人教版七年级数学代入消元法教学设计

合集下载

人教版数学七年级下册8.2.1用代入消元法解方程组教学设计

人教版数学七年级下册8.2.1用代入消元法解方程组教学设计
1.完成课后习题8.2.1中的第1、2、3题,要求学生在解题过程中,清晰地展示代入消元法的步骤,确保计算准确。
题目如下:
1.用பைடு நூலகம்入消元法求解以下方程组:
2x + 5y = 16
3x - 2y = 11
2.某商店举行优惠活动,购买甲商品每满100元,赠送乙商品30元。小明购买甲商品花了a元,乙商品花了b元,总共花费250元。请用代入消元法求解a和b的值。
3.以下方程组是否可以用代入消元法求解?如果可以,请求解;如果不可以,请说明原因。
x + 3y = 7
2x + 6y = 14
2.结合生活实际,编写一个关于购物的问题,要求至少涉及两个未知数,并用代入消元法求解。鼓励学生在解决问题时,充分发挥创意,将所学知识应用于生活。
3.小组合作:每组选取一道课堂练习中的题目,共同分析解题过程,总结解题技巧。在下次课堂上,每组派代表分享解题心得和经验。
人教版数学七年级下册8.2.1用代入消元法解方程组教学设计
一、教学目标
(一)知识与技能
本节课主要围绕人教版数学七年级下册8.2.1节“用代入消元法解方程组”展开,通过本节课的学习,使学生能够:
1.理解代入消元法的概念及其在解二元一次方程组中的应用;
2.掌握代入消元法的步骤,能够运用代入消元法解决实际问题;
1.代入消元法适用于系数相同的二元一次方程组;
2.代入消元法的步骤要清晰,计算过程要仔细;
3.在解决实际问题时,要善于将问题转化为数学方程组,运用代入消元法求解;
4.学生在解题过程中,要注重团队合作,相互学习,提高解题能力。
五、作业布置
为了巩固本节课所学内容,检验学生对代入消元法的掌握程度,我设计了以下作业:

人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例

人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一次方程组,引导学生发现代入消元法的原理。例如,通过观察方程组,让学生发现其中一个方程可以表示成另一个方程的函数形式,从而引出代入消元法。
2.教师讲解代入消元法的步骤和技巧,让学生理解并掌握解题方法。例如,讲解如何选择合适的方程进行代入,如何化简方程,如何求解未知数等。
3.教师对学生的学习情况进行评价,给予肯定和鼓励。例如,对学生在解决问题过程中的表现进行表扬,增强学生的自信心。
(五)作业小结
1.教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。例如,提供一些综合性的练习题,让学生在解决实际问题的过程中,运用代入消元法。
2.教师要求学生在作业中反思学习过程,总结经验教训。例如,让学生在作业中写一篇反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施。
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一、案例背景
在我国基础教育课程改革的大背景下,人教版七年级数学教材第八章第二节《代入消元法解二元一次方程组》的教学显得尤为重要。这一节内容是学生继一元一次方程之后,首次接触二元一次方程组,是培养学生逻辑思维、抽象思维的关键时期。同时,代入消元法是解决二元一次方程组的常用方法之一,对于学生掌握解方程组的技巧,培养解决实际问题的能力具有重要意义。
4.反思与评价培养学生的自我学习能力:本节课教师在课后引导学生进行反思,总结经验教训。通过让学生写反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施,培养学生自我学习的能力。
5.作业小结巩固知识:本节课教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。同时,教师要求学生在作业中反思学习过程,总结经验教训。这种作业小结的方式既巩固了所学知识,又提高了学生的自我学习能力。

代入消元法解方程教学设计

代入消元法解方程教学设计

代入消元法解方程教学设计1. 教学目标本课程旨在使学生掌握代入消元法解一元二次方程及多元线性方程组的方法,提高学生的数学运算和推理能力,培养学生的逻辑思维和解决问题的能力。

2. 教学内容2.1 一元二次方程的代入消元法•了解一元二次方程及其基本概念•掌握代入消元法解一元二次方程的步骤和方法•通过练习掌握代入消元法的应用和技巧2.2 多元线性方程组的代入消元法•了解多元线性方程组及其基本概念•掌握代入消元法解多元线性方程组的步骤和方法•通过练习掌握代入消元法的应用和技巧3. 教学过程3.1 一元二次方程的代入消元法1.引入一元二次方程及其基本概念,引导学生探究解法的思路和方法。

2.通过例题演示代入消元法的步骤和方法,引导学生理解及掌握该方法的应用。

3.练习一元二次方程的代入消元法,从简单到复杂的计算训练帮助学生熟练使用该方法。

4.综合应用,引导学生动手解决复杂的实际问题,提高解决问题的能力。

3.2 多元线性方程组的代入消元法1.引入多元线性方程组及其基本概念,通过例题演示代入消元法的步骤和方法,引导学生掌握该方法的应用和技巧。

2.练习多元线性方程组的代入消元法,从简单到复杂的计算训练帮助学生熟练使用该方法。

3.综合应用,引导学生动手解决实际问题,提高解决问题的能力。

4. 教学评价通过课堂练习和作业考核,及时对学生的学习情况进行评价,及时调整教学进度和教学方法。

通过小组演练或课堂展示,评价学生的合作能力和创新能力。

同时通过作业和期末考试对整堂课的教学效果进行总结评估。

5. 教学参考资料•《高等数学》•《线性代数及其应用》•《初中数学常用公式手册》•相关网站和视频资源。

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)
-难点三:对比代入消元法和换元消元法,通过具体的例子让学生明白两者适用的场景,如代入消元法适用于方程组中某个方程已经解出一个变量时,而换元消元法则适用于系数较复杂的情况。
-难点四:针对实际问题,如“小明和小华一起去书店,小明比小华多走了一段路,已知小明的速度是小华的两倍,两人一共用了30分钟,问小明和小华各走了多少时间?”需要指导学生如何建立方程组模型,并应用代入消元法求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二元一次方程组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生逻辑推理能力,通过代入消元法解二元一次方程组的实践,让学生理解数学问题的解决过程,提高他们分析问题和解决问题的能力;
2.增强学生数学运算能力,熟练掌握代入消元法的运算步骤,培养学生的运算准确性和效率;
3.激发学生数学建模思维,将现实生活中的问题转化为数学模型,通过代入消元法求解,使学生体会数学的应用价值;
2.教学难点
-难点一:选择适当的方程进行代入,特别是当方程组中方程的系数较复杂时,如何选择简化的方程;
-难点二:在代入过程中,正确处理变量间的替换关系,避免计算错误;
-难点三:理解代入消元法与换元消元法的区别和联系,以及在不同问题中如何选择合适的方法;
-难点四:将实际问题转化为方程组模型,并应用代入消元法求解。
此外,我也在思考如何更好地处理教学难点。在今后的教学中,我可能会引入更多的实际案例,让学生在不同的情境中应用代入消元法,通过反复的实践,加深对难点知识的理解。

《代入消元法》教学设计【初中数学人教版七年级下册】

《代入消元法》教学设计【初中数学人教版七年级下册】

《代⼊消元法》教学设计【初中数学⼈教版七年级下册】第⼋章⼆元⼀次⽅程组8.2 消元——解⼆元⼀次⽅程组代⼊消元法这节课的主要内容是⽤代⼊消元法解⼆元⼀次⽅程组,本节的知识是反映客观世界数量关系的有效模型,不仅能培养学⽣分析问题和解决问题能⼒的重要内容,也为今后学⽣学习三元⼀次⽅程组埋下伏笔.1.会⽤代⼊消元法解⼆元⼀次⽅程组.2.初步体会解⼆元⼀次⽅程组的基本思想――“消元”.【教学重点】⽤代⼊消元法解⼆元⼀次⽅程组.【教学难点】探索如何⽤代⼊法将“⼆元”转化为“⼀元”的消元过程.师:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列⽅程组10216x yx y+=+=①②表⽰本章引⾔中问题的数量关系.如果只设⼀个未知数:胜x场,那么这个问题能⽤⼀元⼀次⽅程来解决吗?(抛出问题引发思考)师⽣活动:教师引出本节课内容,我们在上节课列出了⽅程组,并通过列表找公共解的办法◆教材分析◆教学⽬标◆教学重难点◆教学过程得到了这个⽅程组的解,显然这样的⽅法需要⼀个个尝试,有些⿇烦,所以这节课我们就来探究如何解⼆元⼀次⽅程组.⼆、探究新知⽣:……2x+(10-x)=16师:思考⼀下,上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程有什么关系?(让学⽣⽐较①与②之间的关系,y ⽤x 表⽰,感受换元思想在消元中的作⽤)师:那么怎样求解⼆元⼀次⽅程组呢?上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程的关系⼤家⼀定有了深刻的认识.下⾯我们来学习如何利⽤“代⼊消元”法解⼆元⼀次⽅程组.师⽣活动:通过对实际问题的分析,认识⽅程组中的两个⽅程中的y 都是这个队负的场数,具有相同的实际意义.因此可以由⼀个⽅程得到y 的表达式,并把它代⼊另⼀个⽅程,从⽽把⼆元⼀次⽅程组转化为⼀元⼀次⽅程.先求出⼀个未知数,再求另⼀个未知数.教师总结:这种将未知数的个数由多化少、逐⼀解决的思想,叫做消元思想.三、应⽤新知师:⾸先请⼤家花3分钟预习⼀下例1,学习如何⽤代⼊法解⼆元⼀次⽅程组.(预留时间)师:哪位同学把你学习到的⽅法与⼤家分享⼀下?⽣:……(让学⽣充分的表达⾃⼰的观点)教师总结并板书演⽰:解:由①,得x=y+3 ①把①代⼊①,得3(3)814y y +-=解这个⽅程,得y=-1把y=-1代⼊①,得x=2所以这个⽅程组的解是21x y =??=-? 例2 根据市场调查,某种消毒液的⼤瓶装(500g )和⼩瓶装(250g )两种产品的销售数量(按瓶计算)⽐为2:5.某⼚每天⽣产这种消毒液22.5t ,这些消毒液应该分装⼤、⼩瓶两种产品各多少瓶?(幻灯⽚出⽰问题)师:请同学们分析⼀下这个问题.并思考这个问题中有哪些重要的关系.这些关系对你有什么启发?⽣:……师⽣共同总结:问题中包含两个条件:①⼤瓶数:⼩瓶数=2:5②⼤瓶所装消毒液+⼩瓶所装消毒液=总⽣产量.通过这两组关系我们可以知道由两个未知得量,可以分别⽤字母设出来列⼀个⼆元⼀次⽅程组.师:那么这个问题得步骤该如何完善呢?由哪位同学能⾛上讲台,在⿊板上演⽰⼀下你得解题过程呢?(对学⽣得每⼀个步骤给与相应评价)教师出⽰过程:解:设这些消毒液应该分装x ⼤瓶、y ⼩瓶.根据⼤、⼩瓶数的⽐,以及消毒液分装量与总⽣产量的数量关系,得52 50025022500000 x y x y ?=??+=??①②由①,得52y x = ③把③代⼊②,得5500250225000002x x +?= 解这个⽅程,得20000x =把20000x =代⼊③,得50000y =所以这个⽅程组的解是2000050000x y =??=?答:这些消毒液应该分装20000⼤瓶和50000⼩瓶⿎励同学们提出不同得解题⽅法,例如⽤y 表⽰x 消去x.若没有同学消x ,⽼师可⾃⼰提出来让学⽣思考.设计意图:分析解题思路,并对⽐、确定消哪⼀个元计算更简捷.使学⽣再次经历代⼊法解⼆元⼀次⽅程组的过程,让学⽣体会程序化思想.四、巩固练习1.把下列⽅程写成⽤含x 的式⼦表⽰y 的形式:(1)2x -y =3 (2)3x +y -1=0(3)5x-3y = x + y (4)-4x+y = -22.解下列⽅程组:3:215x y x y =??+=?2524x y x y +=??+=?(给学⽣充分得时间分享⾃⼰得练习成果)五、课堂⼩结:本节课你学习到了哪些新的知识?①代⼊法的基本思路(⼆元变⼀元);②主要步骤:将其中的⼀个⽅程中的某个未知数⽤含有另⼀个未知数的代数式表现出来,并代⼊另⼀个⽅程中,从⽽消去⼀个未知数,化⼆元⼀次⽅程组为⼀元⼀次⽅程.略.◆教学反思◆。

七年级数学《用代入消元法解二元一次方程组》教学设计

七年级数学《用代入消元法解二元一次方程组》教学设计

(一) 创设情境 新课引入
公主被困住了城堡了,我们去看一看吧.
(录音)公主的话:同学们好! 我是公主,我被困在城堡里了,你们 来解救我,好吗?首先去搜集小蘑菇,你 们中间有九个小蘑菇,线索就在小蘑菇的 身后. 问:每组的式子有什么特点?
学生参加游戏 并思考回答问 题.
在游戏的同时 复习二元一次 方程,用含一个 未知数的式子 表示另一个未 知数.
一次方程组的
方法.
⑤ 验——口头检验.
教学过程
教师活动
学生活动
设计意图
6
闯关游戏
在教师的
我们已经获得了知识,要想救出公主, 引导下,让学
大家有没有信心?孩子们,加油吧!
生自己选题来
1.已知 3x y 1,用含 x 的式子表示 y , 做,体验竞赛
则 y = ______________.
的乐趣.
另一个未知数; ② 代——消去一个元; ③ 解——分别求出两个未知数的值; ④ 写——写出方程组的解;
通过尝试完成
练习题,及时巩
固新知,规范做 学 生 独 立 完 题格式. 成,黑板演示,
多媒体展示,
教师纠正错误 并规范书写.
总结归纳代入 消元法解二元
体会合并同类 项对化简方程 的作用. 通过对“变、代、 解、写、验”的 归纳,完善解题 步骤.
教学过程
教师活动
5
学生活动
设计意图
问题:
1.可以用含 y 的式子表示 x 吗? 2.把③式代入①式中可以吗?可以求解
吗?为什么要代入③式中呢?
提出问题,让 学生更为透彻
进一步挖掘,提 出问题,突破学 习中的重难点.
3.解出的 x 的值代入①、②两式中可以求 的理解代入消 元法的解二元

代入消元法——解二元一次方程组教学设计

代入消元法——解二元一次方程组教学设计

代入消元法——解二元一次方程组教学设计《代入消元法——解二元一次方程组》教学设计安顺市普定县补郎中学杨兴一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。

教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。

同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。

三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地运用“代入消元法”解方程组。

过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。

情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。

四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。

五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。

六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。

七、教学具准备电脑、投影仪。

八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。

代入消元法教案人教版 一等奖

代入消元法教案人教版 一等奖

代入消元法教案人教版第31篇一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。

教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。

同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。

三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地运用“代入消元法”解方程组。

过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。

情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。

四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。

五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。

六、教学方法:引导发现法、谈话讨论法、练习法、尝试指导法。

七、教学具准备:电脑、投影仪。

八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、已知方程x-2y=8,用含x的式子表示y,则y =_________________,用含y的式子表示x,则x =________________(二)情境导课教师出示情境:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?学生根据情境,思考并练习。

人教版数学七年级下册8.2《代入消元法解二元一次方程组》第一课时教学设计

人教版数学七年级下册8.2《代入消元法解二元一次方程组》第一课时教学设计
教学设想:
1.创设情境,激发兴趣:通过引入生活中的实际问题,让学生感受到数学的实用性和趣味性,激发学生学习代入消元法的兴趣。
2.分步骤教学,循序渐进:将代入消元法的步骤分解,从简单的例子入手,逐步引导学生掌握每个步骤的操作,降低学习难度。
3.小组合作,互动交流:在教学过程中,组织学生进行小组合作,让学生在讨论、交流中相互学习,共同进步。
7.关注个体差异,因材施教:在教学过程中,关注每个学生的掌握情况,对学习困难的学生给予更多关心和指导,确保每个学生都能跟上教学进度。
8.精讲精练,提高效率:在课堂上,教师要以精讲为主,注重启发学生思考,同时设计具有针对性的练习题,提高课堂效率。
9.课后巩固,拓展提升:通过课后作业和拓展任务,巩固所学知识,培养学生自主学习的习惯,提高学生的综合素养。
五、作业布置
为了巩固本节课所学内容,培养学生的自主学习和解决问题的能力,特布置以下作业:
1.请同学们完成课本第8.2节后的练习题1、2、3,并认真检查答案,确保解题过程正确无误。
2.选择一道生活中的实际问题,将其转化为二元一次方程组,并运用代入消元法求解。要求写出详细的解题过程和答案。
3.小组合作,共同探讨以下问题:在代入消元法中,为什么需要先确定一个方程为已知方程,另一个方程为未知方程?请给出理由。
2.提问:我们之前学过解一元一次方程,那么对于这个二元一次方程组,我们应该如何求解呢?从而引出本节课的学习内容——代入消元法解二元一次方程组。
(二)讲授新知,500字
1.教师讲解代入消元法的概念和原理,通过具体的二元一次方程组实例,演示代入消元法的步骤和操作。
2.讲解代入消元法的三个步骤:
a.确定一个方程为已知方程,另一个方程为未知方程。

七年级数学下册《代入消元法解二元一次方程组》教案、教学设计

七年级数学下册《代入消元法解二元一次方程组》教案、教学设计
(3)讲解:详细讲解代入消元法的步骤和原理,通过典型例题演示解题过程,让学生明确代入、替换的方法。
(4)实践:让学生独立完成练习题,巩固代入消元法的应用,教师巡回指导,解答学生的疑问。
(5)总结:引导学生总结代入消元法的解题步骤和注意事项,提高学生的归纳总结能力。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生在小组合作中的表现,了解学生的学习效果。
1.学生对方程组的理解程度,部分学生可能对方程组的结构及解法仍存在疑惑,需要教师耐心引导和讲解。
2.学生在解题过程中可能遇到代入、替换等操作上的困难,教师应适时给予指导和鼓励,帮助学生克服困难,提高解题能力。
3.学生的自主学习能力尚在培养中,需要教师在教学过程中注重引导,激发学生的学习兴趣和探究欲望。
(三)情感态度与价值观
1.培养学生面对数学问题时的积极态度,增强学生解决问题的信心和决心。
2.通过代入消元法的学习,让学生体会到数学的简洁美和逻辑美,提高学生对数学学科的兴趣。
3.引导学生关注生活中的数学问题,认识到数学在现实生活中的重要作用,培养学生的应用意识。
4.培养学生勇于探索、不断创新的精神,激发学生的学习潜能。
(2)教师巡回指导,解答学生的疑问。
(3)学生互相讨论,交流解题方法。
(4)教师对学生的解题过程进行评价,指出存在的问题。
2.设计意图:让学生在练习中巩固代入消元法的应用,提高解题能力。
(五)总结归纳
1.教学内容:引导学生总结本节课所学知识,提高归纳总结能力。
教学过程:
(1)教师提问:本节课我们学习了什么内容?请简要概括。
2.难点:
(1)理解代入消元法的原理,明确代入、替换的步骤。
(2)能够根据方程组的特点选择合适的代入方法,提高解题效率。

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(4)巩固练习:设计不同难度的练习题,让学生独立完成,巩固所学知识。
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。

人教版数学七年级下册 代入消元法(教案与反思)

人教版数学七年级下册 代入消元法(教案与反思)

8.2 消元——解二元一次方程组人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】店铺,不迷路!第1课时代入消元法【知识与技能】1.了解消元法的思想.2.理解什么是代入消元法,能用代入消元法解二元一次方程组.【过程与方法】通过对简单的二元一次方程组化为已学过的一元一次方程的具体事例了解消元的思想,从而进一步学习代入消元法,并用代入消元法由易到难地解二元一次方程组.【情感态度】了解化未知为已知的科学方法,体验由易到难的学习技巧,介绍中国是最先使用二元一次方程组的国家,激发学生的民族自豪感.【教学重点】代入消元法.【教学难点】用代入法解较难的二元一次方程组.一、情境导入,初步认识问题122 240.x yx y+=⎧⎨+=⎩,①②由①得y=_______.③将③代入②得_________________________.这个方程是我们已熟知的一元一次方程,解这个一元一次方程得x=_______,将x=_______代入③得y=_______,从而得到这个方程组的解.问题2对于方程3x-8y=14.如果用含x的代数式表示y,则y=_______,如果用含y的代数式表示x,则x=_______.【教学说明】全班同学独立作业,10分钟后交流成果.在此基础上引入消元思想、代入消元法概念.二、思考探究,获取新知思考1.什么叫消元思想?2.什么叫代入消元法?【归纳结论】1.解方程组时,将未知数的个数由多化少、逐一解决的思想,叫消元思想.2.把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.三、运用新知,深化理解1.(广东广州中考)(1)21 3211 x yx y+=⎧⎨-=⎩,;(2)3484 2348.a ba b+=⎧⎨+=⎩,3.4辆小卡车和5辆大卡车一次可运货27吨;6辆小卡车和10辆大卡车一次共可运货51吨.问小卡车和大卡车每辆车每次各运货多少吨?4.如果m、n满足|m+n+2|+(m-2n+8)2=0,则mn=_________.5.已知关于x,y的方程组2331x yax by-=⎧⎨+=-⎩,和3211233x yax by+=⎧⎨+=⎩,的解相同,求a,b的值.【教学说明】题1、2、3由学生独立完成,再进行交流讨论,让学生体会怎样代入消元更为简便.题4、5可给予提示.【答案】略四、师生互动,课堂小结解二元一次方程组的思想是消元,本节课学习的消元法是代入法.1.布置作业:从教材“习题8.2”中选取.2.完成练习册中本课时的练习.本课时在进行“代入消元法”时,遵循了“由浅入深、循序渐进”的原则,引导并强调学生观察未知数系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程.在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,用含有一个字母的代数式表示另一个字母,教师应该引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要注意把握训练尺度.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

8.2代入消元法解二元一次方程组一、教材分析本课内容是在学生掌握了二元一次方程组的有关概念之后讲授的,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。

学完之后可以帮我们解决一些实际问题,也是为了今后学习函数等知识奠定了基础二、教学目标1、知识与技能(1)会用代入消元法解二元一次方程组;(2)能初步体会解二元一次方程组的基本思想——“消元”2、过程和方法(1)培养学生基本的运算技巧和能力。

(2)培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新问题。

3、情感态度与价值观鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生合作交流意识与探究精神。

三、教学重难点教学重点用代入法来解二元一次方程组。

教学难点代入消元法和化二元为一元的转化思想。

四、教学过程设计1、提出问题、引入新课引例:(问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?)教师提出问题,学生独立完成学生根据已有的经验可以通过列一元一次方程求解后,得出结论。

如此导入新课的意图是,通过提出问题,引发学生思考,体会方程在解决实际问题中作用与价值。

2、探究新知在上述问题中,我们也可以设出两个未知数,列出二元一次方程组,那么怎样求解二元一次方程组呢?教师提出问题后,将学生分成小组讨论。

教师深入学生的讨论中,引导学生观察所列二元一次方程组⎩⎨⎧=+=+40222y x y x 与2x+(22-x)=40的内在联系。

例如,从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上结合板书显示,暴露知识发生过程,(1) y=22-x(2)用22-X 替换方程2X+Y=40中的Y ,即把Y=22-X代入2X+Y=40引导学生回答以下问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。

讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。

知识目标通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。

能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。

情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。

由此感受“划归”思想的广泛应用。

教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。

难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。

疑点是如何“消元”,把“二元”转化为“一元”。

解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。

教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。

教具学具准备:电脑或投影仪。

教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。

如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。

师生互动分析: [1]2x + (22 - x)=40 。

列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。

代入消元法说课稿

代入消元法说课稿

震后, 根据市场调查,某种消毒液有大小盒两种 包装,一大盒和一小盒装22瓶,两大盒和一小盒 装40瓶,大盒与小盒每盒各装多少瓶? 解:设大盒每盒装x 瓶 ,小盒每盒装y瓶, 得 解:设大盒每盒装x瓶, 小盒每盒装(22-x), 得
x + y=22 2x+y=40
2x+(22-x)=40
第一站-----发现之旅
第二站----探究之旅
用代入法解方程组:
X - y = 3,的 示x可以吗? 方程进行转化
3 x - 8 y = 14 . ②
转化 解:由①,得 代入 求解 回代 把③代入①可 x = y + 3 .③ 由某一方程转化的方
以吗?试试看?
把③代入②,得 3(y+3)-8y=14. 方程. 解这个方程,得 把y=-1代入③,得
x = 2. y = 1.
所以这个方程组的解为
x = 2.
y = 1.
细 心 一 点 , 相 信 你 做 得 更 快 更 好
晋级第二关 牛刀小试
若方程5x 2m+n+4y 3m-2n = 9是关于x、y的二元一次 方程,求m 、n 的值.
解:根据已知条件得:
2m + n = 1 ① 3m – 2n = 1 ②
教学重点、难点
重点:用代入消元法解二元一次方程组; 难点:探索如何用代入消元法将“二元”转 化为“一元”的消元过程以及对化归思想的 渗透。

教法、学法


授人以鱼不如授人以渔,针对七年级学生的特点和 本节内容的地位作用,这节课主要采用启发式教学 方法,让学生在自主探究、小组讨论和以及讲练结 合的教学过程中,倡导学生主动参与教学实践活动 ,让学生通过亲自观察、思考、对比和交流合作等 活动,自己去发现二元一次方程组的解法,体会化 归思想,使学生在掌握知识形成技能的同时,培养 学生学习数学的方法,增强学好数学的信心,以及 培养学生合作交流的意识和探究精神。 教学手段:通过多媒体教学,增加知识的形象性, 提高课堂教学效果。

初中数学_代入消元法教学设计学情分析教材分析课后反思

初中数学_代入消元法教学设计学情分析教材分析课后反思

教学设计一、学习目标:1、会用代入法解二元一次方程组。

2、感悟代入消元法所体现的化“未知为已知”的转化思想,渗透消元思想,掌握其解二元一次方程组的一般步骤。

3、经历探索代入消元法解方程组的过程,培养小组合作及主动探索的精神。

二、教学重难点重点:用代入法解二元一次方程组。

难点:选取最佳解题途径和思路,使计算简便准确。

三、教学过程学情分析招贤镇中心初级中学是日照市莒县招贤镇一所农村初中学校,学生数学基础相对比较薄弱,学生的认知水平有限,学习水平参差不齐。

本节课的教学对象是七年级10班的学生,学生已有的知识为:1.一元一次方程及其解的概念等知识;2.在《整式加减》一章的化简求值问题中对“代入”一词的意义与方法已有了一定的理解;3.在第五章的几何推理学习中,“等量代换”的意义已被学生所接纳。

以上学生的已有知识都为本节课的学习做好了知识上的铺垫,上课能够积极配合老师,积极思考回答问题。

效果分析新课标提倡自主、合作、探究的学习方式。

课堂教学是学生学习的主阵地,教师应着力构建民主和谐的课堂,让学生在生动活泼的状态中高效率的学习。

如何才能构建高效课堂,我在本节课的各个教学环节中的体现如下:一、复习回顾部分,让学生感觉今天所学的知识是与学过的知识有关系的,从而增强学生的自信心,就是对二元一次方程(组)等知识的一个回顾,也为本节课的学习做好了知识的准备。

二、新知探索部分,从“篮球积分”情景的一题多解到小组讨论比较二元一次方程组和一元一次方程的关系,让学生自主探索解二元一次方程组中的消元思想,不仅让学生知其然,更知其所以然。

再到师生共同总结消元思想和代入消元法,让学生深刻体会到用代入法求解二元一次方程组有法可循。

通过例题的讲解和大屏幕中展示的小明和小丽的求解方法,让学生能运用更加简便的方法,准确的计算出未知数的解。

让学生感受到程序化的解题方法也有灵活简洁的方法。

三、随堂检测部分,通过设计举手抢答,让学生深刻体会到,用代入法解方程组时,要选择的合适的方程进行变形,能大大简化运算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2解二元一次方程组——代入消元法教学设计教学目标:
1、会用代入消元法解二元一次方程组。

2、对代入消元法的探究,使学生体会代入消元法所体现的化未知为已知的化归思想方法。

3、通过探究解决问题的方法,培养学生合作交流意识与探究精神,进一步体会方程是刻画现实世界的有效数学模型。

教学重、难点:
重点:代入消元法解二元一次方程组。

难点:1、将方程组其中一个方程变形为“y=ax+b”或“x=ay+b”(其中a、b为常数)的形式;2、对代入消元法解二元一次方程组过程的理解。

教法学法:
教法是适时引导学观察、发现、总结归纳,力求让学生独立思考问题和解决问题;充分发挥学生的主体作用;学法是结合本课内容,引导学生通过观察、比较、归纳、自主学习以及合作交流等方法学习。

教学过程:
(一)复习导入
问题:回忆上一节课“篮球联赛”的问题,联赛打的非常精彩,为了算出某个队的胜负分数,我们已经过讨论把二元一次方程组列了出来,如下解法一:
1、解法一:直接设两个未知数,设胜x场,负y场,根据题意列方程组得
x y10
2x y16
教师活动:提出问题“这个方程组的解是什么?如何解方程组?接下来我们将探讨如何解二元一次方程组?”并引出解法二。

学生活动:思考并小声议论。

2、解法二:只设一个未知数,设胜x场,则负(10-x)场,根据题意列方程得
2x+(10-x)=16
(二)探究新知
1、思考:上述的二元一次方程组和一元一次方程有什么关系?
学生活动:组内讨论。

教师活动:提出思考问题后,组织学生分小组讨论。

深入学生的讨论中,引导学生观察,给予学生肯定与鼓励。

师生归纳总结:解法一所设的y相当于解法二中的(10-x),因为问题中y和(10-x)都表示负场数,进一步发现方程组中第一个方程x+y=10可以写成y=10-x,而由于两个方程中的y都表示负的场数,所以我们把第二个方程2x+y=16中的y换为10-x,这个方程就转化为一元一次方程2x+(10-x)=16,解这个方程,得x=6.把x=6代入y=10-x,得y=4.从而得到这个方程组的解。

适时给出概念,感受概念是通过实际生活抽象得出的。

2、消元思想和代入消元法定义:阅读教材91页如下两自然段,认识两个概念。

(1)消元思想的概念。

二元一次方程组一元一次方程
(2)代入消元法,简称代入法的概念。

设计意图:通过阅读来梳理方程组的解法过程以及要明白的数学思想,同时给出数学概念,从而体验自主学习的过程与方法。

(三)知识应用
1、尝试解题,独立完成
例1用代入法解方程组x y 3
3x8y14
解:由①,得x=y+3③变形
把③代入②,得
3(y+3)-8y=14代入
解这个方程,得y=-1求解
把y=-1代入③,得回代
x=2
所以,这个方程组的解是x 2
写解
y 1
设计意图:培养学生自学互动学习的能力,同时通过初次尝试,引起学生对解方程组解题步骤的重视。

师生归纳出代入法解二元一次方程组的一般步骤:
①变形(选择其中一个方程,把它变形为用一个未知数的代数式表示另一个未知数);
②代入(把变形好的方程代入到另一个方程,即可消元);
③求解(解一元一次方程,得一个未知数的值);
④回代(把求得的未知数代入到变形的方程,求出另一个未知数的值);
x
⑤写解(用a
的形式写出方程组的解)。

y b
⑥验算(把方程的解代回原方程组验算)
简记:变形→代入→求解→回代→写解→验算
思考:(1)代入步骤把③代入①可以吗?试试看。

(2)变形步骤把y=-1代入①或②可以吗?
2、课堂检测
检测1:把下列方程改写用含x的式子表示y的形式(1)2x-y=3;(2)
3x+y-1=0
检测2:用代入法解下列方程组
y=2x-3
(1)3x+2y=8(2)
2x-y=5
3x+4y=2
设计意图:第1题降低解题难度,直接出现“y=ax+b”或“x=ay+b”(其中a、b 为常数)的形式,对突破难点来个铺垫;第二题能让学生通过解决问题,总结归纳出解题的一般步骤和解题技巧。

(四)小结,布置作业
小结:1.解二元一次方程组的思想?
2.代入法解二元一次方程组的步骤是什么?
3.用代入法解二元一次方程组的技巧:①变形的技巧;②代入的技巧。

布置作业:1.教材P97页习题8.2复习巩固第1、2题;
2.同步练习册有关题目。

相关文档
最新文档