2.AB 和AC,AD 和AE,BD 和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA 可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC ≌△CED AB=ED 23.证△ABC ≌△FED 得∠ACB=∠F 所以AC ∥DF 24.证△BED ≌△CFD 得∠E=∠CFD 所以CF ∥BE 25.由AAS 证△ABC ≌△CED AC=EF.全等三角形 B 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.4. 如图4,△ABC ≌△AED ,若AE AB =,︒=∠271,则=∠2 .图1图25.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.9.若△ABC ≌△A ′B ′C ′,AD 和A ′D′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )图5 图6A EB O FC 图8 A CD 图9A.∠AB.∠BC.∠CD.∠B 或∠C 14.下列条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.下列命题正确的是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点图10图 11B DOCAC. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?21. (7分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.AB E CD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.ABEO FDCACDB24. (8分)如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF图 5人教课标版八年级(上)数学检测试卷全等三角形 C 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________. (3)若以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则△______≌△_______..ABCDE图1ABCDMN 图2A9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若︒=∠60ADB ,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 则在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,下列各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边ABCDEFA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的15A. 150°B.40°C.80°D. 90°A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形D. 有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是()A. 全等三角形对应边上的中线相等B. 面积相等的两个三角形是全等三角形C. 全等三角形对应边上的高相等D. 全等三角形对应角平分线相等19.已知:如图,O为AB中点,BD⊥CD,AC⊥CD,OE⊥CD,则下列结论不一定成立的是()A. CE=EDB. OC=ODC. ∠ACO=∠ODBD. OE=21CDA BCED A BCDEF12A DB CEF20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBAFEDCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,10 10.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B 21.AE 和AC,ED 和BC, ∠B 和∠D, ∠BAC 和∠DAE 22.AD=BC,AE=CF,DE=BF,AD ∥BC, △ACD ≌△ACB,AB ∥CD 等 23.相等, △AOB ≌△DOC 24.连AC,证△ADC ≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.B。
全等三角形专题训练

全等三角形专题训练题1基础练习1.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去2.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A. ∠M=∠NB. AB=CDC. AM=CND. AM ∥CN3.如图,AB =DB ,BC =BE ,欲证△ABE ≌△DBC ,则需补充的条件是( )A .∠A =∠DB .∠E =∠C C .∠A =∠CD .∠1=∠24.如图4所示,AB 、CD 相交于O ,且AO =OB ,观察图形,有AOC BOD ∠∠,只需补充条件 ,则有△AOC ≌△图4 图55.如图5,在直角三角形ABC 中,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB , P 、Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.6.已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。
求证:AC ∥MPPCABNNMABDD7.已知,如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE。
求证:BE=CD。
8.已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。
求证:AF=CE。
9.如图(10)∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。
求证:AB=AC。
10.如图,已知∠A=∠D=90°,AC=BD.求证:OB=OC.E(图10)DC BAA DB CO12 FEACDBB 11.如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF=EG ,(2)BF ∥DG 。
拓展探索12.如图,AB=AC,AD=AE, ∠BAC=∠DAE=α ,BD 、CE 相交于P.求证:∠1=α13.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明. 已知:求证: 证明: GFE(图6)DCBAB C D E全等三角形专题训练题2基础练习1.下列说法正确的是A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图,可以得到EDC ABC ≅ ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL3.如图2,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____4.如图3,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.图2 图35.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 中的EF 边等于______.6.如图,A DA D '',分别是锐角三角形ABC 和锐角三角形ABC '''中,BC B C ''边上的高,且C A AC ''=AB A B AD A D ''''==,. 求证:ABC A B C '''△≌△CEABCD'A 'B'D'C7. 如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级提高班数学资料
(全等三角形专题训练题)
1、 如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )
(A ) ∠M=∠N (B ) AB=CD
(C ) AM=CN
(D ) AM ∥CN 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判断
△ABE ≌△ACD 的是( )
(A ) AD=AE
(B ) ∠AEB=∠ADC
(C ) BE=CD
(D ) AB=AC
3、已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。
求证:AC ∥MP
4、 已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
5、 已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。
求证:CE=DF 。
F E A C D B M P C
A B N F E O D
C
B A
C N M A B
D E B D A
C
6、 已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
7、已知,如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点,求证:△BCF ≌△DCE
8、 如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为
已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF
9、 如图,EG ∥AF ,请你从下面三个条件中任选出两个作为已知条件,另一个作为结论,
推出一个正确的命题。
① AB=AC ② DE=DF ③ BE=CF
A E
D C B G F
E D
C A B
D C F E
D C A B G
10、如图,四边形ABCD 中,AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有没有
和△ABE 全等的三角形?请说明理由。
10、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以
CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。
求证:① △BCG ≌△DCE
② BH ⊥DE
11、如图,△ABC 中,AB=AC ,过A 作GB ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
12、如图所示,己知AB ∥DE ,AB=DE ,AF=DC ,请问图中有哪几对全等三角形,并选其
中一对给出证明。
F
E D C A B ┐
F E D
C A
B G H E G F
E
D C A B
13、如图,AB=AD ,BC=CD ,AC 、BD 交于E ,由这些条件可以得出若干结论。
请你写出
其中三个正确的结论(不要添加字母和辅助线)。
14、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE ⊥AB ,PF ⊥
AC 垂足分别为E 、F , 求证:① PE+PF=CD. ② PE – P F=CD.
15、已知,如图5,△ABC 中,AB=AC ,∠BAC=900,D 是AC 的中点,AF ⊥BD 于E ,交BC 于F ,连结DF 。
求证:∠ADB=∠CDF 。
F E D C A 3 N 1 M B 2 M F E D C A 3 1 B 2 E
D C A B F
E D C A B G P
F E D
C A B G
P。