FSAE赛车悬架设计(清华)

合集下载

FSAE赛车悬架的优化设计及分析

FSAE赛车悬架的优化设计及分析

2、阻尼:阻尼的大小直接影响赛车的反弹速度和行驶平顺性。阻尼过大, 赛车反弹过快,会影响赛车的操控性和稳定性;阻尼过小,则会导致赛车行驶平 顺性降低。
3、几何形状:悬架的几何形状决定了赛车在不同行驶状态下的性能表现。 例如,多连杆悬架可以提供更好的操控性和稳定性,但需要更高的技术要求和更 复杂的结构设计。
二、大学生方程式赛车悬架的设 计
1、确定悬架类型:大学生方程式赛车通常采用麦弗逊式独立悬架,这种悬 架具有结构简单、重量轻、占用空间小等优点。
2、选择合适的材料:考虑到赛车的轻量化和刚度需求,通常会选择高强度 铝合金作为悬架的主要材料。
3、确定弹簧刚度和阻尼:弹簧刚度需要根据赛车重量和赛道特性进行选择, 而阻尼则需根据驾驶风格和赛道条件进行调整。
1、按照设计图纸进行前期准备
在制造阶段,首先要按照设计图纸进行前期准备,包括加工制造、组装等。 要确保各个零部件的尺寸和性能符合设计要求,同时要对材料和加工工艺进行严 格把关,确保赛车制造的质量。Biblioteka 2、安装动力装置和其他附件
在制造过程中,要安装发动机、变速器等动力装置,并连接相关管路和附件。 在这个过程中,要保证各个零部件之间的连接牢固可靠,同时要确保管路和线路 的布置合理,不会影响赛车的性能和安全性。
二、FSAE赛车悬架设计
FSAE赛车的悬架设计需要充分考虑赛车性能的要求和实际行驶情况。一般来 说,FSAE赛车的悬架设计需要考虑以下几个方面:
1、刚度:悬架的刚度是决定赛车操控性和舒适性的关键因素。刚度过高会 导致赛车过于僵硬,操控性虽然好,但舒适性会降低;刚度过低则会导致赛车过 于软弱,操控性降低,同时也会影响赛车的稳定性。
2、性能测试与评估:在完成悬架设计后,需要进行实际的性能测试和评估。 这包括在实验室进行振动测试、刚度测试等,以及在赛道上进行实际的驾驶测试。 根据测试结果对设计进行相应的调整和优化。

FSAE赛车双横臂式前悬架设计-任务书

FSAE赛车双横臂式前悬架设计-任务书
[14]Haug E J Concurrent engineering tools and technologies for mechanical system design 1993
[15]Milliken, William F./ Milliken, Douglas L.Race Car Vehicle Dynamics Society of Automotive Engineers2005 6
[10]孙丽,何仁,张园园扭杆式双横臂独立悬架改型设计与运动特性分析,江苏大学,淮阴工学院 2009
[12]刘虹,王其东, 基于ADAMS双横臂独立悬架的运动学仿真分析,合肥工业大学学报(自然科学版)2007
[13]王其东,赵韩,李岩,祝少春,汽车双横臂式独立悬架机构运动特性分析,合肥工业大学学报(自然科学版) 2001
二、设计(论文)内容、技术要求(研究方法)
开轮/开舱
使用排量不超过610cc的四冲程汽油机
安装内径20mm的进气限流阀
轴距不小于1525mm
轮辋不小于8英寸
必须能够制动全部四个车轮
悬架行程不小于50.8mm(2英寸)
技术要求(研究方法):
弹性元件选择、导向机构以及减震器等参数确定,及缓冲块、横向稳定杆等设计。
[7]王其东.赵韩.李岩汽车双横臂式独立悬架机构运动特性分析,合肥工业大学学报(自然科学版)2001.06
[8]李军.邢俊文ADAMS实例教程北京:北京理工大学出版社,2002.10-80
[9]叶鸣强,王耘,胡树根 基于虚拟样机技术的双横臂独立前悬架振动仿真分析及参数优化, 浙江大学机械与能源工程学院, 2005
[3]陈家瑞,汽车构造(下册),人民交通出版社,1999,5
[4]喻凡. 郭孔辉 ,车辆悬架的最优与自校正控制. 汽车工程 ,1998 4:193 —200.

FSAE赛车双横臂悬架优化设计

FSAE赛车双横臂悬架优化设计
方法的复杂程度和尽量简化优化设计过程考虑 , 确定采用平方和 加权法来求解前悬架的多 目标优化问题。
3运动学仿 真分析
将激振 台架上下激振位移设置为 4 使 左右车轮 同步 0 mm, 上下跳动 , 计算悬架主要性能参数 的变化规律。 车轮定位参数随车轮跳动的变化曲线 , 图 3 如 所示 。 外倾角变化范 围为( 1 3 - . )8 m。车轮跳动时外倾 一 . ~ 0 6 。 0m 9 2 / 角的变化对车辆的稳态响应特性等有很大 的影响 所 以应 尽量 , 减少车轮相对车身跳 动时的外倾角变化 。 内倾角变化范 围为( .  ̄ .7 。 0i 3 4 4 ) 8 l 3 8 1 ' l m。内倾角影响转 向盘
/ ● j、 hr● _1 +1 1、 1 , “ i i ¨ ● ~ … ¨ w …
中图分类号 :H 6 U 6 . 文献标识码 : T 1 ,4 3 3 3 A
1 『 弓 言
悬架系统是汽车的重要部件 ,双横臂独立悬架是 现代 汽车
定 和 全 有 重 的 响。 性安性着要影
ห้องสมุดไป่ตู้
图 4轮距 随车轮跳动的变化曲线
由上述分析可知 , 外倾 角 、 内倾角 、 前束角 3个参数在悬架
跳动行程范围内变化较大, 需要进行优化。
4多 目标优化设计
多 目标 优化 问题 的求解方法一般有线性加权和法 、 平方和
图 2双横臂悬架仿真模型
加权法 、 序列最优化法和各种遗传 、 进化算法等『, 于各种求解 1基 O l
图 2所示 。
车轮跳动行程/ m m
图 3车轮定位参数随车轮跳动的变化曲线
轮距随车轮跳动的变化曲线 , 如图 4 所示。轮距 的变化范围

FSC大学生方程式汽车悬架设计与研究

FSC大学生方程式汽车悬架设计与研究

FSC大学生方程式赛车悬架设计与研究FSC大学生方程式汽车悬架设计与研究摘要悬架的系统设计与优化,是汽车总体设计中极其重要的一个环节。

本设计以北京理工大学珠海学院FSC车队2020年赛车悬架系统的结构设计为研究目标,主要进行了几个方面的研究工作。

本设计结合赛事规则要求,先确定设计思路,对轮距、轴距、前后悬架立柱等相关部件进行计算与设计,分析车轮定位参数对赛车性能的影响,在确定采用不等长双横臂式悬架结构后,选择弹性元件、减振器、导向机构与其他元件的类型,确保其符合赛车悬架设计的相关原则,并利用CATIA软件对其中重要元件进行三维建模设计,最后,基于ADAMS仿真平台,建立赛车悬架的运动学仿真模型,对其进行仿真分析,得到悬架参数模型后,对初选参数进行结果分析,并利用ADAMS对悬架参数进行优化。

关键词:大学生方程式赛车;悬架系统;结构设计;仿真优化Design and Study of Suspension for a FSC CarAbstractThe design and optimization of suspension system is an essential part of the overall design for a race car. This design takes the suspension system of FSC race car designed by the race team ,which is from Beijing institute of technology, Zhuhai, as the research objective. The the design mainly work in several aspects. This design was based on the competition rules of FSC. The calculation of the wheel track and spread of axles as well as the design of some related components including the front and rear suspension column have been conducted after a clear idea of the design had been made. The next step is the analysis of wheel alignment parameters in order to make out whether it affects the performance of the car. When unequal-length wishbone suspension is selected, the paper chose the type of flexible components, absorder, guide mechanism and other parts, and make sure it in the line with some basic principles. After that, we established 3D model with the help of the software of CATIA. Finally, based on the simulation platform of ADAMS, the kinematics simulation model of racing car suspension was established, and the simulation analysis was carried out. After the suspension parameter model was obtained, the results of primary parameters were used to analyze, and the suspension parameters were optimized by ADAMS.Keywords: FSC Race Car; Suspension system; Design of Structure;Simulate and Optimize目录1绪论 (1)1.1本设计的目的与意义 (1)1.2FSC大赛概况 (1)1.3国内外方程式赛车悬架的研究现状 (2)1.3.1国外研究现状 (2)1.3.2国内研究现状 (3)1.4设计研究的主要内容 (3)1.5本章小结 (4)2悬架系统设计 (5)2.1设计原理与思路 (5)2.2悬架形式的确定 (7)2.3相关部件的设计与选型 (8)2.3.1轮辋与轮胎的选型 (8)2.3.2车轮定位参数 (8)2.3.3 轴荷比、轴距与轮距的设计 (9)2.3.4 悬架导向机构的设计 (10)2.3.5 性能参数的计算 (11)2.3.6 前后悬架立柱的设计 (13)2.3.7 减震器的选型 (13)2.3.8悬架基本参数 (15)2.4章节小结 (16)3 悬架三维建模与装配 (17)3.1悬架零部件的三维建模 (17)3.2悬架的装配 (18)3.3章节小结 (19)4 ADAMS悬架建模与仿真 (20)4.1悬架动力学建模 (20)4.2悬架仿真 (21)4.3仿真结果分析 (23)4.4章节小结 (25)5硬点坐标的优化 (26)5.1仿真结果优化 (26)5.2优化前后结果分析 (28)5.3章节小结 (31)6 结论 (32)参考文献 (33)致谢 (34)附录 (35)附录1英文文献原文 (35)附录2中文翻译 (43)附录3前悬架左耳片CAD二维图 (49)附录4前悬架左立柱CAD二维图 (50)1绪论1.1本设计的目的与意义悬架,作为汽车连接车架与车桥的传力装置,是现代汽车上的重要总成之一。

FSAE赛车双叉臂悬架的优化设计

FSAE赛车双叉臂悬架的优化设计
[7]汽车工程手册编辑委员会. 汽车工程手册( 设 计篇) [M]. 北京: 人民交通出版社,2001: 25
Abstract: To research the handling stability of racing cars,the double wishbone front suspension of FSAE racing car is modeled and simulated based on the software ADAMS ( Automatic Dynamics Analysis of Mechanical System) ; and the suspension structure is modified. Aiming at the change of TOE,the proper hard points are selected to be the variables and optimization is realized based on ADAMS / Insight. The car’s handling stability is improved greatly. The essay is helpful in designing the front suspension of racing car.
44
北京信息科技大学学报
第 26 卷
E 为上摆臂后铰链; 点 F 为上摆臂前铰链; 点 H 为减 震器上支点; 点 L 为减震器下支点; 点 P 为转向节与 主销 DA 的交点; 点 G 为轮心; 点 N 为转向拉杆外侧 球铰中心; 点 M 为转向拉杆内端点。悬架上下摆臂 与车架间有 2 个弹性衬套联结,运动学分析时为转 动铰链,上下摆臂与转向节以球铰相连,减震器下端 与下摆臂以圆柱铰相连,上端与车架以弹性衬套相 连,运动学分析时以万向节铰链相连,转向拉杆与转 向节以球铰相连,内端点以万向节与转向系统相连, 悬架弹簧和减震器同轴线布置。

FSAE赛车双横臂独立悬架系统设计

FSAE赛车双横臂独立悬架系统设计

a n d 3 D mo d e l Wa S b u i l t b y u s i n g CAT I A s o f t wa r e . Ba s e d O i l ANS YS Wo r k b e n c h c o l l a b o r a t i v e s i mu l a t i o n p l a f t o m ,t r h e i f n i t e e l e .
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 3 1 4 2 . 2 0 1 3 . 0 8 . 0 0 5
F S AE赛车双横臂独立悬架系统设计
王 军, 赵 世 明, 陈少 杰, 李文珊 , 康 一帆
( 2 1 0 0 3 1江苏省 南京市 南 京农业大学 工学院) [ 摘要 ] 双横臂 独立悬架对 F S A E赛车行驶平顺性 、 操纵稳 定性和安全性有 着重要影响 。依 据 F S A E大学生 方程 式大赛规则及参 照经验值对 包括轮 距、 轴距在 内的整 车参数 进行确定 。对轮胎、 轮辋 等部件进行选择 。 设 计悬 架立柱、 摇 臂部件 。 并 利用 C A T I A软件进行 三维模 型的 建立。基 于 A N S Y S/ Wo r k b e n c h协 同仿真 平 台. 对在 转向和制动复合 工况下的前 立柱进行 有限元分析 。 分析结果表 明 , 满足材料 的强度要求。 设 计的双 横臂 独立 悬架为车辆悬架 系统 的结构优 化和轻量化设 计提供 了参考 。 [ 关键 词] A E ; 双横臂独立悬架 ; 有限元分析 ; A N s Y s , r k b e n c h [ 中图分类号]U 4 6 3 . 3 3 1 [ 文献标志码 ] A [ 文章 编号 ]1 6 7 3 — 3 1 4 2 ( 2 0 1 3 ) 0 8 — 0 0 1 7 — 0 4

FSAE赛车悬架系统的设计及分析

FSAE赛车悬架系统的设计及分析

De s i g n a n d An a l y s i s o f S u s p e n s i o n S y s t e m o f FS AE Ra c i n g Ca r
Xu Ch e n g q i a n g ,De n g Z h a o w e n, Yu Xi a o we i
[ A b s t r a c t ]A c c o r d i n g t o F S A E c o m p e t i t i o n r u l e s ,t h e t y p e o f s u s p e n s i o n s y s t e m w a s s e l e c t e d a n d d e s i g n e d .T h e b a s i c
结果表 明。 其强度满足要 求, 对 实车的制造提供 了一定的参考。 [ 关键词 ] F S A E赛车 ; 悬架 系统 ; 设计 ; 有 限元分析 [ 中图分类号 ] U 4 6 3 . 3 3 ; U 4 6 7 . 4 [ 文献标 志码 ] A [ 文章编号]1 6 7 3 - 3 1 4 2 ( 2 0 1 4 ) 0 9 - 0 0 1 6 - 0 4
r e f e r e n c e f o r r e a l r a c i n g c a / " ma n u f a c t u r e .
[ K e y w o r d s ] F S A E r a c i n g c a r ; s u s p e n s i o n s y s t e m ; d e s i g n ; i f n i t e e l e m e n t a n a l y s i s
p a r a me t e s r we r e d e t e r mi n e d .On t h i s b a s i s ,t h e hr t e e - d i me n s i o n a l mo d e l o f s u s p e n s i o n s y s t e m wa s b u i l t b y u s i n g CA TI A

FSAE方程式赛车车架设计-任务书

FSAE方程式赛车车架设计-任务书
通过专业综合调研,综合运用汽车设计课程和其他相关的理论与实际知识,掌握汽车设计的一般规律,学习正确的设计思想,培养分析和解决实际问题能力。通过此次FSAE方程式赛车的研究与设计,能有效提高研究车辆的安全性、动力性等,在生活中的汽车很多的性能数据都是通过各种各样的赛车比赛中体现出来的。因此,本课题设计研究内容对于全面提高学生工程设计能力和素质,研究一级方程式赛车车架优化设计等问题具有重要的现实意义和良好的实用意义。
毕业设计(论文)任务书
学生姓名
系部
汽车与交通工程学院
专业、班级
指导教师姓名
职称
教授
从事
专业
车辆工程
是否外聘
■否
题目名称
HQF-600型FASE一级方程式赛车车架优化设计
一、设计目的、意义
全面训练资料查询能力和专业知识综合运用能力,综合训练独立设计能力和工程设计软件的应用能力,提高独立工作能力和素质。
(9)第15周:毕业设计(论文)修改、完善;
(10)第16周:毕业设计(论文)指导教师总审核 ;
(11)第17周:毕业设计(论文)答辩准备及答辩。
五、主要参考资料
[1]陈家瑞.汽车构造(上.下册)[M].北京:人民交通出版社,1994.
[2]余志生.汽车理论[M].北京:机械工业出版社,2000.
[3]王望予.汽车设计(第四版)[M].北京:机械工业出版社,2004.
六、备注
指导教师签字:
年 月 日
教研室主任签字:
年 月 日
[4]刘惟信.汽车设计[M].北京:清华大学出版社,2001.
[5]卞学良.专用汽车结构与设计.机械工业出版社,2008.1版.
[6]王国权、龚国.汽车设计课程设计指导书.机械工业出版社,2010.3版.

FSAE赛车悬架系统设计

FSAE赛车悬架系统设计
小组成员:许珈旗 杜雅鲜 黄业兴
? 设计思路
整车主要框架参数选择和 确定
弹性元件和减震器的 选择
导向机构零部件的设计
车轮定位参数的设计 与优化
? FSC赛车双横臂悬架一般有以下两种设计方案,推杆式双横臂独立 悬架与拉杆式双横臂独立悬架。
? 考虑比赛规则对悬架设计的要求、装配、调试难易程度、可 靠性等因素,最终确定赛车前悬架和后悬架均采用推杆使不 等长双横臂独立悬架。
? 在材料的选择上与车架焊接连接的吊耳采用的是45号钢,与立柱连接的 吊耳采用的是7075铝。
单片吊耳
整体式吊耳
摇臂吊耳
减震器吊耳
四.车轮定位参数的确定和优化
1. 车轮外倾角
? 由于赛车经常需要快速转弯,希望能够最好的发挥轮胎性能,使其在转弯 的过程中,最大的提供侧向力,所以赛车设计常把它设置为负角度,从而 最轮大 跳程动度范利围用内轮,胎其的变附化着量能一力般,控并制且在希1°望以随内轮。跳变化尽量小。在常见的车
前后悬架立柱
? 考此虑其到结赛构车设上计立应柱具需备3连个接方悬面架:、轮轮毂毂轴轴承承安和装制位动及器螺卡栓钳安,装因孔; 悬孔架。球满头足销这3的个安方装面形后式,及方安可装自位由;设制计动其卡形钳状的和安连装接位件及。安但装前 悬架立柱还需特别考虑转向梯形臂的连接, 设计的前后悬架 立柱三维模型,如图所示。
? 因后此悬我上们下初横选臂前长悬分上别横为臂266长mm为,237175mmmm,. 下横臂长为344mm,同理
横臂建模
悬架吊耳的设计
? 在设计悬架吊耳的时候主要考虑三个方面,首先吊耳的强度要满足设计 要求,其次要注重轻量化的优化设计,另外设计的吊耳要有足够的空间 保证悬架在运动过程中,杆端轴承与向心轴承不与吊耳发生干涉的现象。

FSAE赛车悬架系统设计

FSAE赛车悬架系统设计

04
考虑轻量化设计,以降 低车辆能耗和提升动力 性能。
03
FSAE赛车悬架系统设计
设计要求与目标
轻量化
为了提高赛车的加速性能和操 确保赛车在高速行驶和快速转 弯时具有足够的稳定性,避免 侧翻和失控。
舒适性
在保证稳定性的同时,悬架系 统应尽可能提高乘坐舒适性, 减少振动和冲击。
探索更加智能的悬挂系统控 制策略,以适应更加复杂的 赛道和驾驶环境。
鼓励更多的学生参与FSAE赛 车设计和制造,培养更多的 专业人才。
THANKS
感谢观看
悬架几何参数设计
01
几何参数包括主销内倾角、主销外倾角、前束角和后倾角等,对车辆 操控性能和行驶稳定性有直接影响。
02
根据赛车性能需求和赛道特点,调整这些参数以优化车辆操控性能。
03
参数调整需考虑车辆在不同驾驶模式下的表现,如赛道模式、雨天模 式等。
04
通过仿真分析和实际测试验证参数设计的有效性,并进行必要的优化 和改进。
FSAE赛车悬架系统应用现状
赛车运动中,悬架系统是至关重要的部分,它直接影响到车辆的操控性能和行驶 稳定性。FSAE赛车悬架系统在设计上需要充分考虑赛车的性能要求和比赛环境 。
目前,FSAE赛车悬架系统主要采用独立悬挂形式,这种形式可以更好地适应赛 道变化,提高车辆操控性能。同时,为了减轻车身重量和提高响应速度,FSAE 赛车悬架系统通常采用轻量化材料和高性能减震器。
减震器与弹簧设计
减震器用于吸收地面传给 车轮的冲击,提高乘坐舒 适性和车辆稳定性。
根据赛车的重量分布、驾 驶风格以及赛道特性,选 择合适的减震器和弹簧类 型及规格。
ABCD
弹簧用于支撑车身重量, 并缓冲来自路面的振动。

FSAE赛车悬架系统结构设计

FSAE赛车悬架系统结构设计

构的设计流程,如图 1 所示。
选择轮辋和轮胎
确定轮距和轴距
弹性元件和减振器的选择与计算
导向机构零部件设计
强度校核 图 1 FSAE 赛车悬架结构的设计思路
2 相关部件的选择与设计
2.1 轮辋和轮胎 FSAE 赛事规则要求轮辋最小直径为 203.2 mm
* 基金项目:江苏省道路载运工具新技术应用重点实验室开放基金项目(BM2008206008)
终选取 FOX VAN R 型减振器作为赛车悬架弹性元件,
其模型和实物,如图 4 所示,孔对孔距离 220 mm,最大
压缩量为 71.12 mm。
FOCUS 技术聚焦
虑到不等长臂对轮胎跳动的影响, 希望轮距变化要小 一些,以减小轮胎的磨损程度,提高使用寿命,因此一 般选择上下横臂长度的比值在 0.6 左右。本设计的上下 横臂比值分别为 0.8 和 0.86,三维模型,如图 5 所示。因 FSAE 赛车所选的侧倾中心高度要高于地面,且侧倾中心 高度比较低,所以上下横臂布置在汽车的横向平面内。
江苏省道路载运工具新技术应用重点实验室开放基金项目bm2008206008技术聚焦focus2012年9月8英寸常用的赛车轮辋尺寸为254mm10英寸和mm13英寸如使用技术聚焦focus2012年9月8英寸常用的赛车轮辋尺寸为254mm10英寸和mm13英寸如使用254mm10英寸轮辋将可能导致转向系统的转向立柱布置困难造成悬架上下a臂的受力情况复杂此处文献1选用mm13英寸的轮辋
图 4 FSAE 赛车悬架减振器模型及实物图
3.2 悬架导向机构的设计 导向机构不仅要承受来自悬架的各种力和力矩,
而且还应具有导向作用, 使车轮在汽车不同运行工况 下能按照一定的轨迹运动。 因此导向机构的设计主要 是确定机构参数和上下横臂的布置方案。

FSAE赛车双横臂悬架优化设计

FSAE赛车双横臂悬架优化设计

@@[1]陈启武.香菇与姬松茸[M].贵阳:贵州科技出版社,2003:19-20.@@[2]陈义厚,李定国.稻草水洗撕裂机的研制[J].机械设计与制造,2004 (2):112-113.@@[3]沈再春.农产品加工机械与设备[M].北京:中国农业出版社,1999:45- 48.@@[4]刘德军.农作物秸秆丝化加工特点及机理分析[J].农机化研究,2004 (7):58-60.@@[5]郭艳.盘刀式切碎器刀刃曲线对切割能耗的影响[J].吉林农大学报, 2003(2):38-39.@@[6]姚维祯.畜牧机械[M].北京:中国农业出版社,1996:83-91.FSAE赛车双横臂悬架优化设计1001-3997(2011 ) 10-0120-03吴健瑜罗玉涛黄向东华南理工大学广东省汽车工程重点实验室,广州510640Optimization of double-wishbone independent suspension for FSAE racing car WU Jian-yuLUO Yu-tao HUANG Xiang-dong [摘 要]利用ADAMS/Car模块建立大学生方程式赛车(FSAE)双横臂独立悬架仿真模型;对模型进行运动学仿真,对表征悬架运动学性能的参数进行分析以确定优化目标;利用ADA MS/Insight模块通过设定设计变量、综合目标函数和约束条件进行多目标优化设计;根据优化结果修改悬架的运动学仿真模型,再次进行仿真分析,并比较优化前和优化后悬架的综合性能;仿真结果表明,优化后的悬架综合性能得到明显提高,证明了多目标优化设计方法的有效性和正确性。

FSAE赛车;双横臂独立悬架;建模仿真;优化设计TH 16; U463.3 A2010-12-21中央高校基本科研业务费专项资金资助( 2009ZZ0029)万方数据万方数据@@[1]余志生.汽车理论[M].北京:机械工业出版社,2002.@@[2]刘虹,王其东.基于ADAMS双横臂独立悬架的运动学仿真分析[J].合 肥工业大学学报,2007,30(1 ):57-59.@@[3]褚志刚,邓兆祥,胡玉梅,等.汽车前轮定位参数优化设计[J].重庆大 学学报,2003,26(2 ):87-89.@@[4]何耀华,闵斌云.基于ADAMS的双横臂独立悬架的优化设计[J].拖拉 机与农用运输车,2006,33(6):73-74.@@[5]于海峰,于学兵.基于ADAMS的双横臂独立悬架优化仿真分析[J].机 械设计与制造,2007( 10):56-58.@@[6]宋传学,蔡章林.基于ADAMS/CAR的双横臂独立悬架建模与仿真[J]. 吉林大学学报,2004,34(4):554-558.@@[7]李文君,蒋永林,高树新,等.双横臂独立悬架空间运动学分析[J].汽车 工程,2006,28(6 ):529,558-560.@@[8]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.@@[9]吕振华,常放,杨道华,等.利用ADAMS对双横臂独立悬架进行仿真 分析[J].汽车科技,2005(5):7-8.@@[10]杨荣山.轿车底盘平台开发中多目标优化理论的研究及应用[D].广 州:华南理工大学,2009.@@[ 11 ] Lynn Alfred,Smid Edzko,et al.Modeling hydraulic regenerative hybrid  vehicles using AMESim and Matlah/Simulink[J].The International Soci ety for Optical Engineering, 2005( 5805 ): 24-40.万方数据。

车辆毕业设计fsae方程式赛车车架设计(全套cad图纸)

车辆毕业设计fsae方程式赛车车架设计(全套cad图纸)
I
黑龙江工程学院本科生毕业设计
ABSTRACT
Formula SAE 1980 competition held in the first race in the United States, now is the student members of the Society of Automotive Engineers held an international event, whose purpose and designed using the Zheliang and manufactured race cars. For the purposes of this competition is to allow students to wear barrier for amateur drivers speed development and fabrication of a prototype vehicle, the original driving should have had the capacity to small batch product ion and prototype cars cost less than 25,000 dollars. The main competition includes three basic elements, namely: engineering design, cost control and static evaluation, a separate dynamic performance testing, durability testing high-performance Formula SAE competiti ons are usually the main participants from universities a convoy of students. Now in the United States, Europe and Australia will host an annual Formula SAE competition. In order to promote the national auto industry development, China started in 2010 to organize the event. This design is therefore to start, this design is mainly starting from the structure of the frame in order to allow the frame to match the car's stiffness and strength with the design and analysis, the design of the vehicle made a layout, determine the center of gravity position. And then design their own out of the use of three different frame structures Proe model, then three trailers into ansys structural analysis software for static and time frame roll static analysis, by comparing the optimized results will optimize the modal analysis of the frame. Since the frame is a simple fact to see is more complicated, not only through the analysis ansys software to meet design requirements, and shorten the design cycle. The optimal design by the Chinese FSAE car frame is designed to be more perfect, while a lot of data by race for the nation through the automotive industry can provide many important data, and further make the national car more secure and practical.

FSAE电动赛车前悬架结构设计与分析【双横臂式悬架】开题报告

FSAE电动赛车前悬架结构设计与分析【双横臂式悬架】开题报告

开题报告况附件:参考文献格式学术期刊作者﹒论文题目﹒期刊名称,出版年份,卷(期):页次如果作者的人数多于3人,则写前三位作者的名字后面加“等”,作者之间以逗号隔开。

例如:[1]李峰,胡征,景苏等. 纳米粒子的控制生长和自组装研究进展. 无机化学学报,2001, 17(3): 315~324[2] J.Y.Li, X.L.Chen,H.Li. Fabrication of zinc oxide nanorods.Journal of Crystal Growth, 2001,233:5~7学术会议论文集作者﹒论文题目﹒文集编者姓名﹒学术会议文集名称,出版地:出版者,出版年份:页次例如:[3] 司宗国,谢去病,王群﹒重子湮没快度关联的研究﹒见赵维勤,高崇寿编﹒第五届高能粒子产生和重离子碰撞理论研讨会文集,北京:中国高等科学技术中心,1996:105 图书著者﹒书名﹒版本﹒出版地:出版者,出版年﹒页次如果该书是第一版则可以略去版次。

例如:[4]韩其智,孙洪洲﹒群论﹒北京:北京大学出版社,1987﹒101预印本作者﹒论文题目﹒预印本编号(出版年份)例如:[5]Xiaofeng Guo and Jianwei Qiu﹒The leading power corrections to the structure functions﹒hep—ph/9810548(1998)学位论文作者﹒论文题目﹒学士(或硕士、博士)学位论文. 出版地:出版者,出版年份例如:[6]陈异. 纳米粒子形貌控制研究. 硕士学位论文. 北京:中国科学院, 2002电子文献主要责任者. 电子文献题名﹒电子文献的出处或可获地址. 发表或更新日期例如:[7] 王明亮. 关于中国学术期刊标准化数据库系统工程的进展. /pub/wml.txt/980810-2.html, 1998-08-16专利专利所有者. 专利名称. 专利国别:专利号,日期.例如:[8] 姜锡洲.一种温热外敷药制备方案. 中国专利:881056073,1989-07-26.。

(完整版)FSAE赛车双横臂式前悬架设计

(完整版)FSAE赛车双横臂式前悬架设计

第1章绪论1.1、FSAE概述1.1.1、背景Formula SAE 赛事由美国汽车工程师协会(the Society of Automotive Engineers 简称SAE)主办。

SAE 是一个拥有超过60000 名会员的世界性的工程协会,致力与海、陆、空各类交通工具的发展进步。

Formula SAE 是一项面对美国汽车工程师学会学生会员组队参与的国际赛事,于1980 年在美国举办了第一届赛事。

比赛的目的是设计、制造一辆小型的高性能赛车。

目前美国、欧洲和澳大利亚每年都会定期举办该项赛事。

比赛由三个主要部分组成:工程设计、成本以及静态评比;多项单独的性能试验;高性能耐久性测试。

Formula SAE 发展的初衷是想创立一个小型的道路赛车比赛,而现在已经发展成为一个拥有大约20 竞赛因素的大型比赛,参与者包括赛车和车队。

Formula SAE 向年轻的工程师们提供了一个参与有意义的综合项目的机会。

由参与的学生负责管理整个项目,包括时间节点的安排,做预算以及成本控制、设计、采购设备、材料、部件以及制造和测试。

Formula SAE 为在传统教室学习中的学生提供了一个现实的工程经历。

Formula SAE 队员在这个过程中将会经受考验,面对挑战,培养创造性思维和实践能力。

出于此项比赛的宗旨,参赛学生们是被一个假象的制造公司雇佣,让他们制造一辆原型车,用于量产前的各项评估。

目标市场就是那些会在周末去参加高速穿障比赛(Autocross)的非专业车手。

因此,这些赛车在加速、制动、和操控性方面要有非常好的表现。

它们要造价低廉、便于维修并且足够可靠。

另外,这些赛车的市场竞争力会因为一些附加因素,比如美观、舒适性和零件的兼容性而得到提升。

制造公司日产能力要达到4 辆,并且原型车的造价要低于25,000 美元。

对于设计团队来说,挑战在于要在一定的时间和一定的资金限制下,设计和制造出最能满足这些目的的原型车。

每一项设计将会与其他的设计一起参与比较和评估从而决出最佳整车。

33 - FSAE赛车悬架设计

33 - FSAE赛车悬架设计
悬架及其簧上质量组成的振动系统的固有频率是影响汽车 行驶平顺性的主要参数之一[3]。
根据比赛规则限定,悬架在坐有车手的情况下可以分别抬起和压下 25.4mm。故设计悬架静挠度 fc1 = 30mm , fc2 = 30mm ,则前后悬架偏频 n1 = 2.876Hz , n2 = 2.876Hz 。此数值适用于较小负升力的 赛车,符合 FSAE 赛车使用要求。
FSAE 赛车悬架设计
袁振(1),尹伟奇(2),刘爽(1) 1.清华大学汽车工程系,2.清华大学物理系
【摘要】本文的目的是完成对清华大学 FSAE 车队 2010 年赛车的悬架设计,为车队以后的工作留下 一份设计和分析思路。首先结合规则要求,确定赛车的偏频,进而计算出包括悬架刚度在内的有关参数, 为更进一步的计算打下基础。之后分析了车轮定位参数对赛车性能的影响,明确了赛车悬架设计的有关基 本原则。通过 ADAMS 软件完成了前悬架的参数模型,并结合整车设计参数,进行仿真分析。利用 ADAMS 软件的优化功能,对悬架参数进行优化。 【关键词】FSAE,悬架设计,CATIA,ADAMS
3 悬架建模与仿真
悬架建模的目的是为了验证已有悬架参数的合理性,针对不够理想的参数进行优化,提高悬架 性能。
3.1 悬架建模
FSAE 双横臂式前悬架的结构如图 1 所示,建立此仿真模型所需的几何定位参数(硬点坐标)通过 参考美国 MPI 大学 2002 年 FSAE 赛车模型参数,力学特性参数(刚度、阻尼等特性)通过选用合适的 模板获得。在建模时抽象出上摆臂、下摆臂、主销、转向节、轮轴等刚体。主销、转向节、轮轴为 一体,上、下摆臂与主销以球铰联接,与副车架以衬套联接,转向节与转向拉杆以万向节铰接联接。
1 =1−1 Kl c1 ct
可求得 Kl = 69.6N / mm,对于一侧悬架 Kl ' = 34.8N / mm 进而可求出减震器弹簧刚度。 悬架的侧倾角刚度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FSAE赛车悬架设计袁振(1),尹伟奇(2),刘爽(1)1.清华大学汽车工程系,2.清华大学物理系【摘要】本文的目的是完成对清华大学FSAE车队2010年赛车的悬架设计,为车队以后的工作留下一份设计和分析思路。

首先结合规则要求,确定赛车的偏频,进而计算出包括悬架刚度在内的有关参数,为更进一步的计算打下基础。

之后分析了车轮定位参数对赛车性能的影响,明确了赛车悬架设计的有关基本原则。

通过ADAMS软件完成了前悬架的参数模型,并结合整车设计参数,进行仿真分析。

利用ADAMS软件的优化功能,对悬架参数进行优化。

【关键词】FSAE,悬架设计,CATIA,ADAMSSuspension Design for FASE RacecarYuan Zhen(1), Yin Weiqi(2), Liu Shuang(1)1. Department of Automotive Engineering, Tsinghua University2.Department of Physics,Tsinghua UniversityAbstract:Tsinghua University FSAE program currently has no rigorous method for designing and analyzing the student-made racecars. This paper is to complete the suspension and to leave them not only a design but an idea of how to design. In suspension design process, I referred the general process. For the first, I combined regulatory requirements and determined the free frequency of the car. And then, I calculated a number of parameters, laying the foundation for the further calculation. For the next, I made it out how wheel alignment parameters will influence the performance of the car, and figured out some basic principles. I completed the parameter model of the front suspension with ADAMS. After that, I started to simulations. But results were not so satisfied. By using ADAMS Insight.,I got a set of ideal results with which the changes of wheel alignment parameters was within the range of experience.Key words: FSAE, Suspension design, CATIA, ADAMS1悬架设计的要求一般汽车悬架设计要求保证汽车具有良好的行驶平顺性,故悬架的固有频率应较低,普通乘用车偏频为0.5-1.5Hz。

对于赛车而言,舒适性则显得不是那重要,所以赛车悬架的偏频要高一些,具有适中负升力的赛车偏频为1.5-2Hz,具有高负升力的赛车,悬架的偏频为3-5Hz[1]。

悬架应该具有合适的减震性能,能快速衰减震动。

悬架应该能够保证赛车具有良好的操纵稳定性,转向时,赛车具有中性的转向特性;车轮跳动时,应不使车轮的定位参数变化过大,转向杆系与悬架导向机构的运动相协调。

赛车制动和加速时保证车身稳定,减小车身俯仰。

赛车在转弯时,侧倾幅度不能太大[2]。

能可靠地传递车身与车轮之间的一切力和力矩,在满足零部件轻的同时还要有足够的强度和寿命。

当然对于赛车,寿命往往只有几个小时近百公里,但是我们制造的FSAE赛车同时需要让车手平时练习,所以寿命还是需要有保障的。

2悬架主要性能参数的确定理论研究和使用经验证明:汽车前后悬架及其簧上质量组成的振动系统的固有频率是影响汽车行驶平顺性的主要参数之一[3]。

根据比赛规则限定,悬架在坐有车手的情况下可以分别抬起和压下25.4mm。

故设计悬架静挠度1c f 30mm=,2c f 30mm=,则前后悬架偏频 1n 2.876Hz =,2n 2.876Hz =。

此数值适用于较小负升力的赛车,符合FSAE 赛车使用要求。

根据上文确定的偏频,可计算出悬架的刚度:2111c m (2n )53794N /m 53.8N /mm=π==轮胎在静止时,径向刚度主要受胎压影响。

设计选用轮胎型号为Hoosier 6x13赛车轮胎,当轮胎气压为2.4Bar 时,轮胎径向刚度为1350磅每英寸,折算为t c 236.5N /mm=。

1可求得l K 69.6N /mm =,对于一侧悬架l K '34.8N /mm =进而可求出减震器弹簧刚度。

悬架的侧倾角刚度2l 'B 32134.810 1.3308343Nm /rad 2=×××=这仅仅是在侧倾角较小时成立,实际上由于悬架杆系铰接点并非刚体,实际的侧倾角刚度要小一些。

3 悬架建模与仿真悬架建模的目的是为了验证已有悬架参数的合理性,针对不够理想的参数进行优化,提高悬架性能。

3.1 悬架建模FSAE 双横臂式前悬架的结构如图1所示,建立此仿真模型所需的几何定位参数(硬点坐标)通过参考美国MPI 大学2002年FSAE 赛车模型参数,力学特性参数(刚度、阻尼等特性)通过选用合适的模板获得。

在建模时抽象出上摆臂、下摆臂、主销、转向节、轮轴等刚体。

主销、转向节、轮轴为一体,上、下摆臂与主销以球铰联接,与副车架以衬套联接,转向节与转向拉杆以万向节铰接联接。

图1 ADAMS建立的赛车悬架3.2 初选参数结果分析赛车悬架静挠度和动挠度都为30mm,考虑一定富余量,来确定激振台的上下激振位移,上激振位移为前车轮上跳极限行程40.0mm,下激振位移为前车轮下跳极限行程40.0mm。

使左右车轮同步上下跳动,仿真分析车轮跳动过程中悬架主要性能参数的变化规律。

以车轮外倾变化规律为例:要求在轮跳过程中外倾角在车轮上跳时向减小的方向变化,-2±0.5°/50mm较为适宜,在下落时朝正值方向变化,变化幅度要尽可能的小。

从图2可知:前外倾角在轮跳过程变化范围为-2.1° 1.8°,基本符合经验取值。

有利于避免在制动时因左右制动力误差造成的直线行驶稳定性变坏和减小外倾角引起的地面对轮胎的侧向力使汽车有跑偏的趋势,同时减少轮胎的磨损。

图2 外倾角变化曲线3.3 悬架参数优化在整车运动过程中,由于路面存在一定不平度,并且由于弯道的存在,车轮和车身之间的相对位置以及车轮和地面的相对位置都将发生改变,这也将造成车轮定位参数的变动。

根据以上仿真结果分析,目前的悬架参数需要进行优化。

利用ADAMS/Insight模块,通过对悬架部分硬点坐标进行改变来达到优化的目的。

针对上下横臂共6个硬点18个坐标值进行迭代运算,每个参数变化的范围是10±mm。

计算量过大。

所以需要首先确定对不同参数对悬架定位参数的影响,从中挑出对影响较大的硬点坐标。

依次改变每个硬点的三个坐标作为单一变量,根据仿真结果判断其对悬架定位参数的影响,如表1。

表1 硬点坐标对定位参数的影响根据所得结果,将这8各参数作为Factors,车轮外倾角、主销后倾角、主销内倾角、侧倾中心高度作为Responses进行优化,表2是利用ADAMS/Insight优化后的参数,其中坐标原点位于左右车轮中心点连线的中点,单位为mm。

3外倾角变化范围缩小至-1.05° 0.75°,变化范围减小了50%。

并且在轮跳过程中外倾角在车轮上跳时向减小的方向变化,在下落时朝正值方向变化。

改善了制动时因左右制动力误差造成的直线行驶稳定性变坏和减小外倾角引起的地面对轮胎的侧向力使汽车有跑偏的趋势,且有利于减少轮胎的磨损。

图3 优化后的外倾角变化曲线4 悬架结构受力分析及强度校核在受力方面,前悬架需要考虑静态时车重、制动时的地面制动力和质心的惯性力引起的前轮负荷加大;后悬架需要考虑静态时的车重、制动、加速时的地面制动力和加速时引起的后轮负荷加大,另外还要考虑弯道行驶时,离心力引起的外侧悬架负荷加大。

静态时,按质量分配,可计算出前后轮垂向载荷,进而计算出前后悬架静态受力。

加速或制动时,最大加速度或最大减速度都是由轮胎的附着系数决定,根据轮胎的特性,可以计算赛车的最大加速度或减速度,得到前后轮纵向载荷;由此加速度引起的负荷转移,需要考虑赛车的重心高度,继而转化为前后轮的垂向载荷变化值。

赛车在弯道行驶,离心力作用于质心,离心力的大小取决于弯道的半径和赛车的速度,也要受车轮附着系数的制约,这里需要对弯道和车速进行估计,算出合理的加速度数值,进而得出车轮横向载荷;根据质心高度,可以计算出内外侧垂向载荷变化值。

根据以上分析结果,校核悬架每一根杆的最大受力情况如表3。

表3 悬架各处最大受力情况前悬架(N ) 后悬架(N )UCA_Front 158 -379 350 UCA_Rear 198 -475 438 LCA_Front 1184 1244 LCA_Rear 1184 1244 Push_Rod 21342256设计在悬架采用美标SAE4130钢管焊接,SAE4130屈服强度为1000MPa ,受力最大的杆件为换向器推杆,受力2256N ,计算管材的横截面积如下222256A mm 2.256mm 1000== 由于钢管材料性能优异,所需横截面积很小,考虑到悬架的刚度,选取钢管规格为0.75inch 0.065inch φ×,换算成国际单位为19.05mm 1.65mm φ×。

5 总结通过对国内外资料的调研,确定了FSAE 赛车悬架的基本形式。

针对规则的要求,确定了赛车悬架的一些基本参数。

通过ADAMS 软件优化设计悬架导向杆系,优化目标是使得车轮定位参数在赛车悬架跳动过程中的变化规律符合经验要求。

最终得到的悬架硬点参数满足设计要求。

最后完成了对赛车悬架导向杆系的受力分析和强度校核。

相关文档
最新文档