卫星太阳能电站发展发展前景与利用难题分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫星太阳能电站发展前景与利用难题分析
摘要
空间太阳能电站(Solar Power Satellite,SPS)概念受到了国际的广泛关注,美国和日本都已制定了争取在2030年左右实现商业化运行的发展路线图,并且在概念和技术层面开展了大量的研究工作。中国有必要尽快开展此方面的相关研究工作,为未来的长远发展奠定基础。
引言
世界经济的迅速发展, 对能源的需求越来越大。地球矿物资源的大量开采与消耗, 使石油、煤炭资源日趋短缺。过量消耗矿物燃料造成地球生态环境的恶化, 也促使人们寻找新能源和各种可再生能源。由于空间太阳能具有能流密度大、持续稳定、不受昼夜气候影响、洁净、无污染等优点, 且随着人类征服太空能力的加强, 利用空间太阳能发电SPS ( Solar Power from Space) 已越来越受世界各国的关注。
现代空间太阳能发电的构想——太阳能发电卫星( Solar Power Satellite) 最早由美国的P. E. Glaser 博士于60 年代提出。之后一些学者又纷纷提出其它设想, 特别是美国的D.Criswell 等又建立了以月球为基地的空间电站模型LSP( Lunar-based Solar Power ) 。为了加快实现空间发电的构想, 一些发达国家如美、日、法、俄等先后开展了空间电站的可行性论证,并对其中的关键技术——无线电能传输WPT 技术(Wireless Power Transmission) 作了大量的探索工作。总体认为, 空间太阳能电站在技术、经济、社会等方面是可行的, 有望于本世纪初建立初步的空间太阳能发电SPS 系统, 并于中叶建立起以月球为基地的太阳能电站。
本文旨在结合我国国情, 对空间太阳能发电及传输技术原理的研究发展做
出概述,分析制约卫星太阳能电站发展问题的关键技术以及重大问题。
1. 国际空间太阳能电站发展概述
1. 1空间太阳能电站概念
空间太阳能电站是指在空间将太阳能转化为电能,再通过无线方式传输到地面的电力系统。主要由3部分组成:太阳能发电装置、能量转换和发射装置、地
面接收和转换装置
(图1)。太阳能发电装置将太阳能转化为电能;能量转换装置将电能转换成微波或激光等形式(激光也可以直接通过太阳能转化),并利用天线向地面发送能束;地面接收系统接收空间发射来的能束,再通过转换装置将其转换为电能。整个过程经历了太阳能—电能—微波(激光)—电能的能量转变过程
图1 空间太阳能电站工作示意图
1. 2国际空间太阳能电站发展现状
1.2.1美国
美国在20世纪70年代,投入约5000万美元进行空间太阳能电站和关键技术研究,并且提出5GW的“1979 SPS基准系统”方案。1995年7月,NASA开展了重新评估SPS可行性的研究,并提出多种创新方案。1999年,NASA在2年内投资2200万美元,开展“空间太阳能探索性研究和技术”的计划,提出SPS未来发展的技术路线图计划于2020年实现10MW系统的空间验证。2001年后,NASA和美国科学基金会共同出资开展“空间太阳能电站概念和技术程度研究”。2007年美同国防部组织专家完成了《空间太阳能电站作为战略安伞的机遇》中期评估报告。报告对于美国政府组织开展夺间太阳能电站研究提出4点建议:①要有效的进行组织,以解决SPS研制存在的问题;②要为SPS的商业发展清除主要的技术风险;③为SPS的研制创造一个有利的政策、制度和法律环境;④政府应成为
SPS早期的验证者、研制者和用户,并且激励其持续发展。
1.2.2日本
日本是能源极缺的国家,从20世纪80年代就开始进行SPS概念和关键技术研究。目前共有200多名科学家参加15个技术工作组,90年代起陆续推出SPS2000、SPS2001、SPS2002、SPS2003、分布式绳系SPS系统等概念设计,并且重点在微波传输、激光传输、材料及空间机器人技术方面开展工作。2003年2月27日,日本提出“促进空间太阳能利用”计划,已列为国家计划,目标是在20~30年后实现商业化,目前已经提出在2030年实现1GW商业系统运行的技术路线图。
1.2.3欧洲
欧洲在1998年开展了“空间及探索利用的系统概念、结构和技术研究”计划,提出了名为太阳帆塔的概念设计。2002年8月,欧空局先进概念团队组建了欧洲空间太阳能电站研究网,重点在高效多层太阳电池、薄膜太阳电池、高效微波转化器、轻型大型空间结构等先进技术方面开展研究工作。
1.2.4中国
近年来,我国在发展地面太阳能可再生能源方面做了大量的工作,但利用规模还十分有限,发展空间太阳能发电技术、解决太阳能的大规模利用问题才是我国发展的主要方向。作为空间太阳能发电的主要关键技术,WPT在能量传输方面起重要作用。我国在雷达技术研究、应用方面具有一定基础,激光技术也已成熟。微波技术、激光技术在许多方面得到了应用,表明我国在WPT技术上已具有相当基础。我国已具备了太阳能电池的技术基础与空间应用能力。尽管就我国的目前空间技术水平相比还存在许多差距,但就空间工业基础来讲,我国已具备建设太空太阳能电站所需空间技术的潜能。
2. 空间太阳能电站系统方案
国际上已经提出几十种空间太阳能电站概念构想,总得来说空间太阳能电站概念可以分为两大类:一类是非聚光式,另一类是聚光式,而这两类又分别可以分为平台式和分布式。平台式非聚光空间太阳能电站的典型代表是美国提出的“1979 SPS基准系统”;分布式非聚光窄间太阳能电站的典型代表是日本提出的
“分布式绳系太阳能电站卫星”;平台式聚光空间太阳能电站的典型代表是美国提出的“集成对称聚光系统”;分布式聚光空间太阳能电站的典型代表是日本提出的“SPS2003”。从发展趋势上,空间太阳能电站概念的发展重点是从系统的轻型化、模块化等方面开展工作,同时要重点解决系统的散热和空间大功率电力的传输难题。下面给出几种典型的空间太阳能电站概念。
2.11979 SPS基准系统
1979年美国提出第一个空问太阳能电站概念,名为“1979 SPS基准系统”。该设计方案为在地球静止轨道上布置60个发电能力各为5GW的发电卫星,总设计目标为300GW,约为美国电负荷的一半,系统主要性能参数见表1。
表1 1979 SPS基准系统主要性能参数
系统采用桁架式太阳电池阵结构设计,体积和重量均较大,是后来的SPS概念设计的基础。设计微波波束到达地面时的功率密度很小,波束中心约为23mW /cm2,边缘只有1mW/cm2,对人、畜和庄稼不会造成危害。
2.2集成对称聚光系统
NASA在20世纪90年代末的SERT研究计划中提出新一代的名为“集成对称聚光系统”的设计方案,结构示意图见图2。采用了薄膜聚光设计,薄膜聚光采用O.5mm 厚的Kapton膜,表面太阳光反射率达到0.9,聚光膜到光伏电池的集光率为4.25。设计将聚光太阳阵与微波发射天线布置在很近的位置,可以大大减小空间电力传输系统的体积和质量。