【恒心】【揭秘】2015年高考江西省(新课标Ⅰ卷)全省文科前30名数学各题小分得分情况
2015年江西省高考 .doc
2015年江西省高考 文科数学 模拟样卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效.4.考试结束后.将本试卷和答且卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|05}A x x =<<,2{|230}B x x x =-->,则AB =R ðA. (0,3)B. (3,5)C. (1,0)-D.(0,3]2.复数1(i)(0)z a a a a=+∈≠R 且对应的点在复平面内位于A .第一、二象限B .第一、四象限C .第二、四象限D .第二、三象限 3.命题“2,x x x ∀∈≠R ”的否定是A .2,x x x ∀∉≠R B .2,x x x ∀∈=R C . 2,x x x ∃∉≠R D .2,x x x ∃∈=R4.已知函数2()f x x -=,3()tan g x x x =+,那么A. ()()f x g x ⋅是奇函数B. ()()f x g x ⋅是偶函数C. ()()f x g x +是奇函数D. ()()f x g x +是偶函数 5.已知等比数列{}n a 中,2109a a =,则57a a +A. 有最小值6B. 有最大值6C. 有最小值6或最大值-6D.有最大值-6 6.下列程序框图中,则输出的A 的值是A .128B .129C .131D .1347.已知数列{}n a 中,122,8a a ==,数列1{2}n n a a +-是公比为2的等比数列,则下列判断正确的是A. {}n a 是等差数列B. {}n a 是等比数列C. {}2n n a 是等差数列 D. {}2nna 是等比数列 8.已知抛物线:C 24y x =,那么过抛物线C 的焦点,长度为整数且不超过2015的弦的条数是A . 4024B . 4023C .2012D .2015 9.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象A .向右平移3π个长度单位B .向左平移3π个长度单位C .向右平移6π个长度单位D .向左平移6π个长度单位10.已知函数1()ln 2xf x x =-(),若实数x 0满足01188()log sinlog cos88f x ππ>+,则0x 的取值范围是A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞11.已知函数232,31,()1ln ,13x x x f x x x ⎧-+--≤≤⎪=⎨<≤⎪⎩,若()|()|g x ax f x =-的图像与x 轴有3个不同的交点,则实数a 的取值范围是A. ln 31[,)3eB. 1(0,)2eC. 1(0,)eD. ln 31[,)32e12.某几何体三视图如图所示,则该几何体的体积为 A .23 B .1 C .43 D .32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-2正视图侧视图俯视图ABCD A 1B 1C 1第24题为选考题,考生根据要求作答. 二.填空题:本大题共4小题,每小题5分.13. 已知回归直线斜率的估计值为2,样本点的中心为点(4,5),则回归直线的方程为 . 14.已知=a,)k =b ,且a 与b 的夹角为3π,则k = . 15.若变量y x ,满足约束条件1,,3215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则42x yw =⋅的最大值是 .16.对椭圆有结论一:椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,过点2(,0)a P c的直线l交椭圆于,M N 两点,点M 关于x 轴的对称点为'M ,则直线'M N 过点F .类比该结论,对双曲线有结论二,根据结论二知道:双曲线22':13x C y -=的右焦点为F ,过点3(,0)2P 的直线与双曲线'C 右支有两交点,M N ,若点N的坐标是,则在直线NF 与双曲线的另一个交点坐标是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos sin f x a x x b x =+,x R ∈,且()112f π=,()16f π=. (Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)若3()25f α=,(,)3παπ∈-,求sin α的值. 18.某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如下茎叶图(单位:cm ).男队员身高在180cm 以上定义为“高个子”,女队员身高在170cm 以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员.(Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;(Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.19.(本小题满分12分)如图,已知在直三棱柱111ABC A B C -中, 12AB AA ==,3ACB π∠=,点D 是线段BC 的中点.(Ⅰ)求证:1A C ∥平面1AB D ;(Ⅱ)当三棱柱111ABC A B C -的体积最大时,求三棱锥11A AB D -的体积.20.(本小题满分12分)FED CBA已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别是12(1,0),(1,0)F F -,直线l 的方程是4x =,点P 是椭圆C 上动点(不在x 轴上),过点2F 作直线2PF 的垂线交直线l 于点Q ,当1PF 垂直x 轴时,点Q 的坐标是(4,4). (Ⅰ)求椭圆C 的方程;(Ⅱ)判断点P 运动时,直线PQ 与椭圆C 的公共点个数,并证明你的结论. 21.(本小题满分12分) 已知函数ln ()a x bf x x+=(其中0a <),函数()f x 在点(1,(1))f 处的切线过点(3,0). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分, 做答时请写清题号.22.(本小题满分10分)选修41-:几何证明选讲如图,圆内接四边形ABCD 的边BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若21,31==EA ED EB EC ,求ABDC的值; (Ⅱ)若CD EF //,证明:FB FA EF ⋅=2.23.(本小题满分10分)选修44-;坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:24cos 20ρρθ-+=. (Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 24.(本小题满分10分)选修45-:不等式选讲 已知函数()||f x x =,()|4|g x x m =--+ (Ⅰ)解关于x 的不等式[()]20g f x m +->;(Ⅱ)若函数()f x 的图像在函数()g x 图像的上方,求实数m 的取值范围.。
【免费下载】江西省名师点评:2015年高考数学卷——新课标II卷(文数)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档
2015年普通高等学校招生全国统一考试(新课标1卷)文 一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ , 且()3f a =-,则(6)f a -=(A )74- (B )54-(C )34-(D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N 求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.一、D A C C B B B (8)D (9)C (10)A (11)B (12)C 二、填空题(13)6 (14)1 (15)4 (16) 三、 17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分 (II )由(I )知2b =2ac. 因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的. 所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得. 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x = 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为. ……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑),56368 6.8100.6c y d w =-=-⨯=)), 所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y的预报值y 100.6=+), 年利润z 的预报值 z=576.60.24966.32⨯-=) ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x ++).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k+=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x e x x '+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分 (II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时, ()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a na ≥+. ……12分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=,即MN = 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。
江西省2015年高考全省理科前50名学生数学各题小分得分情况
省排名
姓名
学校
1--12题
13--16题
17题
18题
19题
20题
21题
22--24题
总分
60分
20分
12分
12分
12分
12分
12分
10分
150分
1
夏子哲
江西师大附中
55
15
11.5
12
12
12
12
10
139.5
2
汪川
明达培训中心
60
20
12
12
12
12
12
11
10
149
28
傅怀颖
江西师大附中
55
20
12
12
12
12
5
10
138
29
彭宇翀
新余市第四中学
60
20
12
12
12
12
11.5
10
149.5
30
王勃竣
江西师大附中
60
20
12
12
10.5
12
12
10
148.5
31
敖明皓
新余市第四中学
60
15
12
12
11.5
12
12
10
144.5
32
50
20
12
12
12
12
9
10
137
48
伍仕骏
吉安一中
50
20
12
12
12
江西省九江市2015届高三上学期期末考试(一模)数学(文)试题(扫描版)
参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 解:{|2}A x x =≥-,{|3}B x x =< {|23}A B x x ∴=-≤<,故选D.2. 解:2(2)(1)13131(1)(1)222i i i i z i i i i ----====-++- 故选A. 3. 解:443a = 3a ∴=,半焦距c ==e ∴==故选D. 4. 解:222232()2sin cos 2tan 155sin 2=3sin cos tan 117()15ααααααα⨯-===-++-+,故选B. 5. 解:26=16a a ⋅,35+=10a a ,35=16a a∴⋅,35+=10a a ,32a ∴=,58a =6. 解:2sin 1x >,[0,2]x π∈ 5[,]66x ππ∴∈ 16623P π-∴== 故选C.7. 解:1i =时,1()(1)x f x x e =+;2i =时,2()(2)x f x x e =+;3i =时,3()(3)x f x x e =+;…;8i =时,8()(8)x f x x e =+,结束,故选B. +=233k ϕπ∴+即=23k ϕπ+,k Z ∈ ϕπ< =3ϕ∴ 故选C.9. 解:依题意,得实数,x y 满足20200x y x y y a +-≥⎧⎪--≤⎨⎪≤≤⎩,画出可行域如图所示,其中(2,0)A ,(2,)B a a +,(2,)C a a -max 2(2)10z a a ∴=++= 解得2a = 故选B.10. 解:直观图如图所示四棱锥P ABCD -A01602PAB PAD PBD ABC S S S S ∆∆∆∆====⨯=故此棱锥的表面积为 A.11. 解:设11(,)A x y ,22(,)B x y ,3(2,)C x -,则126x +=,解得14x =,1y = 直线AB的方程为2)y x =-,令2x =-,得(2,C --联立方程组282)y x y x ⎧=⎪⎨=-⎪⎩,解得(1,B -,123BF ∴=+=,9BC = 3λ∴=故选D.12. 解:2(1)()x f x x e -+=在[10]-,依题意得log 31log 51a a <⎧⎨>⎩,35a ∴<<,故选C.二、填空题:本大题共4小题,每小题5分,共20分. 13. 解:2(0,3)a b -=-,(3,3)a b +=,(2)()9a b a b ∴-⋅+=-.14. 解:222a b c bc =++ 2221cos 22b c a A bc +-∴==- 23A π∴=设ABC ∆外接圆的半径为R ,则22sin a R A === 1R ∴=1cos sin cos cos 2S B C bc A B C B C ∴+=+=+sin cos )B C B C B C =+=-,故S B +15. 解:如图所示,BE 过球心O ,2DE ∴==1323E ABCD V -∴=⨯=.16. 解:1()20f x x a x '=+-≥在1[2]3,恒成立,即12a x x ≥-+在1[2]3,恒成立max 18()3x x -+= 823a ∴≥ 即43a ≥.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 解:(1)4242n nn S S S +++=+,4228n n n S S S ++∴+=+ 4228n n n n S S S S +++∴-=-+ 43218n n n n a a a a ++++∴+=++………2分数列{}n a 为等差数列,设公差为d 48d ∴= 即2d =………4分 又1=1a 21n a n ∴=-………6分(2)()()111111()212+12212+1n n n b a a n n n n +===--- ………9分111111[(1)()()]2335212+1n T n n ∴=⋅-+-++-- 11(1)22121nn n =-=++………12分 18.解:(1)=450.05+550.15+650.3+750.25+850.1+950.15=71.5x ⨯⨯⨯⨯⨯⨯男 ……2分=450.15+550.10+650.125+750.25+850.325+950.05=71.5x ⨯⨯⨯⨯⨯⨯女………4分从男、女生各自的成绩平均分来看,并不能判断数学成绩与性别有关………5分(2)由频数分布表可知:在抽取的100学生中,“男生组”中的优分有15(人),“女生组”中的优分有15(人),据此可得22⨯列联表如下:………8分 可得()2210015251545 1.7960403070K ⨯⨯-⨯=≈⨯⨯⨯ ………10分因为1.79 2.706<,所以没有90%的把握认为“数学成绩与性别有关”………12分 19. 证明:(1)1λ= .D E ∴分别为AB 和BB '的中点 又AA AB '=,且三棱柱ABC A B C '''—为直三棱柱.∴平行四边形ABB A ''为正方形,DE A B '∴⊥………2分AC BC =,D 为AB 的中点,CD AB ∴⊥,且三棱柱ABC A B C '''—为直三棱柱.CD ∴⊥平面ABB A '' CD A B '∴⊥………4分又CDDE D = A B '∴⊥平面CDE CE Ü平面CDE A B CE '∴⊥………6分(2)设=BE x ,则AD x =,6DB x =-,6B E x '=-.由已知可得C 到面A DE '距离即为ABC ∆的边AB 所对应的高4h ==………8分 ()13A CDE C A DE AA D DBE A B E ABB AV V S S S S h '''''''--∆∆∆∴==---⋅四边形 ()11=[363(6)36]32x x x x h -----⋅ 22(636)3x x =-+22[(3)27]3x =-+(06x <<) ………10分∴当3x =时,即1λ=时,A CDE V '-有最小值为18………12分∴圆心O 到直线00:=2l x x y y +的距离d ==1=<(20016x ≤≤)∴直线00:2l x x y y +=与圆221O x y +=:恒有两个交点…………8分L ==…………10分20016x ≤≤ 207991616x ∴≤+≤L ≤≤…………12分 21. 解:(1)()()()()ab x a x b f x x a b x x--'=-++=………2分 ()0f e '=,a e ≠ b e ∴=………3分(2)由(1)得21()()ln 2f x x a e x ae x =-++,()()()x a x e f x x --'=①当1a e≤时,由()>0f x '得x e >;由()0f x '<得1x e e <<.此时()f x 在1(,)e e 上单调递减,在()e +∞,上单调递增.2211()()ln 022f e e a e e ae e e =-++=-<,242221112()()2(2)(2)(2)()0222f e e a e e ae e e e a e e e e=-++=--≥-->(或当x →+∞时,()0f x >亦可)∴要使得()f x 在1[,)e+∞上有且只有两个零点,则只需2111()ln 2a e f ae e e e e+=-+222(12)2(1)02e e e ae --+=≥,即22122(1+)e a e e -≤…6分 ②当1a e e<<时,由()>0f x '得1x a e <<或x e >;由()0f x '<得a x e <<.此时()f x 在(,)a e 上单调递减,在1(,)a e 和()e +∞,上单调递增. 此时222111()ln ln 0222f a a ae ae a a ae ae e a =--+<--+=-<,∴此时()f x 在[)e +∞,至多只有一个零点,不合题意………9分③当a e >时,由()0f x '>得1x e e <<或>x a ,由()0f x '<得e x a <<,此时()f x 在1(,)e e和()a +∞,上单调递增,在(,)e a 上单调递减,且21()02f e e =-<,∴()f x 在1[,)e+∞至多只有一个零点,不合题意.综上所述,a 的取值范围为2212(]2(1+)e e e --∞,………12分 22. 证明:(1)CD 为O 圆的切线,C 为切点,AB 为O 圆的直径 OC CD ∴⊥……1分又AD CD ⊥ OC AD ∴// OCA CAE ∴∠=∠………3分又OC OA = OAC OCA ∴∠=∠ OAC CAE ∴∠=∠ BC CE ∴=………5分 (2)由弦切角定理可知,FCB OAC ∠=∠ =FCB CAE ∴∠∠四边形ABCE 为圆O 的内接四边形 180ABC CEA ∴∠+∠=………8分 又+=180ABC FBC ∠∠ FBC CEA ∴∠=∠ BCF EAC ∴∆∆∽………10分 23. 解(1)由1x y ⎧=+⎪⎨=⎪⎩,得1x y -=………1分∴直线l 的极坐标方程为:cos sin 1ρθρθ-=(cos cossin sin )144ππθθ-=cos()14πθ+=………3分2sin 1sin θρθ=- 2sin cos θρθ∴= 2cos sin ρθθ∴= 2(cos )sin ρθρθ∴= 即曲线C 的普通方程为2y x =………5分 (2)设00(,)P x y ,200y x =P ∴到直线l的距离d ………8分∴当012x =时,min d = ∴此时11()24P , ∴当P 点为11(,)24时,P 到直线l10分 24. 解:(1)2a = 1(2)()3252(23)1(3)x f x x x x x x ≤⎧⎪∴=---=-<<⎨⎪-≥⎩………1分1()2f x ∴≤-等价于2112x <⎧⎪⎨≤-⎪⎩或152223x x ⎧-≤-⎪⎨⎪<<⎩或3112x ≥⎧⎪⎨-≤-⎪⎩………3分 解得1134x ≤<或3x ≥,所以不等式的解集为11{|}4x x ≥………5分 (2)由不等式性质可知()3(3)()=3f x x x a x x a a =---≤----………8分∴若存在实数x ,使得不等式()f x a ≥成立,则3a a -≥,解得32a ≤∴实数a 的取值范围是3(,]2-∞………10分。
2015年江西全省文科100名
16
临川一中
117 141 141 220 619
17
高安中学
119 141 141 217 618
21
莲塘一中
121 147 145 205 618
20
临川一中
123 149 144 202 618
19
高安中学
117 142 145 213 617
23
万安中学
119 138 149 211 617
35
临川一中
110 148 145 210 613
36
高安中学
113 149 141 209 612
38
南康中学
124 143 136 209 612
37
余江一中
126 122 144 219 611
40
鄱阳县私立实验 137 131 143 200 611
39
上饶中学
122 126 142 221 611
5
临川一中
127 145 144 209 625
6
新建二中(1) 119 137 143 224 623
7
临川一中
118 146 145 214 623
8
新余市第一中学 125 133 137 227 622
10
南昌二中
131 135 140 216 622
9
临川一中
116 144 139 223 622
124 125 138 219 606
86
罗姗
抚州市 明达培训中心 112 142 139 213 606
91
罗天灵 抚州市 临川一中
108 143 138 217 606
93
2015年全国1卷高考文数试题答案解析
2015年全国1卷高考文数试题解析(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5 (B )4 (C )3 (D )2解析:{|32,}{6,8,12,14}{8,14}A B x x n n N ==+∈=I I ,答案选D.(2)已知点A (0,1),B (3,2),向量AC uuu r =(-4,-3),则向量BC uuu r =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4)解析:由(4,3)AC =--u u u r 及点A (0,1)可得点C (-4,-2),则(43,22)(7,4)BC =----=--uuu r ,答案选A.(3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-i (B )-2+i (C )2-i (D )2+i解析:由(z-1)i=i+1可得112i z i i+=+=-,答案选C (4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120解析:由题意可知1,2,3,4,5中只有3,4,5这一组勾股数,3335110C P C ==,答案选C.(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=(A )3 (B )6 (C )9 (D )12解析:抛物线C :y ²=8x 的焦点为(2,0),则椭圆E 22221(0)x y a b a b+=>>中的22122,,4,12,||62c b c e a b AB a a ========,答案故选B.(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
【恒心】【揭秘】2015年高考江西省(新课标Ⅰ卷)全省理科前50名英语各题小分得分情况
汪川
明达培训中心
100
15
10
25
150
28
傅怀颖
江西师大附中
97
13.5
10
25
145.5
3
俞晨露
江西师大附中
96.5
13.5
10
21.5
141.5
29
彭宇翀
新余市第四中学
93.5
15
10
25
143.5
4
席照炜
贵溪一中
100
13.5
10
21.5
145
30
王勃竣
江西师大附中
93.5
15
10
24
142.5
97
15
10
24
146
50
汤林
湘东中学
98
13.5
8
21.5
141
25
肖剑
江西师大附中
93.5
12
10
24.5
140
全省前50名平均
96.41
13.95
9.58
22.13
142.1
26
夏照越
江西师大附中
95
15
10
25
145
得分率
96.41℅
93℅
95.8℅
88.5℅
94.7℅
景德镇一中
98
15
9
19.5
141பைடு நூலகம்5
47
张莫凡
宜春中学
93.5
13.5
10
21
138
22
罗来威
莲塘一中
97
2015高考全国一卷文科数学.docx
数学高考数学试题汇编2015 年高考新课标一卷文科数学一、选择题: 每小题 5 分,共 60 分1. 已知集合 A { x x 3n 2, n N}, B {6,8,10,12,14} ,则集合 A I B 中的元素个数为 (A ) 5(B )4(C )3(D )22.uuuruuur已知点 A(0,1), B(3,2) ,向量 AC ( 4, 3),则向量 BC(A ) ( 7,4)(B ) (7, 4)(C ) ( 1,4)(D ) (1,4)3. 已知复数 z 满足 ( z 1)i 1 i ,则 z( )(A ) 2 i (B ) 2 i (C ) 2 i ( D ) 2 i4. 如果 3 个正数可作为一个直角三角形三条边的边长,则称这3 个数为一组勾股数,从1,2,3,4,5 中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为( )(A )3(B )1(C )1(D )110510205. 已知椭圆 E 的中心为坐标原点,离心率为1,E 的右焦点与抛物线 C : y 28x 的焦点重合,2A, B 是 C 的准线与 E 的两个交点,则 AB(A ) 3 (B ) 6 (C ) 9 (D ) 126. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问 ”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为 8 尺,米堆的高为 5 尺,米堆的体积和堆放的米各位多少?”已知 1 斛米的 体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米有 ( ) (A ) 14斛 (B ) 22 斛 (C ) 36斛 (D ) 66 斛7. 已知 { a n } 是公差为 1 的等差数列, S n 为 { a n } 的前 n 项和,若 S 8 4S 4 ,则 a 10 ()(A )17(B )19(C ) 10(D )12228. 函数 f ( x) cos(x) 的部分图像如图所示,则f (x) 的单调递减区间为()(A ) (k π 1 , k π 3), k Z4 41 3(B ) (2 k π , 2k π ), k Z44(C ) (k1 3), k Z, k44(D ) (2 k1,2 k3), k Z44数学高考数学试题汇编9. 执行右面的程序框图,如果输入的t0.01,则输出的n()开始(A) 5(B) 6(C)10(D) 1210. 已知函数 f ( x)2x 12, x1,且 f (a) 3 ,则 f (6a)输入 t log 2 ( x1), x1( A)4(B)5(C)311 74(D)4S41,n 0, m211.圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图S S m 所示,若该几何体的表面积为 1620 ,则r ( )(A)1(B) 2(C) 4(D) 8m m, n n 1 22rr是S tr2r否输出 n正视图俯视图结束12.设函数 y f ( x) 的图像与 y2x a的图像关于直线y x 对称,且 f ( 2) f ( 4) 1 ,则a( )(A) 1(B)1(C) 2(D) 4二、填空题:本大题共 4 小题 ,每小题 5 分13.数列 a n中a12, a n12a n , S n为a n的前n项和,若 S n126 ,则 n.14.已知函数 f x ax3x 1 的图像在点 1, f 1的处的切线过点 2,7,则 a.x y2015.若 x,y 满足约束条件x 2 y10 ,则z=3x+y的最大值为.2x y2016.已知 P 是双曲线C : x2y2 1 的右焦点,P是C左支上一点, A 0,66,当 APF 周长8最小时,该三角形的面积为.三、解答题:17. (本小题满分 12 分)已知 a,b, c 分别是 ABC 内角 A, B,C 的对边, sin 2 B 2sin Asin C . (I )若 a b ,求 cos B;(II )若 B 90o ,且 a2, 求 ABC 的面积 .18.(本小题满分 12 分)如图四边形 ABCD 为菱形, G 为 AC 与 BD 交点, BE 平面 ABCD ,(I )证明:平面 AEC平面 BED ;E(II )若 ABC 120o , AE EC , 三棱锥 E ACD的体积为6,求该三棱锥的侧面积 .3AGDBC19(. 本小题满分 12 分)某公司为确定下一年度投入某种产品的宣传费, 需了解年宣传费 x (单位:千元)对年销售量(单位: t )和年利润 z (单位:千元)的影响,对近 8 年的宣传费 x i ,和年销售量 y i i 1,2,3,L ,8 的数据作了初步处理,得到下面的散点图及一些统计量的值 .620 ◆600◆◆◆年580◆销◆售 560量 540◆ /t 520◆50048040 42 44 46 48 5034 36 3852 54 56年宣传费(千元)8 8 8 8xyw( x i x)2( w i w)2( x i x)( y i y)(w i w)( y i y)i 1i 1i 1i 146.65636.8289.81.61469108.8表中 w i18x i , ww i8 i 1(I )根据散点图判断,y a bx 与 y c d x ,哪一个宜作为年销售量y 关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(II )根据( I )的判断结果及表中数据,建立y 关于 x 的回归方程;(III )已知这种产品的年利润z 与x, y的关系为 z 0.2 y x ,根据(II)的结果回答下列问题:(i)当年宣传费 x 90 时,年销售量及年利润的预报值时多少?(i i )当年宣传费x为何值时,年利润的预报值最大?附:对于一组数据u1 , v1 ,u2 ,v2 ,L , u n , v n , 其回归线v u 的斜率和截距的最小二乘估计分别为:nμ i (u i u)(v i v)μμ1,βn v βu.(u i u) 2i 122交20. (本小题满分 12 分)已知过点 A 1,0 且斜率为 k 的直线 l 与圆 C: x 2y 31于M,N.两点 .(I )求 k 的取值范围;uuuur uuur12,其中 O 为坐标原点,求 MN .(II )OM ON21. (本小题满分 12 分)设函数 f x e2 x aln x .(I )讨论 f x 的导函数 f x 的零点的个数;(II )证明:当 a2 0 时f x 2a a ln .a数学高考数学试题汇编请考生在 22、 23、24 题中任选一题作答22.(本小题满分 10 分)选修 4-1:几何证明选讲如图 AB是圆 O直径,AC是圆 O切线,BC交圆 O与点 E. (I )若 D 为 AC 中点,求证: DE 是圆 O 切线;(II )若OA3CE,求ACB 的大小 .CEDAO B23.(本小题满分 10 分)选修 4-4:坐标系与参数方程在直角坐标系 xOy 中,直线 C1 : x222 ,圆C2: x 1y 21,以坐标原点为极点 , x轴正半轴为极轴建立极坐标系 .(I )求C1,C2的极坐标方程;(II )若直线C3的极坐标方程为π,设 C2 ,C3的交点为 M , N ,求 C2MN的面积 .R424.(本小题满分 10 分)选修 4-5:不等式证明选讲已知函数 f x x 1 2 x a , a0 .(I )当 a 1 时求不等式 f x 1 的解集;(II )若 f x图像与x轴围成的三角形面积大于6,求a的取值范围 .。
2015年高考全国Ⅰ卷文科数学试题(含答案解析)
绝密★启用前试题类型:A2015年普通高等学校招生全国统一考试文科数学适用地区:河南河北山西江西注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A∩B中元素的个数为(A)5(B)4(C)3(D)2(2)已知点A(0, 1), B(3, 2), 向量AC=(−4,−3), 则向量BC=(A)(−7,−4)(B)(7,4)(C)(−1,4)(D)(1,4)(3)已知复数z满足(z−1)i = i + 1,则z =(A)−2 − i (B)−2 + i (C)2 − i (D)2 +i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1, 2, 3, 4, 5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12, E的右焦点与抛物线C:y² = 8x的焦点重合,A,B是C的准线与E的两个焦点,则| AB |=(A)3 (B)6 (C)9 (D)12(6) 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周 八尺,高五尺。
问:积及为米几何?”其意思为:“在 屋内墙角处堆放米(如图,米堆为一个圆锥的四分 之一),米堆底部的弧度为8尺,米堆的高为5尺, 问米堆的体积和堆放的米各为多少?”已知1斛米 的体积约为1.62立方尺,圆周率约为3,估算出堆 放斛的米约有 (A )14斛(B )22斛 (C )36斛(D )66斛(7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和. 则S 8 = 4S 4,a 10 =(A )172(B )192(C )10(D )12(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,),44k k k Z ππ-+∈(B ) 13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t = 0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)已知函数f (x)={2x−1−2, x≤1−log2(x+1), x>1,且f (a)= −3,则f (6−a) =(A)−74(B)−54(C)−34(D)−14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
江西省2015年高考全省文科前30名学生语文各题小分得分情况
8.5
0
3
6
18
9.5
54
123
20
万家敏
莲塘一中
24
8.5
5
4.5
6
16
9.5
47.5
121
21
吴越
高安中学
27
9.5
2
3.5
6
20
9
42
119
22
罗倩
万安中学
21
8
3
6
6
18
10
46.5
118.5
23
陈小凡
高安中学
24
7.5
5
3
6
18.5
7.5
45
116.5
24
钟昱赟
安远一中
18
7.5
4.5
新余市第四中学
21
8.5
5
3.5
6
20.5
10
46
120.5
15
梁忠诚
育才培训中心
24
9
0
3
4
20
7.5
48
115.5
16
杨依
修水县一中
24
8
2
1
6
17.5
11
50.5
120
17
林立
临川一中
24
7.5
5
661410 Nhomakorabea44
116.5
18
陈敏
高安中学
21
7
5
3.5
6
19
9.5
40.5
111.5
19
余晨珺
江西省2015届高三高考适应性测试数学文试题
江西省2015届高三高考适应性测试数学文试题————————————————————————————————作者:————————————————————————————————日期:2高三文科数学第3页保密★启用前2015年江西省高考适应性测试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效.4.考试结束后.将本试卷和答且卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|05}A x x =<<,2{|230}B x x x =-->,则A B =R I ðA. (0,3)B. (3,5)C. (1,0)-D.(0,3] 2.复数1(i)(0)z a a a a=+∈≠R 且对应的点在复平面内位于A .第一、二象限B .第一、四象限C .第二、四象限D .第二、三象限 3.命题“2,x x x ∀∈≠R ”的否定是A .2,x x x ∀∉≠R B .2,x x x ∀∈=R C . 2,x x x ∃∉≠R D .2,x x x ∃∈=R 4.已知函数2()f x x -=,3()tan g x x x =+,那么 A. ()()f x g x ⋅是奇函数 B. ()()f x g x ⋅是偶函数 C. ()()f x g x +是奇函数 D. ()()f x g x +是偶函数 5.已知等比数列{}n a 中,2109a a =,则57a a +A. 有最小值6B. 有最大值6C. 有最小值6或最大值-6D.有最大值-6 6.下列程序框图中,则输出的A 的值是A .128 B .129 C .131 D .1347.已知数列{}n a 中,122,8a a ==,数列1{2}n n a a +-是公比为2的等比数列,则下列判断正确的是 A. {}n a 是等差数列 B. {}n a 是等比数列 C. {}2n n a 是等差数列 D. {}2nna 是等比数列 8.已知抛物线:C 24y x =,那么过抛物线C 的焦点,长度为整数且不超过2015的弦的条数是 A . 4024 B . 4023 C .2012 D .20159.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象A .向右平移3π个长度单位 B .向左平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移6π个长度单位10.已知函数1()ln 2xf x x =-(),若实数x 0满足01188()log sinlog cos88f x ππ>+,则0x 的取值范围是A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞11.已知函数232,31,()1ln ,13x x x f x x x ⎧-+--≤≤⎪=⎨<≤⎪⎩,若()|()|g x ax f x =-的图像与x 轴有3个不同的交点,则实数a 的取值范围是A. ln 31[,)3eB. 1(0,)2eC. 1(0,)eD. ln 31[,)32e12.某几何体三视图如图所示,则该几何体的体积为 A .23 B .1 C .43 D .32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分.13. 已知回归直线斜率的估计值为2,样本点的中心为点(4,5),则回归直线的方程为 . 14. 已知(3,1)=a ,(3,)k =b ,且a 与b 的夹角为3π,则k = . 15.若变量y x ,满足约束条件1,,3215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则42x yw =⋅的最大值是 .是开始1,1A i ==结束A 输出1i i =+31A A A =+10i ≤否112正视图侧视图俯视图高三文科数学第4页FEDCBAABCD A 1B 1C 116.对椭圆有结论一:椭圆2222:1(0)x y C a b a b+=>>的右焦点为(,0)F c ,过点2(,0)a P c 的直线l 交椭圆于,M N 两点,点M 关于x 轴的对称点为'M ,则直线'M N 过点F .类比该结论,对双曲线有结论二,根据结论二知道:双曲线22':13x C y -=的右焦点为F ,过点3(,0)2P 的直线与双曲线'C 右支有两交点,M N ,若点N 的坐标是(3,2),则在直线NF 与双曲线的另一个交点坐标是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos sin f x a x x b x =+,x R ∈,且()3112f π=-,()16f π=. (Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)若3()25f α=,(,)3παπ∈-,求sin α的值. 18.某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如下茎叶图(单位:cm ).男队员身高在180cm 以上定义为“高个子”,女队员身高在170cm 以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员.(Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;(Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.19.(本小题满分12分)如图,已知在直三棱柱111ABC A B C -中, 12AB AA ==,3ACB π∠=,点D 是线段BC 的中点.(Ⅰ)求证:1A C ∥平面1AB D ;(Ⅱ)当三棱柱111ABC A B C -的体积最大时,求三棱锥11A AB D -的体积.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别是12(1,0),(1,0)F F -,直线l 的方程是4x =,点P 是椭圆C 上动点(不在x 轴上),过点2F 作直线2PF 的垂线交直线l 于点Q ,当1PF 垂直x 轴时,点Q 的坐标是(4,4).(Ⅰ)求椭圆C 的方程;(Ⅱ)判断点P 运动时,直线PQ 与椭圆C 的公共点个数,并证明你的结论.21.(本小题满分12分) 已知函数ln ()a x bf x x+=(其中0a <),函数()f x 在点(1,(1))f 处的切线过点(3,0). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分, 做答时请写清题号.22.(本小题满分10分)选修41-:几何证明选讲如图,圆内接四边形ABCD 的边BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若21,31==EA ED EB EC ,求ABDC的值; (Ⅱ)若CD EF //,证明:FB FA EF ⋅=2.23.(本小题满分10分)选修44-;坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:24cos 20ρρθ-+=.(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 24.(本小题满分10分)选修45-:不等式选讲 已知函数()||f x x =,()|4|g x x m =--+ (Ⅰ)解关于x 的不等式[()]20g f x m +->;(Ⅱ)若函数()f x 的图像在函数()g x 图像的上方,求实数m 的取值范围.高三文科数学第5页OC 1B 1A 1D CB A保密★启用前 2015年江西省高考适应性测试参考答案文科数学一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBDACCCBABAC二.填空题:本大题共4小题,每小题5分.13. y ^=2x -3. 14. 1- 15. 512 16. 92(,)55-三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 解:(Ⅰ)由()3112()16f f ππ⎧=-⎪⎪⎨⎪=⎪⎩解得232a b ⎧=⎪⎨=-⎪⎩………2分2()23sin cos 2sin 3sin 2cos 212sin(2)16f x x x x x x x π=-=+-=+-………4分令222,262k x k k Z πππππ-≤+≤+∈,得,36k x k k Z ππππ-≤≤+∈所以()f x 的单调递增区间为[,]()36k k k Z ππππ-+∈………6分 (注:单调递增区间也可写成(,)()36k k k Z ππππ-+∈(Ⅱ)由3()25f α=得4sin()65πα+=,………8分5(,)662πππα+∈-,3cos()65πα+=………10分31433sin sin()sin()cos()66262610ππππαααα-=+-=+-+=………12分 18. 解:(Ⅰ)由题意及茎叶图可得:“高个子”共8名队员,“非高个子”共12名队员,共抽取5名队员,所以从“高个子”中抽取2名队员,记这5名队员中“高个子”为12,C C ,“非高个子”队员为123,,D D D ,选出2名队员有:12111213212223121323,,,,,,,,,C C C D C D C D C D C D C D D D D D D D ,共10中选取方法,有“高个子”的选取方法有7种,所以选取2名队员中有“高个子”的概率是1710P =; ………5分 (Ⅱ)记“高个子”男队员分别为1234,,,A A A A ,记“高个子”女队员分别为1234,,,B B B B ,从中抽出2名队员有:12131411121314232421222324343132333441424344121314232434,,,,,,,,,,,,,,,,,,,,,,,,,A A A A A A A B A B A B A B A A A A A B A B A B A B A A A B A B A B A B A B A B A B A B B B B B B B B B B B B B ,共28种抽法,其中男女“高个子”各1名队员的抽法有16种,………9分 所以男女“高个子”各1名队员的概率是2164287P ==. ………12分 19. (Ⅰ)证明:记11A B AB O =I ,OD 为三角形1A BC 的中位线,1A C ∥OD ,⊆OD 平面1AB D , ⊄C A 1平面1AB D ,所以1A C ∥平面1AB D ………6分(Ⅱ)当三棱柱111ABC A B C -的底面积最大时,体积最大,22242cos32AB AC BC AC BC AC BC AC BC AC BCπ==+-⋅⋅≥⋅-⋅=⋅当AC BC =,三角形ABC 为正三角形时取最大值………8分因为1A C ∥平面1AB D ,点1A 和C 到平面1AB D 的距离相等,…9分111111333A AB DC ABD B ACD ACD V V V S BB ---∆===⋅=………12分20. 解:(Ⅰ)由已知得1c =,当1PF x ⊥轴时,点2(1,)b P a-,由220F P F Q ⋅=u u u u r u u u u r 得2(2)(41)40b a--+=222302320b a a a ⇒-=⇒--=, 解得2a =,3b =,所以椭圆C 的方程是22143x y +=;………5分 (Ⅱ)设点00(,)P x y ,则2222220000003134123434x y x y y x +=⇒+=⇒=-,设点(4,)Q t , 由220F P F Q ⋅=u u u u r u u u u r 得:00(1)(41)0x y t --+=,所以003(1)x t y --=,高三文科数学第6页FEDCBA所以直线PQ 的方程为:0000003(1)43(1)4x y y x x x y y -+-=--+,即20000043(1)[3(1)]4x y y x y x x -+-=+--, 即200000433(1)[33(1)]44x y y x x x x -+-=-+--, 化简得:00143x x y y+=, ………9分 代入椭圆方程得:22220000(43)2448160y x x x x y +-+-=, 化简得:220042403x x x y -+-=, 判别式△220016(1)043x y=+-=,所以直线PQ 与椭圆有一个公共点. ………12分 21.解:(Ⅰ) ln ()a x bf x x+=,12ln (1),'()|x a b a xf b f x a b x=--∴===- ()(1)y b a b x ∴-=--,切线过点(3,0),2b a ∴=22ln (ln 1)'()a b a x a x f x x x --+==-① 当(0,2]a ∈时,1(0,)x e ∈单调递增,1(,)x e ∈+∞单调递减② 当(,0)a ∈-∞时,1(0,)x e ∈单调递减,1(,)x e∈+∞单调递增 ………5分(Ⅱ)等价方程ln 222a x a a x x x +=+--在(0,2]只有一个根 即2(2)ln 220x a x a x a -++++=在(0,2]只有一个根 令2()(2)ln 22h x x a x a x a =-++++,等价函数()h x 的图像在(0,2]与x 轴只有唯一的交点(2)(1)'()x a x h x x--∴=………8分当0a <时,()h x 在(0,1)x ∈递减,(1,2]x ∈的递增当0x →时,()h x →+∞,要函数()h x 在(0,2]与x 轴只有唯一的交点(1)0h ∴=或(2)0h <,1a ∴=-或2ln 2a <-故a 的取值范围是1a =-或2ln 2a <-. ………12分 22. 证明:(Ⅰ) ΘD C B A ,,,四点共圆,∴EBF EDC ∠=∠,又ΘAEB CED ∠=∠,∴CED ∆∽AEB ∆,AB DCEB ED EA EC ==∴, Θ21,31==EA ED EB EC ,∴66=AB DC .………5分(Ⅱ)ΘCD EF //∴EDC FEA ∠=∠,又ΘD C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EBF FEA ∠=∠,又ΘBFE EFA ∠=∠,∴FAE ∆∽FEB ∆,∴ FEFB FA EF =∴FB FA EF ⋅=2………10分23. 解:(Ⅰ)ρ2=x 2+y 2 ρcos θ=x ,ρsin θ=y2224cos 242x y x ρρθ-+=+-+∴圆的普通方程为22420x y x +-+= ………5分(Ⅱ)由22420x y x +-+= ⇒(x -2)2+y 2=2 ………………7分设22cos 2sin x y αα⎧=+⎪⎨=⎪⎩ (α为参数) π22(cos sin )22sin()4x y ααα+=++=++所以x +y 的最大值4,最小值0 …………………10分24. 解:(Ⅰ)由[()]20g f x m +->得|||4|2x -<,2||42x ∴-<-< 2||6x ∴<< 故不等式的解集为[6,2][2,6]--U …………5分 (Ⅱ)∵函数()f x 的图象恒在函数()g x 图象的上方∴()()f x g x >恒成立,即|4|||m x x <-+恒成立 ………………8分 ∵|4||||(4)|4x x x x -+≥--=,∴m 的取值范围为4m <. …………………………………………10分。
2015届南昌市高三“二模”测试数学(文科)参考答案及评分标准
— 高三数学(文科)答案第1页 — AB C D E FG2015 年 高 三 测 试 卷数学(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.13. 214. 2- 15. 13 16. 2212xy -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………2分 所以cos cos()COB AOC AOB ∠=∠+∠ 1()222=---=;……………………………………………6分 (Ⅱ)因为c 23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,…8分 所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………11分所以当3A π=时,a b +最大,最大值是12分 18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中遇到空气重度污染的选择有:5日,6日,7日,11日,12日,13日,……3分 所以运动会期间未遇到空气重度污染的概率是16711313P =-=;…………………6分 (Ⅱ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,……………………………………9分所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………12分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===, 4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒ 由余弦定理求得AC =90ACB ∠=︒即BC AC ⊥,— 高三数学(文科)答案第2页 —又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面AEFC ,所以BC AG ⊥,………………………………3分在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=,tan 1CF CGF GF ∠==,4CGF π∠=, 所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;…………………………………………………………………6分(Ⅱ)由(Ⅰ)可知道,,CA CB CF 两两垂直,所以可以把四棱锥B AEFC -补成以,,CA CB CF 为同一顶点的一个长方体,………………………………………………8分其外接球的直径2R =所以球O的表面积是2419S ππ==.………………………………………12分 20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||OD ==2r ==,…………………………2分 因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b+=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;…………………5分 (Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0), 当直线m 垂直于x轴时,||PQ = ||4MN =,四边形PMQN的面积S = 当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…6分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k =--,圆心O 到直线m的距离为:d =,所以||PQ ==8分 将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN = 所以:四边形的面积— 高三数学(文科)答案第3页 —1||||2S PQ MN =⋅===∈, 综上:四边形PMQN的面积的取值范围是.………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >, 记2()221g x x ax =-+…………………………………………………………………2分(一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增; ………………………………………………………………………………………………3分(二)当0a <时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;………………………………………………………………………………4分(三)当a >0()0x g x >⎧⎨>⎩,解得x ∈, 所以函数()f x在区间上单调递减,在区间)+∞上单调递增.……………………………………6分 (Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增,所以(0,1]x ∈时,函数()f x 的最大值是(1)22f a =-,对任意的a ∈,都存在0(0,1]x ∈使得不等式20()ln f x a a a +>-成立,等价于对任意的(1a ∈,不等式222ln a a a a -+>-都成立,…………………………8分即对任意的(1a ∈,不等式2ln 320a a a +-+>都成立,记2()ln 32h a a a a =+-+,则(1)0h =, 1(21)(1)'()23a a h a a a a--=+-=,…………………………………………………10分— 高三数学(文科)答案第4页 —因为(1a ∈,所以'()0h a >,当对任意(1a ∈, ()(1)0h a h >=成立。
2015年江西高考文科数学样卷
2015年江西省高考 文科数学 模拟样卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效.4.考试结束后.将本试卷和答且卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|05}A x x =<<,2{|230}B x x x =-->,则A B =R ð A. (0,3) B. (3,5) C. (1,0)- D.(0,3] 2.复数1(i)(0)z a a a a=+∈≠R 且对应的点在复平面内位于A .第一、二象限B .第一、四象限C .第二、四象限D .第二、三象限 3.命题“2,x x x ∀∈≠R ”的否定是A .2,x x x ∀∉≠R B .2,x x x ∀∈=R C . 2,x x x ∃∉≠R D .2,x x x ∃∈=R 4.已知函数2()f x x -=,3()tan g x x x =+,那么 A. ()()f x g x ⋅是奇函数 B. ()()f x g x ⋅是偶函数 C. ()()f x g x +是奇函数 D. ()()f x g x +是偶函数 5.已知等比数列{}n a 中,2109a a =,则57a a +A. 有最小值6B. 有最大值6C. 有最小值6或最大值-6D.有最大值-6 6.下列程序框图中,则输出的A 的值是A .128B .129C .131D .1347.已知数列{}n a 中,122,8a a ==,数列1{2}n n a a +-是公比为2的等比数列,则下列判断正确的是A. {}n a 是等差数列B. {}n a 是等比数列C. {}2n n a 是等差数列 D. {}2nna 是等比数列 8.已知抛物线:C 24y x =,那么过抛物线C 的焦点,长度为整数且不超过2015的弦的条数是A . 4024B . 4023C .2012D .2015 9.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象A .向右平移3π个长度单位B .向左平移3π个长度单位C .向右平移6π个长度单位 D .向左平移6π个长度单位10.已知函数1()ln 2xf x x =-(),若实数x 0满足01188()log sin log cos88f x ππ>+,则0x 的取值范围是A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞11.已知函数232,31,()1ln ,13x x x f x x x ⎧-+--≤≤⎪=⎨<≤⎪⎩,若()|()|g x ax f x =-的图像与x 轴有3个不同的交点,则实数a 的取值范围是A. ln 31[,)3e B. 1(0,)2e C. 1(0,)e D. ln 31[,)32e12.某几何体三视图如图所示,则该几何体的体积为 A .23 B .1 C .43 D .32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-2正视图侧视图俯视图ABCD A 1B 1C 1第24题为选考题,考生根据要求作答. 二.填空题:本大题共4小题,每小题5分.13. 已知回归直线斜率的估计值为2,样本点的中心为点(4,5),则回归直线的方程为 . 14.已知=a,)k =b ,且a 与b 的夹角为3π,则k = . 15.若变量y x ,满足约束条件1,,3215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则42x yw =⋅的最大值是 .16.对椭圆有结论一:椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,过点2(,0)a P c的直线l交椭圆于,M N 两点,点M 关于x 轴的对称点为'M ,则直线'M N 过点F .类比该结论,对双曲线有结论二,根据结论二知道:双曲线22':13x C y -=的右焦点为F ,过点3(,0)2P 的直线与双曲线'C 右支有两交点,M N ,若点N的坐标是,则在直线NF 与双曲线的另一个交点坐标是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos sin f x a x x b x =+,x R ∈,且()112f π=,()16f π=. (Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)若3()25f α=,(,)3παπ∈-,求sin α的值. 18.某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如下茎叶图(单位:cm ).男队员身高在180cm 以上定义为“高个子”,女队员身高在170cm 以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员.(Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;(Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.19.(本小题满分12分)如图,已知在直三棱柱111ABC A B C -中, 12AB AA ==,3ACB π∠=,点D 是线段BC 的中点. (Ⅰ)求证:1AC ∥平面1AB D ;(Ⅱ)当三棱柱111ABC A B C -的体积最大时,求三棱锥11A AB D -的体积.20.(本小题满分12分)FED CBA已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别是12(1,0),(1,0)F F -,直线l 的方程是4x =,点P 是椭圆C 上动点(不在x 轴上),过点2F 作直线2PF 的垂线交直线l 于点Q ,当1PF 垂直x 轴时,点Q 的坐标是(4,4). (Ⅰ)求椭圆C 的方程;(Ⅱ)判断点P 运动时,直线PQ 与椭圆C 的公共点个数,并证明你的结论. 21.(本小题满分12分) 已知函数ln ()a x bf x x+=(其中0a <),函数()f x 在点(1,(1))f 处的切线过点(3,0). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分, 做答时请写清题号.22.(本小题满分10分)选修41-:几何证明选讲如图,圆内接四边形ABCD 的边BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若21,31==EA ED EB EC ,求ABDC的值; (Ⅱ)若CD EF //,证明:FB FA EF ⋅=2.23.(本小题满分10分)选修44-;坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:24cos 20ρρθ-+=. (Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 24.(本小题满分10分)选修45-:不等式选讲 已知函数()||f x x =,()|4|g x x m =--+ (Ⅰ)解关于x 的不等式[()]20g f x m +->;(Ⅱ)若函数()f x 的图像在函数()g x 图像的上方,求实数m 的取值范围.。
2015年江西省三县部分高中高考一模数学试卷(文科)【解析版】
2015年江西省三县部分高中高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若xy=0,则x2+y2=0”与它的逆命题、否命题、逆否命题中,真命题的个数为()A.0B.1C.2D.42.(5分)已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为()A.M∩N B.(∁U M)∩NC.M∩(∁U N)D.(∁U M)∩(∁U N)3.(5分)复数z=1﹣i,则+z对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f (x)=﹣(),则f(﹣)=()A.B.C.﹣D.﹣5.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)6.(5分)如图,在正六边形ABCDEF中,++等于()A.B.C.D.7.(5分)已知{a n}是首项为32的等比数列,S n是其前n项和,且,则数列{|log2a n|}前10项和为()A.58B.56C.50D.458.(5分)若变量x,y满足约束条件且z=3x+y的最小值为﹣8,则k=()A.3B.﹣3C.2D.﹣29.(5分)一块橡胶泥表示的几何体的三视图如图所示,将该橡胶泥揉成一个底面边长为8的正三角形的三棱锥,则这个三棱锥的高为()A.3B.6C.9D.1810.(5分)已知A(﹣3,0),B(0,4),M是圆C:x2+y2﹣4x=0上一个动点,则△MAB的面积的最小值为()A.4B.5C.10D.1511.(5分)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6] 12.(5分)已知椭圆的左焦点为F1,右焦点为F2.若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知,则值为.14.(5分)对于四面体ABCD,以下命题中,真命题的序号为(填上所有真命题的序号)①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;②若AB⊥CD,BC⊥AD,则BD⊥AC;③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;⑤分别作两组相对棱中点的连线,则所得的两条直线异面.15.(5分)已知f(x)与g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g'(x),f(x)=a x•g(x),+=,有穷数列{}(n=1,2,…,8)中,任意取前k项相加,则前k项和大于的概率等于.16.(5分)设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.三、解答题:共75分.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,若b cos A+a cos B =﹣2c cos C.(1)求角C的大小;(2)若b=2a,且△ABC的面积为2,求边c的长.18.(12分)若数列{a n}满足a1=2,a n+1=.(1)设b n=,问:{b n}是否为等差数列?若是,请说明理由并求出通项b n;(2)设c n=a n a n+1,求{c n}的前n项和.19.(12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,预测t=8时,细菌繁殖个数.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.20.(12分)如图,E是矩形ABCD中AD边上的点,F为CD边的中点,,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.(1)求证:平面PBE⊥平面PEF;(2)求四棱锥P﹣BEFC的体积.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.选修4-5:不等式选讲22.(10分)设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(Ⅰ)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.2015年江西省三县部分高中高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若xy=0,则x2+y2=0”与它的逆命题、否命题、逆否命题中,真命题的个数为()A.0B.1C.2D.4【解答】解:“若xy=0,则x2+y2=0”,是假命题,其逆命题为:“若x2+y2=0,则xy=0”是真命题,据互为逆否命题的两个命题真假相同,可知其否命题为真命题、逆否命题是假命题,故真命题的个数为2故选:C.2.(5分)已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为()A.M∩N B.(∁U M)∩NC.M∩(∁U N)D.(∁U M)∩(∁U N)【解答】解:∵M={3,4,5},N={1,2,5},∴M∩N={5},(∁U M)∩N={1,2},M∩(∁U N)={3,4},(∁U M)∩(∁U N)=∅,故选:B.3.(5分)复数z=1﹣i,则+z对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵复数z=1﹣i,∴+z==+1﹣i=+1﹣i=对应的点所在的象限为第四象限.故选:D.4.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f (x)=﹣(),则f(﹣)=()A.B.C.﹣D.﹣【解答】解:∵f(x+2)=2f(x),∴f(x)=f(x+2),∵f(﹣)=f(﹣)=f(),∵当x∈[0,2)时,f(x)=﹣(),∴f()=﹣1,∴f(﹣)=,故选:D.5.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)【解答】解:由图象知函数的最大值为2,即A=2,函数的周期T=4()=2,解得ω=1,即f(x)=2sin(x+φ),由五点对应法知+φ=π,解得φ=,故f(x)=2sin(x+),故选:B.6.(5分)如图,在正六边形ABCDEF中,++等于()A.B.C.D.【解答】解:因为正六边形ABCDEF中,CD∥AF,CD=AF,所以++=++=;故选:A.7.(5分)已知{a n}是首项为32的等比数列,S n是其前n项和,且,则数列{|log2a n|}前10项和为()A.58B.56C.50D.45【解答】解:∵{a n}是首项为32的等比数列,S n是其前n项和,且,∴=,∴1+q3=,∴q=∴a n==27﹣2n,∴|log2a n|=|7﹣2n|,∴数列{|log2a n|}前10项和为5+3+1+1+3+5+7+9+11+13=58,故选:A.8.(5分)若变量x,y满足约束条件且z=3x+y的最小值为﹣8,则k=()A.3B.﹣3C.2D.﹣2【解答】解:目标函数z=3x+y的最小值为﹣8,∴y=﹣3x+z,要使目标函数z=3x+y的最小值为﹣1,则平面区域位于直线y=﹣3x+z的右上方,即3x+y=﹣8,作出不等式组对应的平面区域如图:则目标函数经过点A时,目标函数z=3x+y的最小值为﹣8,由,解得,即A(﹣2,2),同时A也在直线x+k=0时,即﹣2+k=0,解得k=2,故选:C.9.(5分)一块橡胶泥表示的几何体的三视图如图所示,将该橡胶泥揉成一个底面边长为8的正三角形的三棱锥,则这个三棱锥的高为()A.3B.6C.9D.18【解答】解:由已知中的三视图可得:该几何体是一个三棱柱,底面是直角边为6,8的三角形,高为12,故几何体的体积为=288,∵橡胶泥揉成一个底面边长为8的正三角形的三棱锥,∴底面积为=16,∴三棱锥的高为=18,故选:D.10.(5分)已知A(﹣3,0),B(0,4),M是圆C:x2+y2﹣4x=0上一个动点,则△MAB的面积的最小值为()A.4B.5C.10D.15【解答】解:由x2﹣4x+y2=0,得(x﹣2)2+y2=4,∴圆的圆心(2,0),半径为2,过圆心作AB所在直线的垂线,交圆于M,此时△ABM的面积最小.直线AB的方程为4x﹣3y+12=0,|AB|=5,∴圆心到直线AB的距离为=4,∴△MAB的面积的最小值为=5,故选:B.11.(5分)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6]【解答】解:若0≤t≤2,则不满足条件输出S=t﹣3∈[﹣3,﹣1],若﹣2≤t<0,则满足条件,此时t=2t2+1∈(1,9],此时不满足条件,输出S=t﹣3∈(﹣2,6],综上:S=t﹣3∈[﹣3,6],故选:D.12.(5分)已知椭圆的左焦点为F1,右焦点为F2.若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为()A.B.C.D.【解答】解:如图,设以椭圆的短轴为直径的圆与线段PF2相切于M点,连接OM,PF2;∵M,O分别是PF2,F1F2的中点;∴MO∥PF1,且|PF1|=2|MO|=2b;OM⊥PF2;∴PF1⊥PF2,|F1F2|=2c;∴;根据椭圆的定义,|PF1|+|PF2|=2a;∴;∴;两边平方得:a2﹣2ab+b2=c2﹣b2,c2=a2﹣b2代入并化简得:2a=3b,∴;∴;即椭圆的离心率为.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知,则值为.【解答】解:∵+=π,sin(π﹣α)=sinα,∴sin=sin(π﹣)=sin,又,∴=.故答案为:.14.(5分)对于四面体ABCD,以下命题中,真命题的序号为①②④(填上所有真命题的序号)①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;②若AB⊥CD,BC⊥AD,则BD⊥AC;③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;⑤分别作两组相对棱中点的连线,则所得的两条直线异面.【解答】解:如图,对于①,∵AB=AC,BD=CD,E为BC中点,∴AE⊥BC,DE⊥BC,又AE∩ED=E,∴BC⊥面AED,∴面AED⊥平面ABC.∴命题①正确;对于②,过A作底面BCD的垂线AO,垂足为O,连结BO并延长交CD于F,连结DO并延长交BC于E,由线面垂直的判定可以证明BF⊥CD,DE⊥BC,从而可知O为底面三角形的垂心,连结CO并延长交BD于G,则CG⊥BD,再由线面垂直的判断得到BD⊥面ACG,从而得到BD⊥AC.∴命题②正确;对于③,若所有棱长都相等,四面体为正四面体,该四面体的外接球半径是四面体高的四分之三,内切球的半径是四面体高的四分之一,∴该四面体的外接球与内切球的半径之比为3:1.∴命题③错误;对于④,若AB⊥AC⊥AD,过A作底面BCD的垂线AO,垂足为O,由AB⊥AC,AB⊥AD,且AC∩AD=A,得AB⊥面ACD,则AB⊥CD,进一步由线面垂直的判定证得CD⊥面ABO,则BO⊥CD,同理可证CO⊥BD,说明O为△BCD的垂心.命题④正确;对于⑤,如图,∵E、F、G、H分别为BC、AC、BD、AD的中点,∴HF∥DC,GE∥DC,∴EFHG为平面四边形.∴命题⑤错误.∴真命题的序号是①②④.故答案为:①②④.15.(5分)已知f(x)与g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g'(x),f(x)=a x•g(x),+=,有穷数列{}(n=1,2,…,8)中,任意取前k项相加,则前k项和大于的概率等于.【解答】解:由题意可得[]′=<0,∴=a x单调递减,∴0<a<1,又∵+=,∴a+a﹣1=,解得a=,或a=2(舍去),∴=()x,∴共8项的有穷数列{}是以=为首项,q=为公比的等比数列,∴数列的前k项和为=1﹣()k,令1﹣()k>,可解得k>4,∴所求概率P==故答案为:.16.(5分)设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).【解答】解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).三、解答题:共75分.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,若b cos A+a cos B =﹣2c cos C.(1)求角C的大小;(2)若b=2a,且△ABC的面积为2,求边c的长.【解答】解:(1)由b cos A+a cos B=﹣2c cos C及正弦定理可得sin B cos A+sin A cos B =﹣2sin C cos C,即sin(A+B)=﹣2sin C cos C,由A,B,C是三角形内角可知sin(A+B)=sin C≠0,∴cos C=﹣,故C=.(2)由△ABC的面积可得ab sin C=2,即=2,∴a=2,∴b=4,由余弦定理可得:c2=a2+b2﹣2ab cos C=4+16﹣2×=28,∴c=2.18.(12分)若数列{a n}满足a1=2,a n+1=.(1)设b n=,问:{b n}是否为等差数列?若是,请说明理由并求出通项b n;(2)设c n=a n a n+1,求{c n}的前n项和.【解答】解:(1)∵a n+1=,b n=,∴b n+1﹣b n=﹣=3∴{b n}是公差为3的等差数列,又b1==,∴b n=3n﹣(2)∵b n=,∴a n=由a n+1=,得:3a n+1a n+a n+1=a n∴a n a n+1=(a n﹣a n+1),∴c n=(a n﹣a n+1)∴{∁n}的前n项和为S n=[(a1﹣a2)+(a2﹣a3)+…+(a n﹣a n+1)=(a1﹣a n+1)=(2﹣)=.19.(12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,预测t=8时,细菌繁殖个数.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.【解答】解:(Ⅰ)由表中数据计算得,=5,=4,)=8.5,=10,所以b=0.85,a=﹣0.25.所以,回归方程为y=0.85t﹣0.25.…(8分)(Ⅱ)将t=8代入(Ⅰ)的回归方程中得y=0.85×8﹣0.25=6.55.故预测t=8时,细菌繁殖个数为6.55千个.…(12分)20.(12分)如图,E是矩形ABCD中AD边上的点,F为CD边的中点,,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.(1)求证:平面PBE⊥平面PEF;(2)求四棱锥P﹣BEFC的体积.【解答】解:(1)证明:∵,∴DE=AD=AB=2,∵F为CD边的中点,∴DE=DF,又DE⊥DF,∴∠DEF=45°,同理∠AEB=45°,∴∠BEF=45°,即EF⊥BE,又平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,∴EF⊥平面PBE,EF⊂平面PEF,∴平面PBE⊥平面PEF;(2)取BE的中点O,连接OP,∵PB=PE,∴PO⊥BE,又平面PBE⊥平面BCDE,平面PBE∩平面BCDE=BE,∴PO⊥平面BCDE,即PO为棱锥P﹣BEFC的高,PO=2,则.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF 1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.选修4-5:不等式选讲22.(10分)设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(Ⅰ)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.【解答】解:(I)f(x)=,∴当x<﹣2时,f(x)>f(﹣2)=2;当﹣2≤x≤0时,f(x)>f(0)=1;当x>0时,f(x)>f(0)=1.综上可得:函数f(x)的最小值为1,∴a=1.(II)由(I)可知:m2+n2=1,∴1≥2mn,∴.∵m,n>0,∴+≥2≥2,当且仅当m=n=时取等号.∴+的最小值为2.。
【恒心】【揭秘】2015年高考江西省(新课标Ⅰ卷)全省文科前30名语文各题小分得分情况
4
4
20
9.5
46.5
112.5
30
唐心怡
临川一中
21
7
0
1
6
18
10
43
106
全省前30名学生平均
23
8
3
4.1
5.9
18.5
9.6
48.4
120
得分率
85.2℅
80℅
60℅
68.3℅
98.3℅
74℅
87.2℅
80.7℅
80℅
8
0
3
6
18
10
48.5
114.5
4
余盈颖
明达培训中心
21
8.5
5
6
6
17.5
7
54.5
125.5
5
王楚格
万安中学
24
8.5
5
5
6
18
7.5
46.5
120.5
6
张中艺
临川一中
27
7.5
0
6
6
20
10
50.5
127
7
周舟
新建二中(1)
24
8
0
5
6
19
10
47
119
8
廖爽
临川一中
27
7.5
3.5
2.5
6
40.5
111.5
19
余晨珺
临川一中
24
8.5
0
3
6
18
9.5
54
123
20
万家敏
莲塘一中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
朱攀
婺源县天佑中学
60
20
12
12
12
12
11.5
10
149.5
3
胡昊
高安中学
60
20
12
10.5
11.5
12
10
10
146
4
余盈颖
明达培训中心
60
20
12
12
12
12
8.5
10
146.5
5
王楚格
万安中学
60
20
12
12
12
12
9.5
10
147.5
6
张中艺
临川一中
60
20
12
7.5
11.5
12
11.5
59.7
18.7
11.98
11.1
10.9
11.8
8.9
9.9
142.3
得分率
99.5℅
93.5℅
99.8℅
92.5℅
90.8℅
98.3℅
74.2℅
99℅
94.9℅
12
10.5
7
143.5
12
赖海峰
明达培训中心
60
20
12
12
12
12
2
10
140
13
晏梓馨
新余市第一中学
60
20
12
12
12
12
12
10
150
14
施悦
新余市第四中学
60
20
12
10.5
11.5
11.5
4
10
139.5
15
梁忠诚
育才培训中心
55
15
11.5
10.5
11.5
12
7.5
5.5
128.5
16
乐平中学
60
20
12
12
12
12
7.5
10
145.5
27
熊甜甜
丰城中学
60
15
12
5
12
12
11.5
10
137.5
28
李文瑞
丰城中学
60
20
12
12
10.5
12
7.5
10
144
29
熊若洁
江西师大附中
60
20
12
12
12
12
11
10
149
30
唐心怡
临川一中
60
20
12
12
12
12
9.5
10
147.5
前30名平均
【恒心】【揭秘】2015年高考江西省(新课标Ⅰ卷)全省文科前30名数学各题小分得分情况
李炳璋提供
省排名
姓名
学校
1--12题
13--16题
17题
18题
19题
20题
21题
22--24题
总分
60分
20分
12分
12分
12分
12分
12分
10分
150分
1
虞筱隽
江西师大附中
60
20
12
12
9
12
10.5
10
145.5
10
144.5
7
周舟
新建二中(1)
60
15
12
12
11.5
10
6.5
10
137
8
廖爽
临川一中
60
20
12
9.5
11
12
11
10
145.5
9
李淼
南昌二中
60
15
12
12
2
12
11.5
10
134.5
10
万姝颖
新余市第一中学
60
15
12
12
8
9.5
8.5
8
133
11
邹仪
临川一中
60
20
12
10.5
11.5
杨依
修水县一中
602012912125
10
140
17
林立
临川一中
60
20
12
12
10.5
12
8.5
5.5
140.5
18
陈敏
高安中学
60
20
12
12
10.5
12
12
10
148.5
19
余晨珺
临川一中
60
20
12
12
10.5
12
12
10
148.5
20
万家敏
莲塘一中
60
20
12
10.5
12
12
10.5
10
147
21
吴越
高安中学
60
20
12
11
12
11.5
5
9
140.5
22
罗倩
万安中学
60
15
12
9.5
12
12
7
10
137.5
23
陈小凡
高安中学
60
15
12
12
12
12
8.5
10
141.5
24
钟昱赟
安远一中
60
20
12
12
12
12
2
10
140
25
胡柳珺
高安中学
55
15
12
10.5
10.5
12
6
10
131
26
吴曼琪