1-27 抽屉原则问题

合集下载

抽屉原理

抽屉原理

三.制造抽屉是运用原则的一大关键例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

分析与解答我们用题目中的15个偶数制造8个抽屉:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。

另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。

例3:从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

分析与解答根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。

从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

小学奥数趣味学习《抽屉问题》典型例题及解答

小学奥数趣味学习《抽屉问题》典型例题及解答

小学奥数趣味学习《抽屉问题》典型例题及解答抽屉问题是一类与“存在性”有关的数学问题。

如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。

抽屉原理是符合某种条件的对象存在性问题有力工具。

数量关系:基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。

抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。

解题思路和方法:目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。

例题1:不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球?解:解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。

那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。

因此至少要摸4+1=5(个)球。

例题2:袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球?解:解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。

因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。

因此至少摸出5+1=6(个)球。

例题3:一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。

要保证至少有4人得分相同,最少需要多少人参加竞赛?解:1、本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。

2、一共有5题,且有5分的基础分,那么每道题就有1分的基础分。

也就相当于答对一题得4分,答错不得分,不答得1分。

必备2017小升初数学知识点:抽屉原理_知识点总结

必备2017小升初数学知识点:抽屉原理_知识点总结

必备2017小升初数学知识点:抽屉原理_知识点总结
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

经典例题:
例、把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由.
考点:抽屉原理.
分析:要保证得到两个颜色相同的球,那就是至少要取出四个,才能保证一定得到两个颜色相同的球;假设第一个球是红球,第二个球是黄球,第三个球是蓝球,那再取任意一个球,只能是三种颜色中的一个,出现同色,用“颜色数+1”即可.
解答:3+1=4(个)。

抽屉原则,

抽屉原则,

抽屉原则,抽屉原则(又称抽屉原理)chōu tì yuán zé ,又叫狄利克雷原则,或“鸽笼原则”、“重叠原则”。

将m件物品按任何方式放入n(n<m)个抽屉,则必至少有一个抽屉里放有两件或两件以上的物品。

可用于解决许多数学问题。

大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这一简单事实,它包含着一个重要而又十分基本的原则——抽屉原则.抽屉原则有几种最常见的形式:原则1如果把n+k(k≥1)个物体放进n只抽屉里,则至少有一只抽屉要放进两个或更多个物体:原则本身十分浅显,为了加深对它的认识,我们还是运用反证法给予证明;如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原则虽简单.巧妙地运用原则却可十分便利地解决一些看上去相当复杂、甚至感到无从下手的问题,比如说,我们可以断言在我国至少有两个人出生的时间相差不超过4秒钟,这是个惊人的结论,该是经过很多人的艰苦劳动,统计所得的吧!不,只须我们稍动手算一下:不妨假设人的寿命不超过4万天(约110岁,超过这个年龄数的人为数甚少),则10亿人口安排在8亿6千4百万个“抽屉”里,根据原则1,即知结论成立.下面我们再举一个例子:例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。

把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。

抽屉原理典型习题知识分享

抽屉原理典型习题知识分享

抽屉原理典型习题抽屉原理规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。

抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。

一、基础训练。

1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有______个苹果。

98÷10=9 (8)2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_______只鸽子。

1000÷50=203、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。

17÷8=2 (1)4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。

25÷(4)=6 (1)二、拓展训练。

1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么(49-3)÷15=3 (1)86,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数(2)有两个数的差是50(1,51)(2,52)(3,53)……(49,99)(50,100)50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是5051÷50=1 (1)3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.(0+1999)*2000÷2=19990001999000÷2000*3=4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。

小学奥数专题抽屉原理题库学生版

小学奥数专题抽屉原理题库学生版

8-2抽屉原理教学目标抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

知识点拨一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个,要把这十个苹果放到九个里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -p p , 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】 数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】 光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】 用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】 向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】 试说明400人中至少有两个人的生日相同.【例 3】 三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】 “六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】 五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】 四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】 证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】 证明:任取6个自然数,必有两个数的差是5的倍数。

抽屉原理

抽屉原理

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

抽屉原理[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

.原理1 2 3都是第一抽屉原理的表述第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能应用二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。

许多有关存在性的证明都可用它来解决。

例1:400人中至少有2个人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有5人的生日相同. 400/366=1…4,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.“从任意5双手套中任取6只,其中至少有2只恰为一双手套。

”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。

”例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。

把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.)抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。

抽屉原理公式及例题

抽屉原理公式及例题

抽屉原理公式及例题
抽屉原则一:如果把n+1个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体;例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体;
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时;
②k=n/m个物体:当n能被m整除时;
理解知识点:表示不超过X的最大整数;
键问题:构造物体和抽屉;也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算;
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求;
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同;这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同;。

抽屉问题——精选推荐

抽屉问题——精选推荐

抽屉问题抽屉问题,又叫狄利克雷原则,原则一:把多于n个的元素,按任一确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素。

原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素。

抽屉原则是证明符合某种条件的对象存在性问题有力工具。

应用抽屉原则解决问题的关键是如何构造抽屉。

例1:在一个大口袋中装着红、黄、绿三种玻璃球各有很多个。

如果每次随意拿3个球,拿11次,至少有两次玻璃球颜色状况完全相同,请说明理由。

分析:所谓两次玻璃球颜色状况完全相同,是指如果有一次拿的是1黄2绿,另一次也拿的是1黄2绿,它们的颜色状况就是完全相同。

怎么说明呢?这就需要造抽屉,用抽屉原则来说明。

随意拿出3个球,会有不同的状况,我们把它找全,每一种颜色状况就是一个抽屉,有多少种不同的颜色状况,就有多少个抽屉。

解:每次拿3个球,有10种不同的颜色状况,把这10种不同的颜色状况看成10个抽屉,拿的11次看成11个物体,根据抽屉原则一,把11个物体放入10个抽屉中,一定有两个或两个以上的物体。

也就是说拿11次,一定至少有两次玻璃球的颜色状况完全相同。

例2:求证1997年1月出生的任意32个孩子中,至少有两个人是同一天出生的。

分析:1997年1月份共31天,为了回答上述问题,我们不妨假设1月份这31天为31个抽屉,而将1月份出生的任意32个孩子看作32个元素。

根据抽屉原理一知,有一只抽屉里至少放入了两个元素。

解:答:1月份出生的任意32个孩子中,至少有两个人是同一天出生的。

1、求证:任意互异的8个整数中,一定存在6个整数x1、x2、x3、x4、x5、x6使得(x1-x2)·(x3-x4)·(x5-x6)恰是105的倍数。

分析:由于105=3×5×7,而3、5、7两两互质,所以只要能找到两个数,比如x1、x2,使得x1-x2是7的倍数,同理x3-x4是5的倍数,x5-x6是3的倍数,题目即得证。

抽屉原则

抽屉原则

抽屉原则基础知识:(1)抽屉原则:把n+1个苹果(或多于n+1个苹果)放入n个抽屉中,至少有一个抽屉至少放入了2个苹果。

(2)抽屉原则2∶把kn+1个苹果(或多于kn+1个苹果)放入n个抽屉中,至少有一个抽屉至少放入了k+1个苹果。

(3)反向抽屉原则:把kn-1个苹果(或多于kn-1个苹果)放入n个抽屉中,至少有一个抽屉至多放入了k-1个苹果。

例1.从1~2016中最多可以选取多少个数,使得这些数中任意两个数的差不等于6。

[答疑编号505721590101]【答案】1008【解答】如果选取1~6,13~18,25~30,……,2005~2010这1008个数,则其中任意两个数的差不等于6,符合要求。

如果选取的数超过1008个,即至少选出了1009个数。

将1~2016分为1008对:(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),…………(2005,2011),(2006,2012),(2007,2013),(2008,2014),(2009,2015),(2010,2016)。

上述1008对数就是1008个抽屉,那么只要选出的数至少有1009个,其中就必有两个数在同一个抽屉中,那么这两个数的差等于6,不符合要求。

综上所述,最多可以选取1008个数。

进一步思考:在1~2013中最多可以选取多少个数,使得这些数中任意两个数的差不等于6?(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),…………(2005,2011),(2006,2012),(2007,2013),(2008),(2009),(2010)。

[答疑编号505721590102]【答案】1008例2.求证:在2013个数1、11、111、1111、……、11……1中,必有一个是2013的倍数。

高考数学冲刺抽屉原理考点突破

高考数学冲刺抽屉原理考点突破

高考数学冲刺抽屉原理考点突破在高考数学的复习冲刺阶段,抽屉原理作为一个重要的考点,常常让许多同学感到困惑和棘手。

但其实,只要我们掌握了它的核心概念和解题方法,就能在考试中轻松应对,斩获高分。

首先,我们来了解一下什么是抽屉原理。

简单来说,抽屉原理指的是:假如有 n + 1 个元素放到 n 个集合中去,其中必定有一个集合里至少有两个元素。

举个简单的例子,把 3 个苹果放进 2 个抽屉,无论怎么放,总有一个抽屉里至少有 2 个苹果。

这看起来似乎很简单直观,但在实际的数学问题中,它的应用往往更加复杂和巧妙。

在高考中,抽屉原理的常见题型主要有以下几种:一、最不利原则问题这类问题通常要求我们在最不利的情况下,找出满足条件的最少数量。

例如,有红、黄、蓝三种颜色的球各 10 个,要保证取出的球至少有两种颜色,最少要取出多少个球?我们先考虑最不利的情况,即先把一种颜色的球全部取出,比如先取出 10 个红球,然后再取 1 个球,就一定能保证取出的球至少有两种颜色,所以最少要取出 11 个球。

二、构造抽屉问题此类问题需要我们根据题目条件合理地构造抽屉。

比如,在一个班级中,有 40 名学生,年龄在 16 岁到 18 岁之间,那么至少有几名学生是同年同月出生的?这里我们可以把一年的 12 个月看作 12 个抽屉,把 40 名学生放进这 12 个抽屉中,40÷12 =3……4,所以至少有 4 名学生是同年同月出生的。

三、抽屉原理的综合应用有些题目会将抽屉原理与其他数学知识,如排列组合、概率等结合起来考查。

这就需要我们综合运用各种知识和方法来解决问题。

那么,如何才能突破抽屉原理这个考点呢?第一,要深刻理解原理的本质。

不仅仅是记住它的定义,更要通过大量的实例去体会和领悟其中的逻辑。

第二,多做练习题。

通过练习不同类型的题目,熟悉各种解题思路和方法,提高解题的速度和准确性。

第三,善于总结归纳。

做完题目后,要总结出同类题目的解题规律和技巧,形成自己的解题模板。

抽屉原则

抽屉原则

抽屉原则知识点拨抽屉原则,又称鸽巢原理,最早由德国数学家狄利克雷提出,并在有关数论问题中得到成功应用.抽屉原则,主要有下面几种表述形式:抽屉原则1:把n +1个元素分为n 个集合,那么必有一个集合含有两个以上的元素.抽屉原则2:把mn +1个元素分为n 个集合,那么必有一个集合中含有m +1个或m +1个以上的元素.抽屉原则3:把n 个元素分为k 个集合,那么必有一个集合中的元素个数≥⎥⎦⎤⎢⎣⎡k n ,也必有一个集合中的元素个数≤⎥⎦⎤⎢⎣⎡k n . 抽屉原则4:把无穷多个元素分为有限个集合,那么必有一个集合含有无穷多个元素.在运用抽屉原则时,所给定的元素具有任意性,也就是说,对元素的处理是任意的;所论证的问题,也只要求存在即可,不必一定是确定的.运用抽屉原则进行论证的命题,往往含有“至少含有”、“一定有”、“不少于”、“存在”、“必然有”等词语.利用抽屉原则的关键在于构造抽屉,从而把论证的命题的范围缩小,使问题变得简单明确,易于把握.一般说来,总是从问题自身的特点出发,先弄清所需要进行分类的元素特征.并指出规律,从而构造“抽屉”.利用抽屉原则解题的一般步骤是:第一步,根据元素的特征,构造抽屉(是运用抽屉原则解决问题的关键);第二步,把元素放入所构造的抽屉;第三步,运用抽屉原则,对所论证的问题作出问题. 赛题精讲(一)抽屉原则的一般运用例1 证明:从1,2,3,…,11,12这12个数中任意取出7个数,其中至少有两个数之差为6.【解析】现将这12个数按下面的方式分成6组(1,7);(2,8);(3,9);(4,10);(5,11);(6,12).任取7个数,根据抽屉原则1,至少有两个数来自同一个抽屉,这也就是说,至少有两个数之差是6.例2 某校初中二年级共有210名学生,则至少有18名同学是在同一个月里出生的.【解析】由于一年有12个月,则可以将其试作12个抽屉,又因为210=12×17+6.因此根据抽屉原则2可知,至少有19名同学是在同一个月里出生的.例3 从1,2,3,…,n 中任取10个数,使得其中两个数比值大于32,小于23,那么n 的最大值是91. 【解析】由于任取10个数中有两个数在同一个抽屉里,显然最多构造9个抽屉.这9个抽屉中的每一个抽屉都含有1,2,3,…,n 中的一些数,而且这些数必须满足每两个数的比值都在32和23之间,这9个抽屉,是:{1};{2,3};{4,5,6};{7,8,9,10};{11,12,…,16};{17,18,…,24,25};{26,27,…,38,39};{40,41,…,59,60};{61,62,…,90,91}.因此,n 的最大值是91. 例4 从1到100这100个自然数中,任意取出51个数,其中一定存在两个数,这两个数中的一个是另一个的整数倍.【解析】由于任何一个自然数都可以表示成一个奇数与2n 和乘积的形式,而且这种表示方法是惟一的.因此,我们可以按下面的方法来构造50个抽屉:{1,1×2,1×22,…,1×23,1×26};{3,3×2,3×22,3×23,3×24,3×25};{5,5×2,5×22,5×23,5×24};……;{49,49×2};{51};{53};……;{99}.于是从这50个抽屉中任取51个数,根据抽屉原则,其中一定存在至少两个数属于同一个抽屉,即命题得证.(二)同余与抽屉原则当任何一个正整数m 被另一个正整数n 相除时,总可以写成m =nq +r 的形式(其中,q 称为商,r 称为余数.当n 整除m 时,r =0;当n 不能整除m 时,r 为小于n 的正整数,也就是说,这里的0≤rn .)于是,我们可以根据m被n所除的余数的不同情况来构造抽屉,进而运用抽屉原则来解决一些与之相关的命题.这时,我们根据整数被某一整数n相除所得的余数相同与否进行分类,从而构造抽屉.如果将所有整数被n所除余数相同(习惯上我们称之为同余)的数归为一类,这样便可以构造出n个不同的抽屉,而且任一整数,它必然在这n类数(或n个抽屉)中的某一个之内.同时,如果所讨论的对象超出了n个,那么至秒有两个数被n所除的余数相同;此外,这样的两个数的差也一定能被n整除.下面,我们给出一些运用同余来构造抽屉并解决实际问题的例子.例5 对于任意给定的n个自然数,其中一定存在若干个数,它们的和是n的倍数.【解析】我们假设n个自然数是a1,a2,a3,…,a n,而且考虑如下形式的和:S1=a1,S2=a1+a2,…,S n=a1+a2+a3+…+a n.如果在这n个和S1,S2,…,S n中,存在一个数是n的倍数,则原命题成立.如果在n个和S1,S2,…,S n中,没有n的倍数的数,那么它们被n除所得的余数只可能是1,2,…,n-1共n-1种情况.但由于S,S2,…,S n共有n个数,从而根据抽屉原则,必然存在两个数它们1被n除的余数相同.不妨设在这两个数是S k与S j(k>j),那么这两个数的差S k-S j一定是n的倍数.也就是说,有:S k-S j=(a1+a2+a3+…+a j+a j+a j+2+…+a)-k(a1+a2+a3+…+a j)=a j+1+a j+2+…+a k,这表明:这时从第j+1个数起,一直到第k个数.它们的和正好是n的倍数.例6 如果三个完全平方数之和能被9整除,那么可以从这三个数中选出两个来,使得这两个完全平立数之差也能被9整除.【解析】下面我们先来讨论任意的完全平方数被9除的余数.根据同余理论,我们知道,任何一个整数总可以表示成:9k,9k±1,9k±2,9k±3及9k±4这九种情况中的一种.现在将这九种情况分别平方,于是可得:(9k)2=9×9k2+0;(9k±1)2=9(9k2±2k)+1;(9k±2)2=9(9k2±4)+4;(9k±3)2=9(9k2±6k+1)+0及(9k±4)2=9(9k2±8k+1)+7.可见,任何一个完全平方数被9除的余数只可能是0,1,4,7这四种情况之一.另一方面,由于所选的三个完全平方数之和能被9整除,因此这三个数的余数之和也一定能被9整除;而从0、1、4、7这四个数中选出三个,其和要能被9整除,只可能是{0,0,0}、{1,1,7}、{1,4,4}或{4,7,7}这四种情况中的一种.而在上面这四种可能的余数组合中,每一组都至多有两种余数,因此至少有两个完全平方数被所9除的余数相同,从而这两个余数相同的完全平方数之差就一定能被9整除.(三)图形分割与抽屉原则一些与几何图形有关的数学命题,有时可以先根据图形的特点“适应”地将其分割,然后再利用分割而成的图形来构造“抽屉”,最后在此基础上再利用抽屉原则来解决这些问题.例7 如果在长度为1的线段上有n +1个点,那么其中必有两点,它们之间的距离不超过n1. 【解析】这里,我们可以将这条线段n 等分,并把等分后的每一份看成一个“抽屉”,那么这里的n +1个点至少有两个点一定在等分后的“抽屉”中,也就是说,至少有两个点在一个长度为n1的小线段内,当然这两个点之间的距离就一定不会超过n1.命题得证. 例8 在边长为1的正方形内任给五点,则必有两点,它们之间的距离不大于22. 【解析】由抽屉原则,显然我们应将这五点放入四个合适的抽屉中,且每个抽屉中任两个点的距离都不超过22.于是我们可以通过连接正方形两组对边的中点,从而将其分割成长度为21的四个小正方形来构造“抽屉”.这样,任意的五个点中必有两个点一定在同一个小正方形内,如图1所示,而每一个小正方形内两点间的最大距离就是22.因此,在同一个小正方形内的两个点的距离一定不大于22.于是命题得证.这里,特别值得一提的是,并不是任意与几何图形有关的命图1题在构造抽屉时都一定得将图形等分(见下面的例9).事实上,就本例来讲,如果将原正方形的两条对角线连接起来,也将原正方形四等分了,但是对于原命题的证明是没有任何原助的.因为这时如果两点恰好位于正方形的相邻的两个顶点处,这样的两个点也可以在一个抽屉内,但是这两个点的距离却不大于22,显然与原命题的要求不符.例9 证明:如果在边长分别为3和4的矩形中有任意6个点,那么一定可以选出两个点,它们之间的距离不大于5.【解析】根据抽屉原则,显然需要将3×4的矩形分割成五个“抽屉”,每个抽屉中任意两个点的最大距离不超过5.而且大家都容易将5与边长为1×2的矩形联系起来,因为这里矩形的对角线长度是5.但是这样却把3×4的矩形分割成了六个“抽屉”,显然这是不符合题目要求的.可见,构造的抽屉是要满足一定 “尺寸”的.我们可以在此基础上适当改造“抽屉” 的形状,如图2,可以将图中的点A 、B 、K 、J 、 I 这五点,B 、C 、D 、L 、K 这五点,D 、E 、F 、L 这四点,F 、G 、J 、K 、L 这五点以及G 、H 、 I 、J 这四点所组成的五边形或四边形为“抽 屉” 而构造出五个抽屉,而且这五个“抽屉” 中的任何两个点之间的最大距离都不超过5.根据抽 屉原则,该命题得证.这是“非平均分割”而构造“抽屉”的一个非常有说明力的例子.可见,对于通过分割图形来构造“抽屉”并运用抽屉原则来解决问题时,恰当的构造抽屉是多么重要;同时也说明在构造抽屉时,并不一定是将所给出的图形等分.针对训练A 组1.一个口袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个.从袋中任意取球,如果要求一次取出的球中至少有15个球的颜色相同,那么至少要从袋中取出多少个球?2.从1到100这100个自然数中至少要取出多少个数,才能保证一定存在两个数是互质的.3.有100人聚会,其中每一个人都认识这100人中的50人.现请I 图2你证明:可以从中选出4人,当这4人坐成一个圆圈时,每个人都与他所认识的人邻坐.4.一定存在这样的正整数,它的各位数字由0或1构成,并且是201的倍数.5.证明:在任意给定的100个整数中,一定存在两个数,它们的和或差是100的倍数.B组1.证明:在21-1,22-1,23-1,…,2n-1-1这n-1个数中,至少有一个数能被n整除(其中n为大于1的奇数).2.九条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形.证明:这九条直线中至少有三条经过同一点.3.对于平面上给定的25个点,如果其中任何3个点中都有某两个点的距离小于1,那么在这些给定的点中,一定可以找到13个点,这13个点都位于一个半径为1的圆内.4.我们把在直解坐标平面内横坐标都是整数的点称为整点.证明:对于平面内任意给定的五个整点,其中一定存在两个整点,这两个点的连线的中点仍为整点.5.在直角坐标系中,我们考虑上面所定义的整点(x,y),其中1≤x ≤16,1≤y≤9,显然共有114个整点.如果将114个点任意地染成红、黄、蓝三色,那么一定存在一个长方形,它的边平形于坐标轴,且它的顶点颜色相同.。

抽屉原理练习题一

抽屉原理练习题一

抽屉原理练习题一1、有黑色、白色、黄色的筷子各8根,混杂放在一起,黑暗中想从这些筷子之中取出颜色不同的两双筷子,至少要取出多少根(11根)才能保证达到要求?至少拿几根(6根),才能保证有两双同色的筷子?2、从任意3个整数中,一定可以找到两个。

使得它们的和是一个偶数,这是为什么?3、某班有49个学生,最大的12岁,最小的9岁,是否一定有两个学生,他们是同年同月出生的?4、一副扑克牌有54张,至少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 165、学校买来历史、文艺、科普三种图书若干本,每个同学从中任意借两本,那么至少要多少名学生一起来借书,其中才一定有两人所借的图书种类相同? 76.11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

7.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

8.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?69.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,则小明至少把这些水果分成了几堆。

10.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。

问:至少有多少名学生订阅的杂志种类相同?1511.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?12.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?913.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。

小升初数学知识点之抽屉原理

小升初数学知识点之抽屉原理

必备小升初数学知识点之抽屉原理数学在人的生活中处处可见,息息相关。

下面是为大家分享的小升初数学知识点之抽屉原理,大家一定要认真学习哦!
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

以上是为大家分享的小升初数学知识点之抽屉原理,希望对
大家有帮助!。

小学奥数题:抽屉原理

小学奥数题:抽屉原理

知识点:抽屉原理
抽屉原理
一、知识点
1.把27个苹果放进4个抽屉,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中苹果数大于等于几?
2.把25个苹果放进5个抽屉中,能否使每个抽屉中的苹果数小于等于4?那么至少有一个抽屉中苹果数大于等于几?
规律:用苹果数除以抽屉数,若余数不为0,则“答案”为商加1;若余数为0,则“答案”为商。

抽屉原则1:把n个以上的苹果放到n个抽屉里,无论怎样放,一定有一个抽屉,它里面至少有两个苹果。

抽屉原则2:把多于m×n个苹果放在n个抽屉里面,无论怎样放,一定有一个抽屉里面至少有(m+1)个苹果。

二、基础训练
1.把98个苹果放进10个抽屉,无论怎样放,我们一定能找到一个苹果最多的抽屉,里面至少含有个苹果。

2.1000只鸽子飞近50个巢,我们一定能发现一个含鸽子最多的巢穴里,它里面至少含有只鸽子。

3.从个抽屉里面(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉中,从它当中至少拿了3个苹果。

思路点拨:在抽屉原理问题中,难在有些题目抽屉没有直接给出,要求我们自己根据题意去构造抽屉。

但我们也不要因此感到困难,往往题目里有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。

小学数学公式大全:抽屉原理

小学数学公式大全:抽屉原理

小学数学公式大全:抽屉原理
抽屉原理:
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:
如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:
[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:
构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理最不利原则

抽屉原理最不利原则

抽屉原理最不利原则抽屉原理,又称为鸽巢原理,是数学中的一个重要概念,它指出如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中会有两个或两个以上的物品。

这个原理在实际生活中也有很多应用,不仅在数学领域,还在计算机科学、信息检索等领域中有着重要的作用。

然而,抽屉原理也有其不利的一面,即抽屉原理最不利原则。

本文将从数学、计算机科学和实际生活中的应用等方面来解析抽屉原理最不利原则。

首先,我们来看抽屉原理在数学中的应用。

抽屉原理最不利原则指的是在n个抽屉中放入n+1个物品时,至少有一抽屉中会有两个或两个以上的物品。

这个原理在数学证明中经常被使用,通过反证法可以证明很多数学问题。

但是,当我们试图在实际问题中应用抽屉原理时,就会发现抽屉原理最不利原则的存在。

因为在实际问题中,我们并不能总是找到一个抽屉中一定会有两个或两个以上的物品,有时候会出现所有的物品都分布在各个抽屉中,这就是抽屉原理最不利原则的影响。

其次,抽屉原理在计算机科学中也有着重要的应用。

在数据存储和检索中,我们经常会用到哈希表来存储数据,而哈希冲突就是抽屉原理最不利原则的一个典型例子。

当我们将大量的数据通过哈希函数映射到有限的哈希表中时,就会出现多个数据映射到同一个位置的情况,这就是哈希冲突。

在这种情况下,我们需要通过一些方法来解决哈希冲突,比如链地址法、开放寻址法等。

这些方法都是为了应对抽屉原理最不利原则的影响,确保数据的正确存储和检索。

最后,我们来看抽屉原理在实际生活中的应用。

在日常生活中,我们经常会遇到一些情况,比如在超市购物时,我们需要将各种商品放入购物篮中。

当商品种类很多时,我们很可能会将多个商品放入同一个抽屉(购物篮)中,这就是抽屉原理最不利原则的体现。

在这种情况下,我们需要注意合理分配商品,避免出现商品叠加或挤压的情况,确保购物篮中的商品不会因为受力而损坏。

综上所述,抽屉原理在数学、计算机科学和实际生活中都有着重要的应用,但同时也存在着抽屉原理最不利原则的影响。

抽屉原理题库学生版

抽屉原理题库学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3.能够构造抽屉进行解题;4.利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -p p ,结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题 知识精讲知识点拨教学目标8-2抽屉原理(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

抽屉原理

抽屉原理

【2019小升初奥数知识点整合】抽屉原理
2019年小升初考试需要提前准备,数学网小学频道将陆续整理小升初备考辅导指导及练习题,供广大小升初考生学习备考使用。

请大家关注数学网小学频道,预祝大家取得理想好成绩。

【2019小升初奥数知识点整合】抽屉原理
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)把元素放入(或取出)抽屉; (3)说明理由,得出结论。
例1 育才小学有367个1999年出生的学生,那么其中至少 有几个学生的生日是同一天的? 解: 由于1999年是润年,全年共有366天,可以看作 366个“抽屉”, 把367个1999年出生的学生看作367个“元素”。 367个“元素”放进366个“抽屉”中,至少有一个 “抽屉”中放有2个或更多的“元素”。 这说明至少有2个学生的生日是同一天的。
答:他至少要取12个球才能保证至少有4个球的颜色相同。
n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。 抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那 么至少有一个抽屉中要放(k+1)个或更多的元素。 通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉 要放(k+1)个或更多的元素。
【解题思路和方法】(1)改造抽屉,指出元素;
例2:据说人的头发不超过20万跟,如果陕西省有3645万人,根据
这些数据,你知道陕西省至少有多少人头发根数一样多吗?
解 : 方法:按分布层层计算。 人的头发不超过20万根,可看作20万个“抽屉”, 3645万人可看作3645万个“元素”, 把3645万个“元素”放到20万个“抽屉”中,得到 3645÷20=182……5 根据抽屉原则的推广规律,可知 k+1=183 答:陕西省至少有183人的头发根数一样多。
例3:一个袋子里有一些球,这些球仅只有颜色不同。其 中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼 睛从中取出若干个,试问他至少要取多少个球,才能保 证至少有4个球颜色相同? 解 : 方法:按分布计算。 把四种颜色的球的总数(3+3+3+2)=11 看作11个“抽 屉”, 那么,至少要取(11+1)个球才能保证至少有4个球的 颜色相同。
二十七、抽屉原则问题
【含义】把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把
2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹 果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个 抽屉中放了2只或2只以上的苹果。这就是数学中果把n+1个物体(也叫元素)放到
相关文档
最新文档