复合材料概论第5章__聚合物基复合材料
《聚合物基复合材料》ppt课件
c、水热合成法
是在高温、高压反响环境中,采用水作为 反响介质,使得通常难溶或不溶的物质 溶解、反响,还可进展结晶操作。
d 、 溶胶-凝胶(Sol-Gel)法的根本过程是: 一些易水解的金属化合物(无机盐或金属醇 盐)在某些溶剂中与水发生反响,经过水解与 缩聚过程,首先生成溶胶,再生成具有网状 构造的凝胶,然后经过枯燥、烧结等后处 置工序,制成所需资料。例如,
改性方法
离子交换法 硅烷偶联剂法 冠醚改性法 单体或活性有机物插层法
高分子/层状硅酸盐纳米复合资 料的制备方法
➢插层复合法是制备高分子/层状硅酸盐纳米复合资料的 方法,即将单体或聚合物插入层状硅酸盐片层之间,进 而破坏硅酸盐的片层构造,使其剥离成层状根本单元, 并均匀分散在聚合物基体中,实现高分子与层状硅酸盐 在纳米尺度上的复合。 ➢一些常见的层状硅酸盐 :
(1) 小尺寸效应:当颗粒尺寸减小到纳米量 级时,一定条件下导致资料宏观物理、化学性 质发生变化。
由于比外表积大大添加,使纳米资料具有 极强的吸附才干。如光吸收显著加强;纳米陶 瓷可以被弯曲,其塑性变形可达100%;纳米微 粒的熔点低于块状金属,如块状金熔点为1337K, 而2nm的金微粒的熔点只需600K。
纳米微粒的外表修饰
由于纳米资料粒径小,大部分原子暴露在微粒外 表,因此外表能极大,非常容易聚会在一同,这 就为制造纳米微粒资料带来很大困难。
在制备纳米高分子复合资料时,需对纳米资料的 外表进展改性,目的是降低粒子的外表能态,消 除粒子的外表电荷,提高纳米粒子与有机相的亲 合力,减弱纳米粒子的外表特性。
的纳米粉
c、喷雾法
经过将含有制备资料的溶液雾化以制备 微粒的方法。
d 、冷冻枯燥法
首先制备金属盐的水溶液,然后将溶液 冻结,在高真空下使水分升华,原来溶 解的溶质来不及凝聚,那么可以得到枯 燥的纳米粉体。
复合材料课件 第5章 聚合物基复合材料(2)
薄膜型脱模剂
最常用的有:聚酯薄膜、玻璃纸、聚氯乙 烯薄膜、聚乙烯薄膜等。
其中聚酯薄膜应用最普遍,使用厚度一般 为0.04 mm 、0.02 mm。
• 使用方法:铺在模具上,或用凡士林贴在模具 上。
混合溶液型脱模剂 ①聚乙烯醇脱模剂
一般采用较低分子量的聚乙烯醇。 在搅拌状态 下,用水将聚乙烯醇加热溶解(水温约95℃), 冷却到室温,往里滴加乙醇或丙酮(边加边搅 拌)。
5.3聚合物基复合材料 成型加工技术
聚合物基复合材料成型工艺特点:
● 材料制造和成品成型同时完成,利用这一特点,可以 实现大型制品一次整体成型,从而简化了制品结构, 并且减少了组成零件和连接零件的数量,这对减轻制 品质量,降低工艺消耗和提高结构使用性能十分有利。
● 影响因素:固化温度、压力、保温时间等工艺参数; 纤维的预处理、纤维的排列方式、驱除气泡的程度、 是否挤胶等都直接影响制品的性能。
常用的制造成型工艺
目前在生产上经常采用的成型方法16种: • 1、手糊成型——湿法铺层成型 • 2、真空袋压法成型 • 3、压力袋成型 • 4、树脂注射和树脂传递成型 • 5、喷射成型 • 6、真空辅助树脂注射成型 • 7、夹层结构成型 • 8、模压成型 • 9、注射成型
• 10、挤出成型 • 11、缠绕成型 • 12、拉挤成型 • 13、连续板材成型 • 14、层压或卷制成型 • 15、热塑性片状模塑热冲压成型 • 16、离心浇注成型
手糊成型工艺 SMC/BMC模压
成型 喷射成型工艺
所占比例 (%) 30.5
14.0 23.0
8.0
工艺种类
连续成型工艺 (制板) RTM成型工艺
纤维缠绕及离 心成型 其他
所占比例 (%) 7.0
5.1 聚合物基复合材料
金属材料的疲劳破坏是由里往外突然发 展的。无预兆。
聚合物基复合材料由于疲劳而产生裂缝 时,因纤维与基体的界面能阻止裂缝的扩 展,提高材料的抗疲劳性,有预兆。
2021/10/10
10
5、2 聚合物基复合材料的性能
3、减震性能好 较高的自振频率会避免工 作状态下引起的早期破坏, 而结构的自振频率除了与 结构本身形状有关而外, 还与材料的比模量的平 方根成正比。 在复合材料中纤维与基体界面具吸振的能力 其振动阻尼很高,减震效果很好。
2021/10/10
33
团状模塑料 DMC Dough molding compound
2021/10/10
34
2021/10/10
团状模塑料
• 目前,国外轿车车灯 反光罩已有70%采用 IBMC料, 实现轿车 反光罩材料的国产化, IBMC被列为国家“九 五”攻关项目,于96 年底研制出IBMC料, 生产出合格的夏利轿 车车灯反光罩,并于 1997年实现了规模生 产,获得国家专利。
2021/10/10
3
概述
• 纤维和基体之间的良好的复合显示 了各自 的优点,并能实现最佳结构设计,具有许 多优良特性。
2021/10/10
4
PMC的组成
(1) 基体
热固性基体(thermosetting matrix):
i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好
ii) 交联固化成网状结构,尺寸稳定性、耐热性好,但性脆
2021/10/10
18
1-1 原材料
(1)基体、胶液准备 • 不饱和聚酯树脂:80% • 环氧树脂 • 高性能树脂:聚酰亚胺、双马树脂
聚合物基复合材料
纤维增强的聚合物基复合材料一、复合材料1、定义复合材料是一种多相的复合体系,由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料。
2、分类根据组成复合材料的不同物质在复合材料中的形态,可将它们分为基体材料和分散材料。
复合材料按分散材料形式不同可分为纤维增强复合材料、粒子增强复合材料、晶须增强复合材料等;按基体材料不同可分为聚合物基复合材料、金属基复合材料、陶瓷基复合材料。
二、纤维增强聚合物基复合材料聚合物基复合材料是以高分子聚合物为基体,添加增强纤维制得的一种复合材料。
它有许多优异的性能:(1)质轻高强。
若按比强度计算(强度与密度的比值),玻璃纤维增强的聚合物基复合材料不仅大大超过碳钢,而且可超过某些特殊合金钢。
特别是有机纤维、碳纤维复合材料有更低的密度和更高的强度。
(2)耐疲劳性能好。
聚合物复合材料中的纤维与基体的界面能阻止裂纹的发展,金属的疲劳强度是其拉伸强度的30~50%,碳纤维/不饱和聚酯复合材料是70~80%。
(3)耐热性强。
虽然聚合物基复合材料的耐热性不及金属基和陶瓷基复合材料,但随着高性能树脂和高性能增强材料的发展,它的耐热性也达到很优异的效果。
甲基二苯乙炔基硅烷树脂为基体的复合材料在500℃下仍能保持较好的力学性能。
(4)介电性能好。
通过选择树脂基体和增强纤维可制备低介电损耗角正切(小于0.005)的复合材料.如,热固性丁苯树脂基、聚酰亚胺树脂基复合材料。
1、聚合物基体目前可供选择的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺树脂、酚醛树脂等,另一类为热塑性树脂,如尼龙、聚砜、聚醚醚酮、聚醚酰亚胺等。
聚合物的选择应考虑:A、基体材料能在结构使用温度范围内正常使用;B、基体材料具有一定的力学性能;C、要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率,以确保充分发挥纤维的增强作用;D、要求具有一定的工艺性。
聚合物基复合材料 ppt课件
·厚度变化区以阶梯过渡。
冲击载荷
0
主承载
45
分散应力
6、实验校核
按拉伸、压缩、剪切,根据国标或行标实验校核, 结果与设计值比较。
璃纤维
2~3
• 高强度纤维
1.5~2
• 民用取上限,军事用途可取低些。
自然界的纳米高手
聚合物基复合材料的特性
通过改变纤维、基体的种类 及相对含量、纤维集合形式 及排列方式、铺层结构等可 以满足对复合材料结构与性 能的各种设计要求。
复合材料制品的制造始于 整体成型,一般不需焊、铆、 切割等二次加工,工艺过程 比较简单。
©2003 Brooks/Cole, a division of Tomson Learning, Inc. Thomson
合物水解,形成半互穿 网络。
插层法
层间插入法是利用层状 无机物的膨胀性、吸附 性和离子交换性,使之 作为无机主体,将聚合 物或单体作为客体插入 无机相的层间,制得聚 合物基纳米复合材料。
a 插层聚合(intercalation polymerization)
b 溶液插层(solution intercalation)
量、固化时的压力和温度、固化后的尺寸收缩率等。
基体材料树脂的选取:
受力结构件首选热固性树脂;大量使用、连续挤压 次受力件可选热塑性树脂(如建筑装饰)。 <150℃,聚酯或环氧 150~400℃,聚酰亚胺或双马来酰亚胺树脂 内装饰件,酚醛树脂(阻燃性好)
3、单层设计 目的:为层合板设计提供依据 ---- 强度、刚度。 一般过程:确定复合比 → 性能预测 → 实验校核
芳 纶 纤 维 增 强
聚合物基复合材料设计
聚合物基复合材料的性能课件
聚合物基复合材料与其它材料具有 良好的相容性,能够通过粘合、复 合等方式与其它材料结合使用。
环境老化性能
01
抗老化性能
聚合物基复合材料具有良好的抗 老化性能,能够在各种环境条件 下保持较长的使用寿命。
02
03
耐紫外线性能
温度稳定性
聚合物基复合材料能够抵抗紫外 线的照射,不易变色、龟裂或失 去性能。
反射与吸收光谱特性
反射光谱特性
聚合物基复合材料的反射光谱特 性与材料的折射率和表面反射率 有关,不同波长的光在材料表面 反射的情况不同。
吸收光谱特性
聚合物基复合材料的吸收光谱特 性与材料中存在的杂质、缺陷、 链段运动等因素有关,不同波长 的光被吸收的情况不同。物基复合材料在激光的作用下, 可以产生光热、光化学、光物理等效 应,对激光的吸收和传输特性产生影 响。
耐候性
聚合物基复合材料能够承受各种气候条件, 包括紫外线、潮湿、高温和低温等,保持材 料的性能和外观。
化学稳定性与反应性
稳定性
聚合物基复合材料具有稳定的化 学性质,不易与其它物质发生反
应,适用于各种化学环境。
反应性
某些聚合物基复合材料具有一定的 反应性,能够参与化学反应或与其 它物质进行改性,拓展了材料的应 用范围。
聚合物基复合材料的性能课件
目录 CONTENTS
• 聚合物基复合材料的概述 • 聚合物基复合材料的力学性能 • 聚合物基复合材料的热性能 • 聚合物基复合材料的电性能 • 聚合物基复合材料的光性能 • 聚合物基复合材料的化学性能
01
聚合物基复合材料的概述
定义与分类
定义
聚合物基复合材料是由两种或两种以上材料组成,其中聚合物材料作为基体, 通过物理或化学方法与增强材料(如纤维、颗粒等)复合而成的新型材料。
聚合物基复合材料的定义
聚合物基复合材料的定义一、什么是聚合物基复合材料?聚合物基复合材料是由聚合物基质中添加一定比例的增强材料而制成的复合材料。
聚合物基质可以是热固性聚合物、热塑性聚合物或弹性体等。
增强材料可以是纤维、颗粒、薄片等。
聚合物基复合材料具有独特的物理、化学和力学性能,在各个领域得到广泛应用。
二、聚合物基复合材料的分类聚合物基复合材料可以根据增强材料的形式和类型进行分类。
1. 根据增强材料的形式•纤维增强聚合物基复合材料:纤维作为增强材料,如碳纤维增强复合材料、玻璃纤维增强复合材料等。
•颗粒增强聚合物基复合材料:颗粒作为增强材料,如陶瓷颗粒增强复合材料、金属颗粒增强复合材料等。
•薄片增强聚合物基复合材料:薄片作为增强材料,如片状金属增强复合材料、片状陶瓷增强复合材料等。
2. 根据增强材料的类型•碳纤维增强聚合物基复合材料:碳纤维是最常见的增强材料之一,具有轻质、高强度、耐高温等特点,广泛应用于航空航天、汽车、体育器材等领域。
•玻璃纤维增强聚合物基复合材料:玻璃纤维具有良好的绝缘性能、机械性能和化学稳定性,常用于建筑、电子、汽车等领域。
•金属颗粒增强聚合物基复合材料:金属颗粒的添加可以提高复合材料的导热性能和机械强度,适用于导热部件、结构件等领域。
三、聚合物基复合材料的优点聚合物基复合材料相比于传统材料具有以下优点:1.重量轻:聚合物基复合材料具有良好的强度和刚度,同时重量很轻,适用于要求重量轻的产品,如航空航天、运动器材等领域。
2.高强度:通过合理设计和选择增强材料,聚合物基复合材料的强度可以达到甚至超过金属材料,满足各种工程应用的要求。
3.耐腐蚀性好:聚合物基复合材料在大多数腐蚀介质中具有良好的耐腐蚀性,可以代替传统金属材料制作耐腐蚀设备。
4.良好的绝缘性能:聚合物基复合材料具有良好的绝缘性能,适用于电气绝缘材料的制造。
5.良好的可塑性:热塑性聚合物基复合材料具有良好的可加工性,可以通过热成型、注塑等工艺制成各种形状的制品。
精编第五章 聚合物基复合材料资料
树脂胶 液配制
增强材 料准备
涂脱模剂
手糊成型
纤维增强材料和树 脂胶液在模具上铺 覆成型,室温(或加 热)、无压(或低压) 条件下固化,脱模 成制品的工艺方法。
固化 脱模 后处理 手糊成型工艺流程
检验
制品
胶衣是赋予复合材料制品表 面的一层美观、耐化学品侵 待增浸强树材脂料其蚀的起、到耐保擦护伤作和用耐的老表化面等涂的层对。 可选用胶衣
压模的设计与制造较复杂,初次 投资较高,制品尺寸受设备限制,一 般只适于制备中、小型玻璃钢制品。
SMC(片状模塑料,Sheet Molding Compound) 的特点
SMC基本组成:不饱和聚酯树脂、增稠剂、引发剂、 交联剂、低收缩添加剂、填料、内脱模剂、着色剂等混合 物浸渍短切玻纤粗纱或玻纤毡,两表面加上保护膜(聚乙烯 或聚丙烯薄膜)形成的片状模压成型材料。
第五章 聚合物基复合材料
聚合物基复合材料:以聚合物为基体的复合材料。
复合材料中研究最早、发展最快的一类复合 材料。在现代复合材料领域中占有重要的地位, 在国民经济建设中发挥了越来越重要的作用。
分类 复 合 材 料
增强纤维种类
基体材料性能
复合材料成型 固化方式 聚合物基体的 结构形式
玻璃纤维增强型 碳纤维增强型 芳纶纤维增强型
聚乙烯
CH2 CH n CH3
聚丙烯
CH2 CH n
CH2 CH Cl
聚氯乙烯
聚苯乙烯
CH2 O n
聚甲醛
O HO CH2CH2 O C
HO
CH3 C CH3
聚碳酸酯
O OC
n
O
C O n 聚对苯二甲酸乙二醇酯
O
+ HO CH2CH2 OH
复合材料总思考题和参考题答案
复合材料概论总思考题—•复合材料总论1.什么是复合材料?复合材料的主要特点是什么?①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一2.复合材料的基本性能(优点)是什么?——请简答6个要点(1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能3.复合材料是如何命名的?如何表述?举例说明。
4种命名途径①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料②(1)强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料(3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢4•常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点?5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能;二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能;②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能;③结构设计:最后确定产品结构的形状和尺寸。
6.试分析复合材料的应用及发展。
答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。
至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。
②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。
复合材料概论第5章--聚合物基复合材料
• GFRP的突出特点是比重小、比强度高。比金属铝 轻而比强度比高级合金钢还高。“玻璃钢”这个名 称便由此而来。 • 还具有良好的耐腐蚀性,在酸、碱、有机溶剂、海 水中均很稳定,良好的电绝缘材料,电阻率和击穿 电压强度达到了电绝缘材料的标准,可做为耐高压 的电器零件。 • 不反射无线电波,微波透过性好,可制造扫雷艇和 雷达罩。具有保温、隔热、隔音、减振等性能。 • 缺点是刚性差。会因日光照射空气中的氧化作用、 有机溶剂的作用产生老化现象,比塑料要缓慢。玻 璃纤维增强环氧、酚醛、聚酯树脂除具有上述共同 的性能特点而外,各自有其特殊的性能。
• 5.玻璃纤维增强聚酯 • 聚酯作为基体材料主要有两种,一种是聚苯二甲酸乙二酯(代 号PET),另一种为聚苯二甲酸丁二酯(代号PBT)。 • 未增强的纯聚酯结晶性高,成型时收缩率大,尺寸稳定性差 、耐温性差。质脆。用玻璃纤维增强后,机械强度比其他玻 璃纤维增强热塑性塑料均高,抗拉强度135-145MPa,抗弯强 度209-250MPa,耐疲劳强度达52MPa。耐热性提高最大, PET的热变形温度为85 ℃ ,PR-PFT为240 ℃ ,仍能保持机 械强度,是玻璃纤维增强热塑性塑料中耐热温度最高的一种 。耐低温度性能好,超过了FR-PA6,在温度高低交替变化时 ,机械性能变化不大;电绝缘性好,可制造耐高温电器零件 ;高温下耐老化性好,胜过玻璃钢,尤其是耐光老化性能好 ,所以使用寿命长。不足之处是在高温下易水解,使机械强 度下降。不适于在高温水蒸气下使用。
《复合材料概论》心得与总结
《复合材料概论》心得与总结卫琦 1306030118通过学习《复合材料概论》,我了解了复合材料的命名、分类以及复合材料的基本性能。
复合材料的基体材料有四种:金属材料、无机胶凝材料、陶瓷材料、聚合物材料。
了解了碳纤维的优点以及碳纤维在生活中被广泛的应用。
以及对聚合物基复合材料,金属基复合材料,陶瓷基复合材料的了解。
以下是我对一些知识点的总结。
第一章总论一、复合材料定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料;在复合材料中通常有一个相为连续相,称为基体,另一相为分散相,称为增强材料。
二、复合材料的分类1.按增强材料形态分类(连续纤维复合、短纤维复合、颗粒复合、编织复合)2.按增强材料纤维种类分类(玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维、混合)3.按基体材料分类(聚合物基、金属基、无机非金属基)4.按材料作用分类(结构复合材料、功能复合材料)三、复合材料的基本性能1.可综合发挥各组成材料的优点2.可按对材料性能的需要进行材料的设计和制造(最大特点!)3.可制成所需的任意形状的产品四、复合材料结构设计的三个结构层次①:一次结构:指由基体和增强材料复合而成的单层材料②:二次结构:指由单层材料层合而成的层合体③:三次结构:指通常所说的工程结构或者产品结构第二章复合材料的基体材料复合材料的基体材料有以下四种:①:金属材料主要包括铝及铝合金、镁合金、钛合金、镍合金、铜与铜合金、锌合金、铅、钛铝、镍铝金属间化合物等无机胶凝材料主要包括水泥、石膏、菱苦土和水玻璃等陶瓷材料主要包括玻璃、玻璃陶瓷、氧化物陶瓷、非氧化物陶瓷聚合物材料主要包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热固性/热塑性聚合物。
第三章复合材料的增强材料一、增强材料的定义:在复合材料中,凡事能基体材料力学性能的物质,均称为增强材料。
二、玻璃纤维的分类:1.以玻璃原料成分分类:无碱玻璃纤维(E玻纤);中碱玻璃纤维;有机玻璃纤维(A玻璃);特种玻璃纤维。
复合材料聚合物基复合材料
1. 不饱和聚酯树脂(UP-Unsaturated Polyester Resin)
聚酯包括饱和聚酯和不饱和聚酯。 饱和聚酯:没有非芳族的不饱和键
O CO
不饱合聚酯:含有非芳族的不饱和键, 是由 不饱合二元酸或酸酐、饱合二元酸或酸酐与二 元醇经缩聚反应合成的低聚物。将其溶解在乙 烯类单体中所形成的溶液称不饱合聚酯树脂。
另外还具有:可设计性强;耐腐蚀;热膨胀 系数低,尺寸稳定等特点。
1. 高比强度、高比模量
比强度是材料的强度和密度之比值,比模量是 材料的模量与密度之比值。
在质量相等的前提下,它是衡量材料承载能力 和刚度特性的指标。
复合材料的高比强度和高比模量来源于增强纤 维的高性能和低密度。
2.耐疲劳
•多数金属材料疲劳极限仅为其拉伸强度的30 %--50%,而CFRP可达70%-80%。
从生产工艺来看,尽管引进了不少先进技术设 备,但利用率不高,所有制品仍有80%是手糊 成型,仅有20%由缠绕、拉挤、SMC及RTM等 设备成型,因此玻璃钢工业的生产潜力很大。
在成型工艺方面引进了制造管罐的大型缠绕系 统、拉挤工艺生产线、SMC生产线、连续制板机 组、树脂传递模型机组、喷射成型技术、树脂 注射成型技术等先进工艺和设备,形成了研究、 设计、生产及原材料相互配套较完整的工业体 系 。逐步实现由手糊到机械化自动化的转变。 但总的水平与国外先进技术还有一定距离。
这架航天飞机用碳纤维/环氧树脂制作长18.2m、宽 4.6m的主货舱门,用凯芙拉纤维/环氧树脂制造各种 压力容器,用硼/铝复合材料制造主机身隔框和翼梁, 用碳/碳复合材料制造发动机的喷管和喉衬,发动机 组的传力架全用硼纤维增强钛合金复合材料制成, 被覆在整个机身上的防热瓦片是耐高温的陶瓷基复 合材料。
复合材料第五章-聚合物材料
1复合材料第二部分复合材料的基体材料第四章聚合物材料2教学目的:通过本章的学习,掌握高分子材料的分类;塑料的定义、性能特点、优点和缺点;常见橡胶的突出性能优点;热塑性塑料和热固性塑料的差异点;影响高分子性能的主要因素。
重点内容:1、高分子结构对性能的影响。
2、常见各类高分子的主要性能。
难点:高分子/填料复合体系的流变行为。
熟悉内容:各类高分子在各行业中的广泛应用。
3主要英文词汇:Polymer ,macromolecular---高分子Plastics---塑料Rubber---橡胶Coatings---涂料Fiber---纤维Thermoplastic resin---热塑性树脂Thermosetting resin---热固性树脂Glass region---玻璃态区域Rubber-elastic plateau region---高弹态平台区域Liquid flow region---粘流态4Fiber---纤维Glass transition---玻璃化转变Viscosity flow transition---粘流转变Pseudoplastic---假塑性流体Newtonian liquid---牛顿流体Dilatant---膨胀性流体Mechanical properties---机械性能Rheological behavior---流变行为5参考教材或资料:1、复合材料学----周祖福(武汉理工大学出版社,2004年)2、现代复合材料----陈华辉邓海金李明(中国物质出版社,1998)3、复合材料概论----王荣国武卫莉(哈尔滨工业大学出版社,1999)4、复合材料--------吴人洁(天津大学出版社,2000)5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002)6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003)7、高性能复合材料学---郝元恺,肖加余(化学工业出版社,2004)8、新材料概论---谭毅, 李敬锋(冶金工业出版社,2004)9、先进复合材料----鲁云朱世杰马鸣图(机械工业已出版社,2004)10、复合材料--------周曦亚(化学工业出版社,2005)65、聚合物材料引言:目前聚合物的品种和数量已大大超过了天然有机高分子,且随着合成工业的发展和新聚合方法的出现,品种及数量继续增长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)良好的摩擦性能。碳纤维的低摩擦系数和自润滑性,其复合材料具有良好 的摩阻特性和减摩特性。
(4)优良的耐腐蚀性。 (5)有特殊的光学、电学、磁学的特性。
5.良好的加工工艺性 (1)可以根据制品的使用条件、性能要求选择纤维、基体等原材料
• 2.玻璃纤维聚酰胺(代号FR-PA) • 聚酰胺是一种热塑性工程塑料,本身的强度就比
一般通用塑料的强度高,耐磨性好,但因吸水率 太大,影响了尺寸稳定性,耐热性也较低。用玻 璃纤维增强的聚酰氨,这些性能就会大大改善。 玻璃纤维增强聚酰胺的品种很多。有玻璃纤维增 强尼龙6(FR-PA6)、玻璃纤维增强尼龙66(FRPA66)、玻璃纤维增强尼龙1010(FR-PA1010)等。
• 5.1.3 高强度、高模量纤维增强塑料 • 高强度、高模量纤维增强塑料主要是指以环氧树脂为基体
,以各种高强度、高模量的纤维(包括碳纤维、硼纤维、 芳香族聚酰胺纤维、各种晶须等)做为增强材料的高强度 、高模量纤维增强塑料。该种材料由于受增强纤维高强度 、高模量这一性能的影响.致使其具有共同的特点:
玻璃纤维增强热固性塑料是指玻璃纤维(包括长纤维、 布、带、毡等)做为增强材料,热固性塑料(包括环氧 树脂、酚醛树脂、不饱和聚酯树脂等)做为基体的纤维 增强塑料。俗称玻璃钢。根据基体种类不同,可将 GFRP分成三类,即玻璃纤维增强环氧树脂、玻璃纤 维增强酚醛树脂、玻璃纤维增强聚酯树脂。
• GFRP的突出特点是比重小、比强度高。比金属铝 轻而比强度比高级合金钢还高。“玻璃钢”这个名 称便由此而来。
分类 复 合 材 料
增强纤维种类
基体材料性能
复合材料成型 固化方式 聚合物基体的 结构形式
玻璃纤维增强型 碳纤维增强型 芳纶纤维增强型
通用型 耐化学介质腐蚀型 耐高温型 阻燃型
常温常压固化成型 高温加压固化成型
热固性树脂基复合材料
热塑性树脂基复合材料
5.1.1玻璃纤维增强热固性塑料(代号GFRP)
• (1)比重轻、强度高、模量高和低的热膨胀系数。是目 前力学性能最好的高分子复合材料。
• (2)加工工艺简单。该种增强塑料可采用GFRP的各 种成型方法,如模压法、缠绕法、手糊法等。
• (3)价格昂贵。该种材料唯一的缺点是价格比较贵。
• 1.碳纤维增强塑料 • 碳纤维增强环氧塑料是一种强度、刚度、耐热性均好的复
第五章 聚合物基复合材料
1、聚合物基复合材料的种类和性能 2、聚合物基复合材料结构设计 3、聚合物基复合材料成型加工技术 4、聚合物基复合材料的应用
聚合物基复合材料:聚合物基复合材料是以有机聚 合物为基体,纤维类增强材料为增强剂的复合材料。
基体材料由于其粘接性能好,把纤维牢固地 粘接起来。同时,基体又能使载荷均匀分布,并 传递到纤维上去,并允许纤维承受压缩和剪切载 荷。纤维和基体之间的良好的复合显示了各自的 优点,并能实现最佳结构设计、具有许多优良特 性。
5.1.2 玻璃纤维增强热塑性塑料(代号FR-TP)
• 玻璃纤维增强热塑性塑料是指玻璃纤维做为增强材料,热 塑性塑料(包括聚酰胺、聚丙烯、低压聚乙烯、ABS树脂 、聚甲醛、聚碳酸酯、聚苯醚等工程塑料)为基体的纤维 增强塑料。
• 玻璃纤维增强热塑性塑料除了具有纤维增强塑料的共同特 点外,它与玻璃纤维增强热固性塑料相比较,特点是具有 更轻的比重,在1.1—1.6之间,为钢材的1/5—1/6;比 强度高,蠕变性大大改善。
• 4.玻璃纤维增强聚碳酸酯(代号FR-PC)
• 聚碳酸酯是一种透明度较高的工程塑料,它 的刚韧相兼的特性是其他塑料无法相比的,唯 一不足之处是易产生应力开裂、耐疲劳性差。 加入玻璃纤维以后,FR-PC比PC的耐疲劳强 度提高2-3倍,耐应力开裂性能可提高6-8倍,
耐热性比PC提高10-20 ℃ ,线膨胀系数缩小 为1.6-2.4×10-6m/ ℃ ,因而可制成耐热的机
• 6.玻璃纤维增强聚甲醛(代号FR—POM)
• 聚甲醛是一种性能较好的工程塑料,加入玻璃纤维 后,不但起到增强的作用,而且耐疲劳性和耐蠕变 性有很大提高。含有25%玻璃纤维的FR—POM的抗 拉强度为纯POM的两倍、弹性模量为纯POM的三倍 ,耐疲劳强度为纯POM的两倍,高温下仍具有良好 的耐蠕变性,同时耐老化性也很好。但不耐紫外线 照射,因此在塑料中要加入紫外线吸收剂。不足之 处是加入玻璃纤维后其摩接系数和磨耗量大大提高 了,即耐磨性降低了。为了改善其耐磨牡,可用聚 四氟乙烯粉末做为填料加入聚甲醛中,或加入碳纤 维来改性。
• 玻璃纤维增强聚酯树脂突出特点是加工性好,加 入引发剂和促进剂后,可在室温下固化成型,由 于树脂中的交联剂也起稀释剂的作用,所以树脂 的粘度大大降低了,可采用各种成型方法进行加 工成型,可制作大型构件,扩大了应用的范围。 它的透光性好,透光率可达60%-80%,可制作 采光瓦。价格便宜。不足之处是固化时收缩率大 ,可达4%—8%,耐酸、碱性差,不宜制作耐酸 碱的设备及管件。
• 玻璃纤维增强环氧树脂是GFRP中综合性能最好 的一种。因环氧树脂的粘结能力最强,与玻璃纤 维复合时,界面剪切强度最高。机械强度高于其 他GFRP。环氧树脂固化时无小分子放出,故尺 寸稳定性最好,收缩率只有1%-2%,环氧树脂 的固化反应是放热反应,易产生气泡,但因添加 剂少,很少发生鼓泡现象。唯一不足的是环氧树 脂粘度大,加工不太方便,成型时需要加热,室 温下成型会导致环氧树脂固化反应不完全。不能 制造大型制件。
械强度,并有增重现象。
• 2.玻璃纤维增强聚酰胺
• 在聚酰胺中加入玻璃纤维后,唯一的缺点是 使本来耐磨性好的性能变差了。因为聚酰胺 的制品表面光滑,光洁度越好越耐磨。而加 入玻璃纤维以后,如果将制品经过二次加工 或者被磨损时,玻璃纤维就会暴露于表面上 ,这时材料的磨擦系数和磨耗量就会增大。
• 因此,如果用它来制造耐磨性要求高的制品 时,一定要加入润滑剂。
PET的热变形温度为85 ℃ ,PR-PFT为240 ℃ ,仍能保持机
械强度,是玻璃纤维增强热塑性塑料中耐热温度最高的一种 。耐低温度性能好,超过了FR-PA6,在温度高低交替变化时 ,机械性能变化不大;电绝缘性好,可制造耐高温电器零件 ;高温下耐老化性好,胜过玻璃钢,尤其是耐光老化性能好 ,所以使用寿命长。不足之处是在高温下易水解,使机械强 度下降。不适于在高温水蒸气下使用。
发展简况
聚合物基复合材料发展史第一阶段:20世纪40年代初~20世纪 60年代。
聚合物基复合材料发展史第二阶段:20世纪60年代中期~20世纪80 年代初
聚合物基复合材料发展史第二阶段:20世纪60年代中期~20世纪80 年代初
聚合物基复合材料的特点
1.比强度和比模量高
聚合物基复合材料的突出优点是比强度及比模量高。比强度 是材料的强度与密度之比值,比模量是材料的模量与密度之 比值,其量纲均为长度。复合材料的高比强度和高比模量来 源于增强纤维的高性能和低密度。玻璃纤维由于模量相对较 低、密度。
2.耐疲劳性能好,破损安全性能高
金属材料的疲劳破坏常常是没有明显预兆的突发性破坏。 复合材料中纤维与基体的界面能阻止裂纹的扩展,其疲劳破坏 总是从纤维的薄弱环节开始,裂纹扩展或损伤逐步进行,时间 长,破坏前有明显的预兆。
复合材料的破坏不像传统材料由于主裂纹的失稳扩展而突 然发生,而是经历基体开裂、界而脱粘、纤维拔出、断裂等一 系列损伤的发展过程。基体中有大量独立的纤维,当少数纤维 发生断裂时,其失支部分载荷又会通过基体的传递面迅速分散 到其他完好的纤维上去,复合材料在短期内不会因此而丧失承 载能力。内部有缺陷、裂纹时,也不会突然发展而断裂。
合材料,这方面的性能是其他材料无法相提并论的。比重 小、刚度大、抗冲击强度特别突出,耐疲劳强度很大.摩 擦系数很小,这方面性能均超过了钢材。耐热性特别好,
可在12000 ℃高温下经受10秒钟,保持不变。不足之处一
是碳纤维与塑料的粘结性差,且各向异性,这方面不如金 属材料。目前已有解决办法,使碳纤维氧化和晶须化来提 高其粘结性。用碳纤维编织法来解决各向异性的问题。另 一个不足之处是价格昂贵,因而虽然有上述一些优良性能 ,但还只是应用于宇航工业,其他领域应用较少。
,即材料具有可设计性。
(2)可以根据制品的形状、大小、数量选择加工成型方法。
(3)可整体成型,减少装配果件的数量,节省工时,节省材料,减 轻质量。
6.各向异性和性能的可设计性 纤维复合材料一个突出的特点是各向异性,与之相关的是性能 的可设计性。纤维复合材料的力学、物理性能除了由纤维、树 脂的种类和体积含量而定外,还与纤维的排列方向、铺层次序 和层数密切相关。因此,可以根据工程结构的载荷分布及使用 条件的不问,选取相应的材料及铺层设计来满足既定的要求。 利用这一特点,可以实现制件的优化设计,做到安全可靠,经 济合理。
械零件。
• 5.玻璃纤维增强聚酯 • 聚酯作为基体材料主要有两种,一种是聚苯二甲酸乙二酯(代
号PET),另一种为聚苯二甲酸丁二酯(代号PBT)。
• 未增强的纯聚酯结晶性高,成型时收缩率大,尺寸稳定性差 、耐温性差。质脆。用玻璃纤维增强后,机械强度比其他玻 璃纤维增强热塑性塑料均高,抗拉强度135-145MPa,抗弯强 度209-250MPa,耐疲劳强度达52MPa。耐热性提高最大,
• 玻璃纤维增强酚醛树脂是各种GFRP中耐热性最
好的一种,可在200℃下长期使用,在1000 ℃以
上的高温下,也可短期使用。是耐烧蚀材料,可 做宇宙飞船的外壳。耐电弧性,可用于制做绝缘 材料。价格便宜,原料来源丰富。不足处是性能 较脆,机械强度不如环氧树脂。固化时有小分子 副产物放出,故尺寸不稳定,收缩率大。对人体 皮肤有刺激,会使手和脸肿胀。
• 还具有良好的耐腐蚀性,在酸、碱、有机溶剂、海 水中均很稳定,良好的电绝缘材料,电阻率和击穿 电压强度达到了电绝缘材料的标准,可做为耐高压 的电器零件。