最新统计概率知识点归纳总结大全
概率与统计知识点总结
概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
概率统计公式大全(复习重点)
概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。
本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。
一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。
例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。
解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。
2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。
解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。
二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
高中数学必修二统计概率知识点总结
必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。
高中数学概率统计知识点总结大全
概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。
统计概率知识点梳理总结
统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。
最新统计概率知识点归纳总结大全doc资料
统计概率知识点归纳总结大全1•了解随机事件的发生存在着规律性和随机事件概率的意义.2•了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率•3•了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n次独立重复试验中恰好发生k次的概率.5.掌握离散型随机变量的分布列.6•掌握离散型随机变量的期望与方差.7.掌握抽样方法与总体分布的估计.&掌握正态分布与线性回归.考点1.求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A) = card(A)= 口;card (I) n等可能事件概率的计算步骤:(1)计算一次试验的基本事件总数n;(2)设所求事件A,并计算事件A包含的基本事件的个数m(3)依公式P (A) m求值;n(4)答,即给问题一个明确的答复(2)互斥事件有一个发生的概率:P(A+ B) = P(A)+ P(B);特例:对立事件的概率:P(A) + P(A) = P(A + A) = 1.(3)相互独立事件同时发生的概率:P(A • B)= P(A) • P(B);特例:独立重复试验的概率:P n(k) = C:p k(1 p)nk.其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项.精品文档(4)解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:等可能事件第一步,确定事件性质互斥事件独立事件n次独立重复试验即所给的问题归结为四类事件中的某一种•第二步,判断事件的运算和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件等可能事件:P(A) m第二步,运用公式n 求解互斥事件:P(A B) P(A) P (B)独立事件:P(A B) P(A) P(B) n次独立重复试验:P n(k) C:p k(1 p)n k第四步,答,即给提出的问题有一个明确的答复•考点2离散型随机变量的分布列1•随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母E、n等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量•2•离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量可能取的值为x1, x2, ..... , X i , ............... ,取每一个值X i (i 1, 2,……)的概率P ( X i) =P i,则称下表•为随机变量的概率分布,简称的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:C1)P 0,i 1,2,...;(2) R P2 (1)②常见的离散型随机变量的分布列:(1 )二项分布n次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能的取值为0, 1 , 2,…n,并且P k P( k) C:p k q nk,其中0 k n , q 1 p,随机变量的分布列如下:~ B(n, p)pCn p k q n k b(k ; n , p).(2)几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量,“k”表示在第k次独立重复试验时事件第一次发生.随机变量的概率分布为:考点3离散型随机变量的期望与方差随机变量的数学期望和方差(1)离散型随机变量的数学期望:E X!" X2P2…;期望反映随机变量取值的平均水平•⑵离散型随机变量的方差:D (X i E )2P1 (X2 E )2P2…(X n E )2P n…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:E(a b) aE b ; D(a b) a2D .⑷若〜B(n , p),贝V E np ; D =npq (这里q=1-p);如果随机变量服从几何分布,P( k) g(k,p),则E1 , D =电其中q=1-p.p p2考点4抽样方法与总体分布的估计抽样方法1 •简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样•常用抽签法和随机数表法•2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)•3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样•总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地, 样本容量越大,这种估计就越精确•总体分布:总体取值的概率分布规律通常称为总体分布•当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图•当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布•总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线•考点5正态分布与线性回归1•正态分布的概念及主要性质(1 )正态分布的概念如果连续型随机变量的概率密度函数为f(x) x R其中、常数,并且 > 0,则称服从正态分布,记为~N ( , 2)(2)期望E =「方差D(3 )正态分布的性质正态曲线具有下列性质:①曲线在x轴上方,并且关于直线x =口对称•②曲线在x= 口时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低•③曲线的对称轴位置由口确定;曲线的形状由确定,越大,曲线越“矮胖”;反之越“高瘦”.(4)标准正态分布当=0 , =1时服从标准的正态分布,记作〜N (0 , 1)(5 )两个重要的公式①(x) 1 (x),② P(a b) (b) (a).(6) N( , 2)与N(0,1)二者联系•(1)若〜N( , 2),贝V ------------- N(0,1);②若~N( , 2),则P(a b) ( —) ( —)• 2•线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法•变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系不确定性的两个变量之间往往仍有规律可循•回归分析就是处理变量之间的相关关系的一种数量统计方法•它可以提供变量之间相关关系的经验公式•具体说来,对n个样本数据(为,屮),(X2,y2),…,(x n,y n),其回归直线方程,或经验公式为:n? bx a.其中,i1Xy i冋,其中X,y分别为|讣|yj的平均b n ,a y b x,x n(x)2i 1数.。
(完整版)高中数学统计与概率知识点归纳(全)
高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。
众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x xx x x n22212()()()n x x x x x x sn抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
最新概率论与数理统计知识点总结(超详细版)
《概率论与数理统计》第一章概率论的基本概念§ 2 •样本空间、随机事件1•事件间的关系A B 则称事件B包含事件A,指事件A发生必然导致事件B发生A」B ={x x^A或X E B}称为事件A与事件B的和事件,指当且仅当A , B中至少有一个发生时,事件A B发生A cB ={x X W A且X E B}称为事件A与事件B的积事件,指当A , B 同时发生时,事件AB发生A —B ={x x乏A且x世B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生A' B =:,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的A B = S且A・B二•,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件2•运算规则交换律A B = B A A - B = B * A结合律(A B) 一C = A 一(B 一C) (A - B)C = A(B - C)分配律A _( B ' C)二(A 一B厂(A 一C)A 一(B C) =(A 一B)(A 一C)徳摩根律A = A - B A - B = A B§ 3 .频率与概率定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A:n称为事件A发生的频率概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P( A), 称为事件的概率1 •概率P(A)满足下列条件:(1)非负性:对于每一个事件 A 0乞P(A)乞1(2)规范性:对于必然事件S P(S) =1n n(3)可列可加性:设A I,A2,…,A n是两两互不相容的事件,有P( A k)八• P(A k )(n可k」k二以取::)2.概率的一些重要性质:(i) P( ) =0n nP( A k)二二P(A k) ( n可以取::) (ii )若A, A?,…,A n是两两互不相容的事件,则有k 4 k 4(iii )设A, B 是两个事件若A B,贝U P(B _ A) =P(B) _ P(A) , P(B) _ P(A)(iv)对于任意事件A, P(A) <1(v)P(A j=1—P(A) (逆事件的概率)(vi)对于任意事件A, B 有P(A 一B)二P(A) P(B) - P(AB)§ 4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A包含k 个基本事件,即AhgjUgziU-Ugk},里i i, i2,…,i k是1,2,…n中某k个不同的数,则有/ f \ k A包含的基本事件数P(A) = 卫「二$中基本事件的总数§ 5.条件概率(1)定义:设A,B是两个事件,且P(A) 0,称P(B|A)二为事件A发生的条P(A)件下事件B发生的条件概率(2)条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
概率和统计知识点总结
概率和统计知识点总结1. 概率的基本概念概率是描述随机现象发生可能性的数学工具。
在概率论中,我们研究的对象是随机实验,即是某种条件下可能出现的各种可能和其相应的概率。
概率的基本概念包括样本空间、事件、概率的定义和性质等。
样本空间是指随机实验的所有可能结果的集合。
事件是样本空间的子集,即是样本空间中的某一部分。
事件的概率就是事件发生的可能性。
概率的定义有频率派和贝叶斯派的不同观点,频率派认为概率是频率的极限,贝叶斯派认为概率是主观的相信程度。
概率的性质包括非负性、规范性、可加性等。
2. 常见的概率分布在概率论中,概率分布是表示随机变量取值可能性的函数。
常见的概率分布包括离散型概率分布和连续型概率分布。
离散型概率分布包括伯努利分布、二项分布、泊松分布等。
伯努利分布描述的是一个随机变量只有两个可能取值的概率分布,二项分布表示的是n重伯努利试验的概率分布,泊松分布描述的是单位时间或单位面积内随机事件出现次数的概率分布。
连续型概率分布包括均匀分布、正态分布、指数分布等。
均匀分布描述的是在一定范围内随机变量取值均匀分布的概率分布,正态分布是一种对称的连续型概率分布,指数分布描述的是一个随机事件首次发生的时间间隔的概率分布。
3. 统计参数估计统计参数估计是利用样本数据估计总体参数的方法。
在统计学中,总体参数是描述总体特征的变量,样本是从总体中抽取的一部分数据。
参数估计包括点估计和区间估计。
点估计是用样本数据估计总体参数的具体值。
常见的点估计方法包括最大似然估计、矩估计等。
最大似然估计是通过寻找数据使得似然函数最大化的方法来估计总体参数,矩估计是利用样本矩来估计总体矩。
区间估计是用样本数据估计总体参数的区间范围。
区间估计的原理是通过置信区间来估计总体参数的范围,通常使用样本均值和标准差来构建置信区间。
4. 假设检验假设检验是统计学中用来验证总体参数的方法。
在假设检验中,我们设定一个或者两个关于总体参数的假设,然后利用样本数据进行检验。
概率统计知识点全面总结
知识点总结:统计与概率I 统计1.三大抽样 (1)基本定义:①总体:在统计中,所有考查对象的全体叫做全体.②个体:在所有考查对象中的每一个考查对象都叫做个体. ③样本:从总体中抽取的一部分个体叫做总体的样本. ④样本容量:样本中个体的数目叫做样本容量. (2)抽样方法:①简单随机抽样:逐个不放回、等可能性、有限性。
=======★适用于总体较少★抽签法:整体编号(1~N )放入不透明的容器中搅拌均匀逐个抽取n次,即可得样本容量为n 的样本。
随机数表法:整体编号(等位数,如001、111不能是1、111)从0~9中随机取一行一列然后初方向随机(上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。
②系统抽样:容量大.等距,等可能。
=======★适用于总体多★用随机方法编号,若N 无法被整除,则剔除后再分组,nNk。
再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。
(每组编号相同)。
③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =nN3.总体分布的估计: (1)一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势★注:总体分布的密度曲线与横轴围成的面积为1。
(2)茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
4.样本分析(1)在频率直方图中计算众数.平均数.中位数众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
(最多的那个)--忽视其他数据中位数在频率分布直方图中,中位数左边和右边的直方图的面积应该相等。
统计概率知识点归纳总结大全word版本
统计概率知识点归纳总结大全1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归.考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ;等可能事件概率的计算步骤:(1) 计算一次试验的基本事件总数n ;(2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n=求值;(4) 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值ix (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n kb q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D . (3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.(4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.(1)若2~(,)N ξμσ,则~(0,1)N ξμησ-= ;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.。
高中概率统计考点归纳
高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。
概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。
举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。
举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。
由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。
二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。
举例:抛掷两颗骰子,求点数之和为7的概率。
总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。
因此,点数之和为7的概率为6/36=1/6。
几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。
举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。
样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。
因此,该点位于线段前1/3部分的概率为1/3。
三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。
计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。
举例:一个班级中有40名学生,其中25名男生和15名女生。
已知某学生是女生,求该学生数学成绩优秀的概率。
统计与概率的知识点总结(汇总3篇)
现在你知道什么是概率和随机变量了。
再来说说概率密度函数(通常缩写为PDF,不是你经常使用的文件类型!)。
还记得我向您展示过所有状态的总和始终为 1吗?记住这一点非常重要,因为它是一个非常有用的依赖属性。
如果我要在条形图中可视化丢卡片的示例,它会是这样的:这是概率密度函数的离散版本。
称为概率质量假设每个条形的宽度始终为 1。
那么Pr(x=0) 的面积为 * 1 = 。
Pr(x=1) 也是如此。
请注意,所有区域的总和始终为1。
如果是连续的,同样适用。
让我们在这里回顾一下什么是连续和离散概率分布函数。
这两个图都代表相同的分布。
唯一的区别是它是连续的还是离散的。
在数据科学中,尤其是当我们通过编程处理数据时,您更有可能处理具有多行和多列的离散数据,每个单元格包含一个数据点。
联合概率简介我们讨论了概率和概率密度分布以及连续和离散数据表示。
现在让我们更深入地探讨一下概率,谈谈“联合概率”。
下面我们来看一个简单的例子。
假设你有 2 个随机变量 x 和 y,x 代表是否下雨,y代表你是否有雨伞。
假设您知道每个事件的概率:目前,这两个条件是相互独立的。
但是我们想知道它们同时发生的概率。
这就是“联合概率”发挥作用的地方。
让我们举个例子。
下雨而你有伞的概率是多少?(感谢上帝,你有雨伞!)这是我们的案例 1。
我们有 Pr(x=1, y=1) 的联合概率,x=1 表示下雨的可能性,y=1表示你有雨伞。
情况 2 是最坏的情况。
下雨了,你没有带伞。
联合概率为 Pr(x=1,y=0)。
所以通过上面的例子,我希望你对什么是联合概率有一点了解。
用更一般的术语来说,联合概率是计算两个(或更多!)事件在同一时间点一起发生的可能性的大小。
为了给你另一个视角,让我们试着可视化什么是联合概率。
假设你有 2 个随机变量(x 和 y)并且想直观地知道它的联合概率。
它看起来像下面的例子。
把它想象成等高线图。
深色区域(接近黑色)位于底部,随着颜色变浅(接近黄色),海拔高度也变高。
高考数学概率统计知识点(大全)
高考数学概率统计知识点(大全)高考数学概率统计知识点一、随机事件(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B 的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。
它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。
它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。
当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
概率与统计的基础知识点总结
概率与统计的基础知识点总结一、概率的基本概念概率是研究随机现象中数量规律的数学分支。
在日常生活中,我们经常会遇到各种不确定的情况,比如掷骰子出现的点数、明天是否会下雨等,这些都可以通过概率来进行描述和分析。
首先,随机试验是指在相同条件下可以重复进行,并且每次试验的结果不止一个,且事先不能确定的试验。
例如,抛硬币就是一个随机试验,因为每次抛硬币出现正面或反面的结果是不确定的。
样本空间是随机试验中所有可能结果组成的集合。
例如,抛一次硬币,样本空间就是{正面,反面}。
随机事件是样本空间的子集,即随机试验中可能出现也可能不出现的结果。
比如,抛硬币出现正面就是一个随机事件。
事件的概率是指在大量重复试验中,该事件发生的频率稳定在某个常数附近,这个常数就称为该事件的概率。
概率的取值范围在 0 到 1 之间,0 表示不可能事件,1 表示必然事件。
二、概率的计算方法1、古典概型古典概型是一种最简单的概率模型,具有以下特点:试验的样本空间有限;每个样本点出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率。
样本空间共有 8 个样本点(5 个红球和 3 个白球),取出红球的样本点有 5 个,所以取出红球的概率为 5/8。
计算古典概型的概率公式为:P(A) = n(A) /n(Ω),其中 P(A)表示事件 A 的概率,n(A)表示事件 A 包含的样本点个数,n(Ω)表示样本空间的样本点总数。
2、几何概型几何概型是另一种常见的概率模型,适用于无限个样本点且每个样本点出现的可能性相等的情况。
比如,在一个时间段内等待公共汽车,假设公共汽车到达的时间是均匀分布的,求等待时间不超过 5 分钟的概率。
这时可以通过计算时间长度的比例来得到概率。
几何概型的概率计算公式为:P(A) = m(A) /m(Ω),其中 m(A)表示事件 A 对应的区域长度(面积或体积),m(Ω)表示样本空间对应的区域长度(面积或体积)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计概率知识点归纳总结大全
1.了解随机事件的发生存在着规律性和随机事件概率的意义.
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.
5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归.
考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P (A )=)
()(I card A card =n
m ;
等可能事件概率的计算步骤:
(1) 计算一次试验的基本事件总数n ;
(2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n
=求值;
(4) 答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );
特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.
(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:
第一步,确定事件性质⎧⎪⎪⎨
⎪⎪⎩等可能事件
互斥事件 独立事件 n 次独立重复试验
即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨
⎩和事件积事件
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式()()()()()()()()(1)
k k n k n n m P A n
P A B P A P B P A B P A P B P k C p p -⎧
=⎪⎪⎪+=+⎨
⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念
①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i
x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.
为随机变量ξ的概率分布,简称ξ的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布
n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,
1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:
ξ
0 1 … k …
n
P
n n q p C 00 1
11-n n q p C
…
k n k k
n q p C -
q
p C n n n
称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:
),;(p n k b q p C k
n k k n =- .
(2) 几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. ξ
1x
2x
… i x
… P
P 1
P 2
…
i P
…
随机变量ξ的概率分布为:
ξ
1
2
3
…
k
…
P p
qp
2q p
…
1k q p -
…
考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差
(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.
(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;
如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p
E 1=ξ,D ξ =2
p
q 其中q=1-p.
考点4 抽样方法与总体分布的估计 抽样方法
1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念
如果连续型随机变量ξ 的概率密度函数为 2
22)(21)(σμπσ
--
=
x e
x f ,x R ∈ 其中σ、μ为
常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).
(2)期望E ξ =μ,方差2σξ=D . (3)正态分布的性质 正态曲线具有下列性质:
①曲线在x 轴上方,并且关于直线x =μ对称.
②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.
(4)标准正态分布
当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式
①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.
(6)2(,)N μσ与(0,1)N 二者联系.
(1)若2~(,)N ξμσ,则~(0,1)N ξμησ
-= ;
②若2~(,)N ξμσ,则()()()b a P a b μμξφφσ
σ
--<<=-.
2.线性回归
简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.
变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.
具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=ˆ.其中
,
,)(1
2
21
x b y a x n x
y
x n y
x b n
i i
n
i i
i
⋅-=--=
∑∑==,其中y x ,分别为|i x |、|i y |的平均
数.。