单端正激开关电源设计
单端正激式高频开关电源设计探讨
单端正激式高频开关电源设计探讨作者:甘焯欣来源:《电子技术与软件工程》2015年第17期摘要电的发明和使用,是世界里程碑式的进步,不仅为生活带来便利,而且促进世界工业化的发展,促使世界朝着文明民主的方向发展。
电源设备是各种电器设备可以正常工作的基础,主要的功能是实现功率传递和电能变换,在当今社会生活,工业发展,军事领域,信息通信,交通设备,仪表仪器得到了越来越多的应用,本文基于单端正激式高频开关电源设计进行论述。
【关键词】单端正激式高频开关电源设计电源技术设计探讨电源技术是其他行业产生和发展的,第二次工业革命被命名为“电气时代”,电气引导了一个新的时代,可见电力的应用在任何行业都处于无法替代的地位。
电源技术服务于各个领域和行业,其本身具有的实用性极强,根据不同行业不同的特点,电源技术的使用也千差万别,但是始终是必不可少的。
1 单端正激式高频开关电源设计历程和方向1.1 单端正激式高频开关电源设计历程上个世纪,电源技术发展不够完善的时候,我国国内高频电源应用领域较少,一般在电视机和个人电脑等设备上才得以利用,线性电源应用较多,随着电源技术的不断发展高频开关电源在工作性能,重量成本等方面都有了较大的改进,而且对工作机器具有积极的促进作用,随之应用范围得到逐步推广。
近年来在军事领域、交通通信、社会生活,工业发展等多个领域都运用开关电源,开关电源在选用材料,变换技术,控制理论等方面的不断创新与进步是其快速发展的根本原因。
1.2 单端正激式高频开关电源设计方向电源的稳定与否直接决定着电子设备是否能够稳定可靠的运行,当今社会使用的电源有开关电源和线性稳压电源,但是开关电源应用的较为广泛,因为线型稳压电源的工作效率较低不能够满足使用者工作和经济快速发展的要求。
相比之下开关电源具有工作性能安全稳定,体积小,质量轻,耗能少等多方面的优势特点,更加符合经济发展的要求,具有强有力的社会竞争优势。
单端正激式高频开关电源在快速发展的时代中也要不断的发展才能够追赶发展的步伐。
基于UC2845单端正激式开关电源设计
158·技术应用基于UC2845单端正激式开关电源设计李 祥 洪 浩 邱力军(西京学院控制工程学院,陕西 西安 710123)摘 要:本文论述一种采用UC2845为控制芯片的开关电源,介绍了正激式变压器的工作原理,并给出相关设计电路。
关键词:UC2845;单端正激;开关电源作者简介:李祥(1990.11-),男,西京学院控制工程学院,研究生。
开关电源是利用现代电力电子技术,控制开关管占空比来维持稳定输出电压的一种电源,其中高频开关式直流稳压电源具有效率高、小型化、输出稳定、高可靠性等突出优点,在工业设备、军工装备、科研仪器、LED照明等领域得到广泛应用。
1 UC2845芯片UC2845是一种高性能单端输出式电流控制型脉宽调制器芯片,为设计人员只需最少的外部器件就能获得成本效益高的方案。
该集成电路的特点包括可微调的振荡器、可精准控制占空比、参考欠压锁定、高效益误差放大器、电流取样比较器和大电流图腾柱式输出,采用固定工作频率脉冲宽度可控调制方式,是驱动功率MOSFET的理想器件。
2 开关电源设计⑴系统参数及电路设计。
本文设计的电路参数为:输入电压为市电220V/50HZ,输出电压为直流5V/40A,工作频率50~100KHz。
整个电路由EMI滤波电路、整流滤波电路、高频变压器、电流检测和反馈补偿电路等几部分组成,其原理图如图1所示:⑵单端正单端正激式变压器原理。
本文采用单端正激式。
所谓单端,是指高频变压器的磁芯仅工作在磁滞回线的一侧,磁同单向变化。
所谓正激,在开关功率管导通时,后级整流二极管D2导通,依同名端工作关系,初级线圈上的电能通过磁芯耦合传输给次级绕组,并通过后级整流二极管传递到输出端;在开关功率管关断时,续流二极管和储能电感构成放电回路,继续对负载供能。
⑶UC2845外围电路设计。
振荡器频率由接在UC2845的4脚上的电阻R20和电容C12决定,振荡器频率为:f=1.72/(R20*C12),假若工作频率小于20KHz进入音频范围,则噪声较大,纹波增大;若开关频率较高时,开关损耗增大,系统效率降低,且电路对EMC的要求增大。
基于单管正激式的高效率开关电源的设计
基于单管正激式的高效率开关电源的设计高效率开关电源是一种能够将输入电源有效地转换为所需输出电源的电力转换装置。
在实际应用中,高效率开关电源已经取代了传统的线性电源,更广泛地应用于各个领域。
一种常见的高效率开关电源设计是基于单管正激式的设计。
该设计方案具有简单、成本低廉、效率高等特点。
该设计方案的核心元件是一只功率MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)。
该MOS管作为开关,能够根据控制信号开启或关闭,从而实现电源的稳定输出。
MOS管的导通损耗较小,能够在高频率下工作,因此能够提高电源的转换效率。
设计方案的第一步是根据需要确定输入电源的范围和输出电源的需求。
通过采集输入电源的直流电压,可以确定MOS管的工作区间,从而选择合适的MOS管。
接下来,设计师需要根据输出电源的需求确定转换电路。
转换电路的核心是开关频率发生器,用于控制MOS管的开关频率。
开关频率的选择需要考虑到输出电源的负载特性和所需的转换效率。
通常情况下,开关频率越高,转换效率越高,但开关损耗也会增加。
在设计过程中,还需要考虑到输出电源的稳定性和电源滤波的问题。
稳压器是非常重要的一个模块,用于确保输出电压的稳定性。
电源滤波是为了减少开关频率带来的干扰和噪音,提高输出电源的纯净度。
最后,设计师需要进行电路模拟和实验验证。
通过电路模拟软件,可以模拟不同工作条件下的电源转换效率和稳定性。
随后,可以通过实验验证电路的性能,并对其进行调整和优化。
总结起来,基于单管正激式的高效率开关电源设计是一项复杂但非常有挑战性的任务。
设计师需要充分了解输入电源和输出电源的需求,合理选择核心元件和电路拓扑,进行模拟和实验验证,最终实现高效率的电源转换。
这种设计方案在各个领域中都有着广泛的应用前景。
单端正激式开关电源_主电路的设计说明
摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。
目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。
本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。
关键词开关电源;正激电路;变压器;脉宽调制;ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment.The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability.KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation目录前言 (1)1. 开关电源的发展及趋势 (2)1.1 开关电源的发展历史 (3)1.2 开关电源的发展趋势 (3)2. 开关电源概念及基本原理 (4)2.1 开关电源概念 (5)2.1.1 基本概念 (5)2.1.2 开关电源通常由六大部分组成 (5)2.2 开关电源各部分电路基本原理 (5)2.2.1 脉宽调制式开关电源的基本原理 (5)2.2.2 TOPSwitch—GX系列TOP244Y芯片 (6)2.2.3 单相二极管整流桥 (7)2.2.4 缓冲电路(吸收电路) (8)2.2.5 正激电路 (9)2.2.6 开关电源中的滤波电路 (11)3. 开关电源变压器的设计 (13)3.1 确定磁心的尺寸 (13)3.2正激式变压器的设计 (15)3.2.1 变压器匝数比的确定 (16)3.3 变压器的绕线技术 (17)3.3.1 绕组符合安全规程 (17)3.3.2 低漏感的绕制方法 (18)3.3.3 变压器紧密耦合的绕制方法 (19)4. 单端正激式开关电源主电路设计 (21)4.1 输入电路设计 (21)4.2 正激电路的设计 (22)4.2.1 复位电路 (22)4.2.2 导向电路和续流电路 (22)4.2.3 抑制阻尼振荡电路 (22)4.3 正激变压器设计 (22)4.4 输出电路的设计 (23)5. 实验结果 (23)5.1 空载试验 (23)5.2 带金属负载试验 (24)4)TOPSwitch漏源极之间电压Uds 波形为 (24)5.3 试验过程出现的问题及解决 (25)结论 (25)致 (26)参考文献 (27)前言本课题主要是研究基于TOPSwitch—GX系列芯片TOP244Y构成的,以脉宽调制PWM为控制方式的高频单端正激式开关电源。
基于UC2845单端正激式开关电源设计
基于UC2845单端正激式开关电源设计作者:李祥洪浩邱力军来源:《无线互联科技》2014年第12期摘要:本文论述一种采用UC2845为控制芯片的开关电源,介绍了正激式变压器的工作原理,并给出相关设计电路。
关键词:UC2845;单端正激;开关电源开关电源是利用现代电力电子技术,控制开关管占空比来维持稳定输出电压的一种电源,其中高频开关式直流稳压电源具有效率高、小型化、输出稳定、高可靠性等突出优点,在工业设备、军工装备、科研仪器、LED照明等领域得到广泛应用。
1 UC2845芯片UC2845是一种高性能单端输出式电流控制型脉宽调制器芯片,为设计人员只需最少的外部器件就能获得成本效益高的方案。
该集成电路的特点包括可微调的振荡器、可精准控制占空比、参考欠压锁定、高效益误差放大器、电流取样比较器和大电流图腾柱式输出,采用固定工作频率脉冲宽度可控调制方式,是驱动功率MOSFET的理想器件。
2 开关电源设计⑴系统参数及电路设计。
本文设计的电路参数为:输入电压为市电220V/50HZ,输出电压为直流5V/40A,工作频率50~100KHz。
整个电路由EMI滤波电路、整流滤波电路、高频变压器、电流检测和反馈补偿电路等几部分组成,其原理图如图1所示:⑵单端正单端正激式变压器原理。
本文采用单端正激式。
所谓单端,是指高频变压器的磁芯仅工作在磁滞回线的一侧,磁同单向变化。
所谓正激,在开关功率管导通时,后级整流二极管D2导通,依同名端工作关系,初级线圈上的电能通过磁芯耦合传输给次级绕组,并通过后级整流二极管传递到输出端;在开关功率管关断时,续流二极管和储能电感构成放电回路,继续对负载供能。
⑶UC2845外围电路设计。
振荡器频率由接在UC2845的4脚上的电阻R20和电容C12决定,振荡器频率为:f=1.72/(R20*C12),假若工作频率小于20KHz进入音频范围,则噪声较大,纹波增大;若开关频率较高时,开关损耗增大,系统效率降低,且电路对EMC的要求增大。
【我是工程师】单端正激双管式开关电源设计之变压器设计
【我是工程师】单端正激双管式开关电源设计之变压器设计(cjhk完成于江苏泰州)最近电源网举行我是工程师这个活动,看到礼品这么丰富,我也忍不住想凑个热闹,准备把以前自己动手设计的一款电源贴出来和大家共享,其中借鉴了一些资料,难免会有一些差错,希望大家能及时指证。
因为有两个月左右的时间,所以我自己的规划是:首先分析单端正激式变换器拓扑结构,接着根据我自己的项目分析单端正激式电路的高频变压器设计方法,再其次是分析使用到的电源管理芯片的特性及功能,同时分析功率MOS的选择与计算功率损耗,最后是各功能电路的分析并贴出原理图。
整个项目大概的时长差不多1个半月。
主要是工作比较忙,只能抽晚上的时间来和大家分享,很多地方分析的会不到位,计算的公式以及原理什么的都只是自己的理解,会有错误,望大家及时指正。
单端正激式开关电源,一般适用与200W以下的开关电源(至于为什么是200W,我没有真正去验证过,找了好些资料,都是这么说的,希望有高手能解释一下为什么不能超过200W)。
我以前见过1200W的单端正激式开关电源,功率模块用的是IGBT,不过效率不高。
常见的单端拓扑结构,通常都是带有去磁绕组。
去磁绕组的圈数和初级绕组的圈数相同,主要目的是为了防止变压器磁饱和。
理想的正激拓扑结构的高频变压器磁芯是不需要有去磁绕组的,因为初级获得的能量都会完全传递到次级。
但是实际的情况是因为磁芯工作的区间的第一象限,每次初级获得能量在传递到次级时,磁芯都会有一些能量的残留,当残留的能量不断累加到达磁芯饱和的阙值点时,变压器发生磁饱和(磁通量为零,电流无穷大,至此变压器就会烧毁)。
为了防止变压器磁饱和,需要加入去磁绕组(也称复位绕组)。
去磁绕组的方向和初级绕组的方向正好相反,每次初级将能量传递到次级时,残余的能量和去磁绕组中的能量方向相反,正好抵消。
至于去磁绕组和初级绕组是如何绕制的,查了几本书,都说是紧密绕制。
在《变压器与电感器设计》(龚绍文翻译)这本书中写道是双线并绕,我想了很长时间没有搞懂。
单管正激式开关电源变压器设计
单管正激式开关电源变压器设计引言:设计目标:设计一个单管正激式开关电源变压器,输入电压为220V,输出电压为12V,输出电流为1A。
主要的设计目标如下:1.高能效:确保转换效率达到90%以上。
2.稳定性:在负载变化范围内,输出电压波动小于5%。
3.安全性:确保设计的变压器具有过载和短路保护功能。
4.成本:在满足以上要求的情况下,尽量降低设计成本。
设计过程:1.计算变压器的变比:由于输入电压为220V,输出电压为12V,所以变压器的变比为220/12=18.332.计算次级电流:输出电流为1A,因此次级电流为1A。
3.计算主磁环的Ae(过剩面积):根据磁环材料的选择,可以得到主磁环的Ae值。
4.计算主磁环的直径D:根据所选择的磁环材料的饱和磁感应强度,可以得到主磁环的直径D。
5.计算次级绕组的匝数:次级绕组的匝数可以根据变比计算得出。
6.计算次级绕组的截面积:由于次级电流和次级绕组匝数已知,可以计算出次级绕组的截面积。
7.选择铁芯截面积:根据所需的变压器功率,可以选择合适的铁芯截面积。
8.计算输出电压波动:根据设计目标的要求,计算负载变化时输出电压的波动范围。
9.设计过载和短路保护:根据设计目标的要求,设计过载和短路保护电路,以确保变压器的安全性。
设计要点:1.磁环材料的选择:磁环材料应具有高饱和磁感应强度和低磁滞损耗,以提高变压器的效率。
2.绕组材料的选择:绕组材料应具有良好的导电性和低电阻,以减小损耗和提高效率。
3.绝缘材料的选择:绝缘材料应具有良好的绝缘性能和耐高温性能,以确保变压器的安全性和可靠性。
4.冷却系统的设计:变压器在工作中会产生一定的热量,需要设计合适的冷却系统,以保持变压器的温度在安全范围内。
总结:单管正激式开关电源变压器是一种常见的电源转换器,设计时需要考虑效率、稳定性、安全性和成本等因素。
在设计过程中,需要计算变压器的变比、次级电流、主磁环的Ae和直径、次级绕组的匝数和截面积,选择合适的铁芯截面积,设计合适的过载和短路保护电路,并选用合适的磁环材料、绕组材料和绝缘材料。
100W单端正激开关电源方案分享之主电路设计
100W 单端正激开关电源方案分享之主电路设计
单端正激式开关电源的设计和研发工作,对于很多工程师来说都是非常熟悉的了,这种开关电源在家电以及加工制造等领域是比较常见的。
本文将会在这里为大家分享一种100W 的单端正激开关电源设计方案,这一开关电源适合小功率应用方向的选择,设计相对简单易操作。
在今天的文章中,将会着重分享这一方案的主电路设计情况。
100W 单端正激开关电源的技术指标
本方案所设计的这种100W 单端正激式开关电源的技术指标要求是,输入市电220V/50HZ,输出12V/4A,工作温度为-40℃~+85℃,工作频率200~250KHZ,隔离电阻大于200MΩ,输入电压范围为交流176V~
260VAC/50HZ。
这一方案中的主要技术要求是输出电压精度维持在±1%左右,输出纹波需要控制在VP-P≤1%,负载调整率(主路)±0.5%。
同时,这一方案还要求输出具有短路保护功能,并能自动恢复。
效率η>82%。
主电路框架设计
下图图1 所示是本方案所选择的单端正激式开关电源电路的典型结构,可以看到,这一电源主要由整流滤波电路、DC/DC 变换电路、开关占空比控制电路以及取样比较电路等模块构成。
在这一单端正激式的开关电源主电路结构中,其前级整流滤波电路的主要作用是被用来消除来自电网的干扰,同时这一电路的设计也能够有效的防止开关电源产生的高频噪声向电网扩散,并将电网输入电压进行整流滤波,为变换器提供直流电压。
变换器是这一单端正激式开关电源的关键部分,在电源正常运行时,变换器可以把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔。
单管正激式开关电源变压器设计
单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。
这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。
以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。
输出功率通常以所需的输出电压和电流来计算,即P=V*I。
2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。
变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。
变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。
3.选择开关管:选择能够承受所需输出功率的开关管。
开关管的选择与其导通电阻、封装、耐压和工作频率相关。
常用的开关管有晶体管和功率MOSFET。
4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。
常见的整流电路包括单相桥式整流器和满桥式整流器。
整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。
5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。
常见的滤波电路包括电容滤波器和电感滤波器。
滤波电路的设计需要考虑所需的输出电压纹波和效率。
6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。
7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。
测试包括输出电压和电流的测量、纹波和效率的评估。
8.进行优化:根据测试结果进行设计的优化。
优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。
上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。
具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。
为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。
单端正激电路的分析和设计
单端正激电路的分析和设计单端正激电路的分析和设计一、工作原理如图:Q1导通时,副边二极管D1导通,D2截止,电网通过变压器T1向负载R L输送能量,此时输出滤波电感L0储存能量。
当Q1截止时,电感的储能通过续流二极管D2向负载释放,D1截止。
N3与二极管D3串联起到去磁复位的作用。
注意:复位绕组对变压器工艺的要求,要求耦合好又要绝缘好。
还有其它形式复位电路如RCD复位电路LCD复位电路输出电压V0= N S ×T ON ×EN P TN S/N P为副边原边匝比T ON/T为导通时间与周期的比,即导通占空比E为原边绕组电压二、正激电路的设计设计前我们要给定电路设计的一些指标参数,总结为:1、开关频率2、输入电压范围:Vin min—Vin max3、输出负载范围:Io min—Io max4、输出电压范围:Vo min—Vo max5、滤波电感电流的纹波: △I L f6、输出电压纹波:△Vo第一步:工作频率的确定工作频率对电源体积以及特性影响很大,必须很好地选择。
工作频率高时,输出滤波器和输出变压器可小型化,过渡响应速度快。
但主开关元件、输出二极管、输出电容以及输出变压器的磁芯,还有电路设计等都受到限制。
另外,还要注意输出变压器绕组匝数。
第二步:最大导通时间(Ton max)的确定。
Ton max=T×Dmax对于正向激励D选为0.4~0.45较适宜。
Dmax是设计电路时的一个重要参数,它对主开关元件,输出二极管的耐压与输出保持时间,输出变压器以及输出滤波器的大小,变换效率等都有很大影响。
第三步:变压器次级输出电压的计算Vs min= (Vo max+V L+V F)×TTon maxVs min:变压器次级最低电压Vo max:最大输出电压V L:电感线圈压降V F:输出侧二极管的正向压降第四步:变压器匝比N的计算N= Vin minVs minVin min: 变压器初级最低电压Vs min:变压器次级最低电压第五步:变压器初级绕组匝数的计算因为作用电压是一个方波,一个导通期间的伏秒值与初级绕组匝数关系N P= Vin min ×Ton max×108(Bm-Br)×SN P:初级绕组匝数Vin min:变压器初级最低电压Ton max:最大导通时间Bm-Br:磁感应强度S:磁芯有效截面积第六步:次级绕组匝数的计算Ns=Np/NN为匝比第七步:输出滤波电感的计算L=Vs min-(V F+Vo max)×T on max △I L△I L为I O的15%—20%另外,功率开关器件电流电压耐量的确定,变压器原副边绕组线径的确定。
SG3525A开关电源设计
6
六 、 原 理 图
1A/400V T1 TIP127 (100V/5A/Darl-L) R1 4K7
15 13
L1 10mH/0.5A
+12
R2 4K7 104 C4
9 1 2 16 11 14
4K7 R6
104 C4
FR107 D4 104 C6 4K7 R8 C5 470/16V
5K1 R10
续流管阴极电位VK 、 电感电流IL、负载电流IO Ipk=2(IO)max VO -VF (tON)min (tOFF)max 储能不足 (VIN)max-VSTA-VO (IO)max t
8.
图五:最大输入 满负荷时的续流波形 图五:最大输入/满负荷时的续流波形
IL
八、电感的绕制
t
1. 2.
铁氧体磁芯或磁罐(高频磁性材料、居里温度~230C)。 漆包线线径:考虑趋肤效应和机械强度,
软启动--上电时输出电压由低到高建立,需要一定时间。 上电时,C2充电需要一定时间,SS端电压由低逐渐变高,输出管的导 通时间逐渐增大,输出电压逐渐升高。
6
七、参数选择
1. 整流管:桥式整流,整流管电流=0.5负 载电流,最大反向电压=输入交流电压 峰值,IN4007(1A/1kV)可以满足要求。
IC VEC PT
VIN+VF
2.
IECO VSTA 滤波电容:RLC=(3~5)T,整流滤波后 直流电压VIN=18.0~28.8V, tON tOFF RL~18.0V/0.5A=36Ohm, T=10mS, 图四: 图四:开关管开关速度与功耗分析 1000uF/35V电解电容可满足要求。最 常用电解电容:1.0、2.2、3.3、4.7、 6.8及相应十百千uF,耐压有6、16、25、 35、50、63、100、120、200、400V。
基于单管正激式的高效率开关电源的设计
基于单管正激式的高效率开关电源的设计高效率开关电源是一种电子电源,通过使用开关器件(如晶体管或MOSFET)以高效地转换输入电源的电压至所需的电压输出。
相比传统的线性电源,开关电源具有更高的效率和更小的体积。
本文将基于单管正激式的高效率开关电源进行设计。
首先,我们需要选择适合的开关器件。
常用的开关管有MOSFET和BJT。
在本设计中,我们选择使用MOSFET。
MOSFET具有较低的导通电阻和较高的开关速度,能够提供更高的效率。
接下来,我们需要设计正激式电源的基本电路。
正激式电源通常由脉宽调制(PWM)控制器、功率开关、功率变压器和输出滤波器等组成。
PWM控制器用于控制功率开关的开关信号,调整输出电压和电流。
常见的PWM控制器有TL494、SG3525等。
选择合适的PWM控制器并根据设计要求进行参数设置。
功率开关是用来控制输入电源与输出负载之间的连接和断开。
在本设计中,我们采用MOSFET作为功率开关,使用PWM控制器的输出信号来控制MOSFET的导通和截止。
功率变压器用于变换输入电压至所需的输出电压。
根据设计参数和要求,选择合适的功率变压器,并计算出合适的变比。
输出滤波器用于滤除开关频率的高频噪声,并平滑输出电压。
常见的输出滤波器包括电容滤波器和电感滤波器。
根据设计要求选择合适的滤波器并进行参数计算。
在设计过程中,需要对电源的输入电压范围、输出电压和电流进行仔细的选择和计算。
同时,需要考虑电源的功率损耗和效率。
通过合理的设计和选择,可以实现高效率的开关电源。
最后,为了确保设计的可靠性和安全性,需要进行电路的模拟和实际验证。
通过使用仿真软件进行模拟和调试,可以预测和解决潜在的问题。
同时,进行实物电路的组装和测试,验证设计的性能和参数是否满足要求。
综上所述,基于单管正激式的高效率开关电源的设计需要选择适合的开关器件、设计基本电路和参数,并进行模拟和实际验证。
通过合理的设计和选择,可以实现高效率、稳定和可靠的开关电源。
NCP1216A作单端正激电路的设计
NCP1216A作单端正激电路的设计单端正激电路是一种常见的电源电路,它能够将交流电转化为直流电并提供给负载使用。
在本文中,我将介绍NCP1216A芯片的单端正激电路的设计。
NCP1216A是一款高性能、在线反馈型开关电源控制器芯片。
它内部集成了一个PWM控制器、一个高压启动电路以及一个多模式工作电流源。
该芯片可广泛应用于笔记本电脑、台式电脑、LCD显示器、散热风扇等电源电路。
在进行电路设计之前,我们需要明确以下几个设计参数:输入电压范围、输出电压、输出电流需求以及负载性质。
假设我们的设计参数如下:输入电压范围为100V~240V,输出电压为12V,输出电流为2A,负载为电阻性负载。
1. 选择输入滤波电容:根据NCP1216A的设计参数,其工作频率为100kHz~130kHz。
我们可以选择适当的输入滤波电容,减小输入电源的纹波,提供稳定的电源电压。
一般来说,输入滤波电容的选择可以参考以下公式:C = I / (f * Vpp),其中C为滤波电容,I为输出电流,f为工作频率,Vpp为输入电源纹波峰峰值。
根据我们的设计参数,可以选择合适的输入滤波电容。
2.选择变压器:变压器是开关电源电路中至关重要的部分,它能够将输入电压通过变压比转化为我们需要的输出电压。
根据输入电压范围和输出电压的要求,我们可以选择合适的变压器。
3.设计PWM控制回路:NCP1216A内部集成了PWM控制器,我们需要根据设计参数来设置PWM控制回路的一些参数。
可以通过计算得到输出电流采样电阻的合适值,然后设置反馈通道增益。
4.选择输出电容:在单端正激电路中,输出电容能够提供平滑的直流电压给负载使用。
根据输出电流的需求和负载要求,可以选择合适的输出电容。
5.设计过压保护、过流保护电路:在电源电路中,过压和过流是常见的故障情况,我们需要设计相应的保护电路以保护电路的安全。
可以选择合适的过压保护芯片和过流保护芯片,并将其与NCP1216A芯片相连。
SG3525A开关电源设计说明
七、参数选择
IC VEC PT
1. 整流管:桥式整流,整流管电流=0.5负 载电流,最大反向电压=输入交流电压 峰值,IN4007(1A/1kV)可以满足要求。
11 OUTB
14
1000u/35V C1
7
4K7 3 R3
10
8
C2 10u/16V
OS C OUT
/SYNC SD
IC1
SG3525
SS
C OMP
9
R7 100K
IN-
1
R9 4K7
IN+
2
Vref
16
4K7 R8
C5 470/16V
R11 3K6
12 GND DI SC
7 5 CT 6 RT
R4
10
8
C2 10u/16V
OS C OUT
/SYNC SD
IC1
SG3525
SS
C OMP
9
R7 100K
IN-
1
R9 4K7
IN+
2
Vref
16
4K7 R8
C5 470/16V
R11 3K6
12 GND DI SC
7 5 CT 6 RT
R4
C3 R5
200
222 15K
图三:由TL494组成降压型开关稳压电源
六 、 原 理 图
1A/400V
L1 10mH/0.5A
T1
TIP1 27 (100V/5A/Darl-L)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《开关电源》作品设计论文设计题目:单端正激开关电源设计学院名称:电子与信息工程学院专业:电气工程及其自动化班级:电气091班姓名:陈永杰学号:*********** ***师:***2012 年 5 月25 日宁波工程学院开关电源论文摘要开关电源非常广泛地应用在通讯、计算机、汽车和消费电子产品等领域。
电源设备用以实现电能变换和功率传递,是各种电子设备正常工作的基础,而高频高效小型开关电源又是开关电源发展的必然趋势,在通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等领域得到了越来越多的广泛应用。
在深入研究分析各种开关电源原理和特点的基础上,根据导师根据项目布置的指标要求,论文设计了一种单端正激式高频单路输出开关电源。
该开关电源的特点是以单端正激式为主拓扑,以电流型控制芯片UC3842和高频变压器为核心,采用EMI滤波器、MOSFET、输出滤波电路、采样反馈通道等主要元器件和电路模块,实现了单路稳定输出。
论文所设计的开关电源输入为市电220V交流,输出电压为10V直流电压,输出最大电流为40A,开关频率为200KHZ。
论文采用面积乘积法(AP),确定了高频变压器的原副边形式以及铁芯材料的选择,设计了输出电路、系统补偿器以及启动电路和EMI滤波电路。
论文设计好后,对所设计的单端正激式高频开关电源电路系统进行全面仿真,仿真结果表明,各项指标符合要求。
而后,做出实物,调试显示:该开关电源的输出电压调整特性、负载调整率、输出纹波、动态响应、温度变化等均满足了项目的指标要求,并且具有良好的过载、短路保护特性和波形特性,各项技术指标能够达到信息平台的供电要求。
关键词:高频开关电源;单端正激式;AP法变压器II宁波工程学院开关电源论文目录摘要 (II)第1章绪论 (1)1.1 开关电源简介 (1)1.2设计要求 (2)1.2.1设计任务 (2)1.2.2设计要求 (2)1.2.3设计内容 (2)第2章开关电源设计 (3)2.1 400W单端正激开关电源总体设计方案 (3)2.2 具体方案设计 (4)2.2.1 主电路设计 (4)2.2.2 基于UC3842控制电路设计 (6)2.2.3 变压器设计 (10)2.2.4 主要开关变换电路设计 (15)2.2.5 辅助电源的设计 (19)第3章元件选取 (22)3.1 控制元件参数 (22)3.2 变压器设计元件参数选择 (23)3.2.1 工频变压器设计参数 (23)3.2.2 高频变压器设计参数 (26)第4章设计总结 (36)参考文献 (37)附录 (38)III宁波工程学院开关电源论文第1章绪论1.1开关电源简介电源[power supply; power source] 向电子设备提供功率的装置。
把其他形式的能转换成电能的装置叫做电源。
发电机能把机械能转换成电能,干电池能把化学能转换成电能.发电机.电池本身并不带电,它的两极分别有正负电荷,由正负电荷产生电压(电流是电荷在电压的作用下定向移动而形成的),电荷导体里本来就有,要产生电流只需要加上电压即可,当电池两极接上导体时为了产生电流而把正负电荷释放出去,当电荷散尽时,也就荷尽流(压)消了.干电池等叫做电源。
通过变压器和整流器,把交流电变成直流电的装置叫做整流电源。
能提供信号的电子设备叫做信号源。
晶体三极管能把前面送来的信号加以放大,又把放大了的信号传送到后面的电路中去。
晶体三极管对后面的电路来说,也可以看作是信号源。
整流电源、信号源有时也叫做电源。
电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。
开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。
1宁波工程学院开关电源论文1.2设计要求1.2.1设计任务设计并制作一个AC-DC-AC-DC高频单端正激开关电源,输入电压为220V,输出稳定电压为10V,最大负载电流有效值为40A。
1.2.2设计要求a.输入电压AC220V(±10电压波动),频率50Hz。
b.输出电压10V(9.5V ~10.5V),输出电流40A(36 ~44A),开关频率200KHzc.主电路可以自己选择单端正激拓扑结构。
d.要求计算出选用管子的参数及变压器和滤波电感电容的设计。
e.报告名称单端正激开关电源设计f.具有过流过压保护电路,具有一定的带负载能力,即在负载范围内输出电压保持稳定不变。
1.2.3设计内容本文详细讨论和分析了单端正激式开关电源和电源管理芯片UC3842的基本原理;重点分析了高频变压器的设计方法并采用面积乘积(AP)法设计了本电源中的高频变压器;全面掌握开关电源的设计流程,设计出一个完整的开关电源电路原理图;采用仿真软件对设计电路进行了全面的仿真验证。
并做出实物,调试测量参数。
2宁波工程学院开关电源论文第2章开关电源设计2.1400W单端正激开关电源总体设计方案图2.1所示是开关电源电路的典型结构,它主要由整流滤波电路、DC/DC变换电路、开关占空比控制电路以及取样比较电路等模块构成。
前级整流滤波电路用来消除来自电网的干扰,同时也防止开关电源产生的高频噪声向电网扩散,并将电网输入电压进行整流滤波,为变换器提供直流电压。
变换器是开关电源的关键部分,它把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔离的作用。
输出整流滤波电路将变换器输出的高频交流电压整流滤波得到需要的直流电压,同时还防止高频噪声对负载的干扰。
取样电路和开关占空比控制电路通过检测输出直流电压,并将其与基准电压比较,进行放大,调制振荡器的脉冲宽度,从而控制变换器以保持输出电压的稳定。
图2.1开关电源典型结构开关电源的基本工作原理:输入交流电(市电)首先经过整流滤波电路形成直流V S,该直流电V。
再经过通、断状态。
如图2.2(a)所示波形V。
控制的电子开关电路后,变换成脉冲状态交流电V0'(图2.2(b)),V0'再经电感、电容等储能元件构成的整流滤波电路平滑后,输出直流3宁波工程学院开关电源论文电V0(图2.2(c))。
显然,输出直流V0的大小取决于脉冲状交流电V0'的有效值大小(成正比),而V0'的有效值又与开关的导通占空比D=T ON/T(其中T=T ON+T OFF)成正比。
此外,通过取样比较电路中的取样电阻R1和R2对输出电压V0取样,并使之与基准电压V REF进行比较,若取样电压高于V REF,则比较电路输出V e减小,取样控制占空比控制电路,使T ON/T下降,从而使V0下降;若取样电压低于V REF,则比较电路输出V e增加,使T ON/T增加,从而使V0增加,这样就可以使开关电源的输出电压V0稳定在一个恒定值上。
图2.2开关电源工作波形2.2具体方案设计2.2.1主电路设计单端正激变换器当Buck电路的开关管T r与续流二极管D之间加入变压器隔离器T1便得到图2-3所示的单端正激变换器主回路电路图。
4宁波工程学院开关电源论文51T 1图2-3 单端正激变换器主回路电路图由于正激式变换器的隔离元件T 1是个典型变压器,因此在变压器副边电路中必有一个整流二极管D 2和一个续流二极管D 3,同时也要注意到变压器原边和副边线圈的同名端有相同的相位。
由于是正激工作方式,在两只二极管后要加一个电感器L 作为能量的储藏及传递元件。
一般电感量大些,使得I p 较小。
变压器T 1的并绕一个绕组P 2与二极管D 1串联后接至V s ,这个绕组主要起去磁复位的作用,同时把漏感存储的能量回传给电源。
单端正激变换器中的高频变压器,其磁通只工作在磁滞回线的第一象限,应遵循磁通复位的原则。
但其变压器不像单端反激变换器的变压器那样有储能作用,因此单端正激变换器的变压器的设计方法与反激式有很大差异。
与脉冲变压器相同,单端变换器的变压器设计必须满足两个条件,一是服从电磁感应定律,二是在开关管导通期间确保磁芯不会饱和。
下面给出计算公式:原边绕组匝数为:881010()on p e e m r E ED N A B fA B B =⨯=⨯∆- 式中E 为原边绕组输入电压值,D 为脉冲占空比,A e 是铁芯截面积(cm 2),B m 是最大磁感应强度(G ),Br 是剩余磁感应强度(G )。
为了确保在开关管导通期间铁芯不发生饱和,磁场强度H 应当满足:m max I 0.4p cN H H l π=≤,宁波工程学院开关电源论文 6 其中m I pon pV t L ,H 是磁场强度,lc 是铁芯平均磁路长度(cm ),Im 是磁化电流(A ),Lp 是原边绕组励磁电感。
2.2.2 基于UC3842控制电路设计2.2.2.1UC3842的简介继MC1394、AN5900之后,人们又开发出功能更完善的它激单端输出驱动集成电路。
其特点是除内部PWM 系统外,还设有多路保护输入和稳定的基准电压发生器,同时还具有小电流启动功能。
典型的UC3842就是其中的代表,它功能完善,性能可靠,目前广泛被各种普通电源采用,还被用于有源因数改善电路和高压升压式开关电源中。
UC3842是美国Unitrode 公司[14]生产的一种高性能单端输出式电流控制型脉宽调制器芯片。
UC3842为8脚双列直插式封装,其内部原理框图如图1所示。
主要由5.0V 基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM 锁存器、高增益E/A 误差放大器和适用于驱动功率MOSFET 的大电流推挽输出电路等构成。
端1为COMP 端;端2为反馈端;端3为电流测定端;端4接Rt 、Ct 确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V ;端8为内部供外用的基准电压5V ,带载能力50mA 。
UC3842是一种电流型开关电源集成控制器,其最大优点是外接元件少,外电路装配简单等。
UC3842的管脚配置如图2-4所示。
UC3842采用固定工作频率脉宽调制方式,输出电压或负载变化时仅调整导通宽度,图2-5给出了芯片内部原理图。
UC3842共八个引脚,各引脚功能如表2-1。
宁波工程学院开关电源论文7 OUTPUTCOMPV FB I SENSE R T/C T Vref VccGND图2-4 UC3842封装外形图2-5 UC3842内部功能框图表2-1 UC3842引脚功能介绍宁波工程学院开关电源论文其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。