人教B版高中数学课件 选修2-3:第一章 计数原理 2.3《排列组合的应用》课时1

合集下载

2018版高中数学选修2-3课件:第一章 计数原理 1-2 第1

2018版高中数学选修2-3课件:第一章 计数原理 1-2 第1

解析
答案
n-m -1 Am · A (2)计算: n-1 n-1n-m =___. 1 An-1
解析
n-1! 原式= · (n-m)!· [n-1-m-1]!
n-1! 1 1 = · (n-m)!· =1. n-1! n-m! n-1!
解析
答案
反思与感悟
(1)排列数公式的逆用:连续正整数的积可以写成某个排列数,其中最大

3 * 由 A4 <140A 知, x ≥ 3 且 x ∈ N , 2x+1 x
由排列数公式,原不等式可化为
(2x+1)· 2x· (2x-1)(2x-2)<140x· (x-1)(x-2),
23 解得 3<x< 4 ,
因为x∈N*,所以x=4或x=5.
所以不等式的解集为{4,5}.
解答
反思与感悟
排列数 全排列
从n个不同元素中取出m(m≤n)个元 n个不同元素 全部取出 的
定义 素的 所有排列的个数 ,叫做从n个 一个排列,叫做n个不同
不同元素中取出m个元素的排列数
表示法
元素的一个全排列
n An
Am n
乘积形式 公式 阶乘形式 性质
(n-2)… Am n =n(n-1)·
(n-m+1)
… An n =n个点为端点作弦; 解 弦的端点没有先后顺序,不是排列问题. (4)20个车站,站与站间的车票价格; 解 车票价格与起点和终点无关,故车票价格是无顺序的,不是排列问题. (5)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条
直线?可确定多少条射线? 解 确定直线不是排列问题,确定射线是排列问题.
位数?
答案 4×3=12(个).

人教版高中数学选修2-3《排列组合综合应用》

人教版高中数学选修2-3《排列组合综合应用》

上表演,出场安排甲,乙两人都不唱中间两位的 安排方法有多少种?
A C A A A A (种)
6 8 1 2 1 4 5 8 2 4 4 8
(二)有条件限制的组合问题:
例2:已知集合A={1,2,3,4,5,6,7,8,9} 求含有5个元素,且其中至少有两个是偶数的子 集的个数。 下面解法错在哪里? 至少有两个偶数,可先由4个偶数中取2个偶数, 然后再由剩下的7个数中选3个组成5个元素集合且满足至 少有2个是偶数。成以共有子集C42.C73=210(个)
用“具体排”来看一看是否重复,如C42中的一种选法是:选4 个偶数中的2,4,又C73中选剩下的3个元素不6,1,3组成集 合{2,4,6,1,3,};再看另一种选法:由C42 中选4个偶数中 的4,6,又C73中选剩下的3个元素不2,1,3组成集合{4,6, 2,1,3}。显然这是两个相同和子集,所以重复了。重复的原 因是分类不独立。
(三)排列组合混合问题:
例3.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
1 1 1 解:可以分为两类情况:① 若取出6,则有2(A2 + C 8 2 C7C7 A 7 种方法,
解: ⑤ a在e的左边(可不相邻),这表明a,e只有一种顺 序,但a,e间的排列数为A22,所以,可把5个元素全排 列得排列数A55,然后再除以a,e的排列数A22。所以共 有排列总数为A55 / A22(种) 注意:若是3个元素按一定顺序,则必须除以排列数 A33。
1. 高二要从全级10名独唱选手中选出6名在歌咏会
优先法
解: ② 先从b,c,d三个选其中两个 排在首末两位,有A32种,然后把剩下的一个与a,e 排在中间三个位置有A33种,由乘法原理: 共有A32. A33=36种排列.

高中数学教材人教B版目录(详细版).doc

高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。

高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 排列

高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 排列

答案:6
12
2.排列数公式 (1)排列数公式:A������������ = (���������-������!���)!=n(n-1)(n-2)…(n-m+1),这里 n,m∈ N+,并且 m≤n. (2)一般地,n 个不同元素全部取出的一个排列,叫做 n 个不同元 素的一个全排列. A������������ =n!. (3)规定:0!=1.
12
(2)排列数公式的阶乘表示为
Amn
=n(n-1)(n-2)…(n-m+1)=n
·(n -1)·(n -2)·…·(n -m +1)·(n -m )·…·2·1 (n -m )·(n -m -1)·…·3·2·1
=(nn-m! )!,即Amn
=
n! (n -m
.
)!
在一般情况下,排列数的第一个公式Amn =n(n-1)·(n-2)…(n-m+1)
∴④式不正确.
答案:C
排列应用题的常见类型及解法有哪些? 剖析排列中具有典型意义的两类问题是“排数”问题和“排队”问 题,绝大多数排列问题都可转化为这两种形式. (1)无限制条件的排列应用题,直接利用排列数公式计算. (2)有限制条件的排列应用题,采用直接法或间接法.应注意以下 几种常见类型:
①含有特殊元素或特殊位置的,通常优先安排特殊元素或特殊位
=
������(������-1)! (������-������)!
=
������! (������-������)!
=
A������������ ,
∴②式正确;③式显然正确;

A������������--11
=
(������-1)! [(������-1)-(������-1)]!

2020人教版高三数学选修2-3(B版)电子课本课件【全册】

2020人教版高三数学选修2-3(B版)电子课本课件【全册】

1.3 二项式定理
本章小结
2.1 离散型随机变量及其分布列
2.1.1 离散型
2Байду номын сангаас1.3 超几何分布
2.2.2 事件的独立性
2.3 随机变量的数字特征
2.3.1 离散型随机变
2.4 正态分布
阅读与欣赏 关于“玛丽莲问题”的争论
3.1 独立性检验
本章小结
附表
后记
第一章 计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2.2 组合
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
2020人教版高三数学选修2-3(B 版)电子课本课件【全册】目录
0002页 0065页 0109页 0165页 0242页 0291页 0317页 0352页 0392页 0394页 0447页 0514页 0608页 0652页
第一章 计数原理
1.2 排列与组合
1.2.1 排列
1.3 二项式定理
1.1 基本计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2 排列与组合 排列
1.2.1
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】

人教B版选修2-3第一章计数原理全部教案---两个计数原理

人教B版选修2-3第一章计数原理全部教案---两个计数原理

1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习〞与“合作学习〞等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规那么做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理〔1〕提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?〔2〕发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有=nN+m种不同的方法.〔3〕知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9〔种〕.变式:假设还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理〔1〕提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的?用列举法可以列出所有可能的:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个,而且它们各不相同,因此共有 6×9 = 54 个不同的.探究:你能说说这个问题的特征吗?〔2〕发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.〔3〕知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?[分析]①要完成的事是“取一本书〞,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书〞,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书〞,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 〕从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .〔3〕26232434=⨯+⨯+⨯=N 。

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。

一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。

2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。

3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。

教学重点是两个基本计数原理的内容。

难点是如何正确是用两个基本计数原理来解决实际问题。

二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。

三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。

采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。

四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。

人教版高中数学选修2-3课件:第一章1-2-1-2-2第1课时组合与组合数公式

人教版高中数学选修2-3课件:第一章1-2-1-2-2第1课时组合与组合数公式

2×1
(4)对,根据组合数的性质知等式成立. 答案:(1)√ (2)√ (3)× (4)√
2.下列计算结果为 21 的是(
2 A.A2 + C 4 6
)
B.C7 7 D.C2 7 2×1
C.A2 7
பைடு நூலகம்
2 7×6 解析:C7= =21.
答案:D
3.下面几个问题中属于组合问题的是(
)
①由 1,2,3,4 构成的双元素集合;②5 个队进行 单循环足球比赛的分组情况;③由 1,2,3 构成两位数的 方法;④由 1,2,3 组合无重复数字的两位数的方法. A.①③ C.①② B.②④ D.①②④
m m-1 Cn +Cn _________ .规定:C0 n=1.
温馨提示 1.组合数公式可由排列数公式表示,注意 公式的结构;2.组合数公式在 n,m∈N*,且 m≤n 时成立, 在 m>n 时不成立.
[思考尝试· 夯基] 1.思考判断(正确的打“√”,错误的打“×”). (1)从 x, y, z 三个不同元素中任取两个元素组成一个 组合,所有组合个数为 C2 3.( )
解析:甲选修 2 门的选法有 C2 4=6(种),乙、丙各选
3 修 3 门的选法有 C3 · C 4 4=16(种).由分步乘法原理可知,
选法共有 6×16=96(种). 答案:C
-1 2x-3 5.设 x∈N*,则 Cx + C - 2x 3 x+1 =________.
解析:根据组合数的概念知 0≤x-1≤2x-3≤x+1, 得 2≤x≤4,因为 x∈N*,所以 x=2 或 x=3 或 x=4,所
m 个元素的组合数,用符号 Cn 表示.
温馨提示 注意组合与排列的区别与联系.
2.组合数公式与性质

[精品课件]高中数学 第一章 计数原理 1.2.1 第2课时 排列的综合应用课件 新人教B版选修2-3

[精品课件]高中数学 第一章 计数原理 1.2.1 第2课时 排列的综合应用课件 新人教B版选修2-3

【解】 (1)符合要求的五位数可分为两类:第一类,个位上的数字是 0 的 五位数,有 A54个;第二类,个位上的数字是 5 的五位数,有 A14·A43个.故满足条 件的五位数的个数共有 A54+A14·A43=216(个).
(2)符合要求的比 1 325 大的四位数可分为三类: 第一类,形如 2□□□,3□□□,4□□□,5□□□,共 A41·A35个; 第二类,形如 14□□,15□□,共有 A21·A24个; 第三类,形如 134□,135□,共有 A21·A13个. 由分类加法计数原理知,无重复数字且比 1 325 大的四位数共有:A41·A35+ A21·A24+A21·A13=270(个).
解排数字问题常见的解题方法 1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排 “首位”. 2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数 原理进行,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不 重不漏.
3.“排除法”:全排列数减去不符合条件的排列数. 4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.
(3)先站老师和女生,有站法 A33种,再在老师和女生站位的间隔(含两端)处 插入男生,每空一人,则插入方法 A44种,所以共有不同站法 A33·A44=144(种).
(4)7 人全排列中,4 名男生不考虑身高顺序的站法有 A44种,而由高到低有从 左到右和从右到左的不同,所以共有不同站法 2·AA4477=420(种).
1.用数字 1,2,3,4,5 组成的无重复数字的四位偶数的个数为________.
【解析】 从 2,4 中取一个数作为个位数字,有 2 种取法;再从其余四个数 中取出三个数排在前三位,有 A43种排法.由分步乘法计数原理知,这样的四位偶 数共有 2×A43=48 个.

人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理

人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理
根据分类加法计数原理,共有32+8=40个.
答案:40
专题二
排列组合的应用
【例2】 6名女生(其中有1个领唱)和2名男生分成两排表演.
(1)每排4人,共有多少种不同的排法?
(2)领唱站在前排,男学生站在后排,每排4人,有多少种不同的排法?
解:(1)要完成这件事,可以分为三步:
第一步,从 8 人中选 4 人站在前排,另 4 人站在后排,共有C84 C44 种不同的排法;
(
)
A.122
B.135
C.154
D.165
(2)如图,给矩形A,B,C,D涂色,要求相邻的矩形涂色不同,现有4种不同的颜
色可供选择,则不同的涂法有(
A.72种
B.48种
C.24种
D.12种
)
解析:(1)可以组成7×8×8=448个三位数,
其中无重复数字的三位数有7×7×6=294个,
故有重复数字的三位数有448-294=154个.
3
答案:2
=
专题四
项的系数和问题
【例4】 (1)若(a+x)(1+x)4的展开式中x的奇数次项的系数之和为32,则
a=
.
(2)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-
(a1+a3+…+a9)2=39,则实数m的值为
.
解析:(1)设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,

高中数学选修2-3《排列与组合》全部课件

高中数学选修2-3《排列与组合》全部课件
从n个不同元素中取出m(m≤n)个元素的所 有组合的个数,叫做从n个不同元素中取出m个
元素的组合数,用符号Cnm表示。
注意:1.m个元素必须从这n个元素中取出;
2.组合问题,哪些是排列问题?
1、从a,b,c,d四名学生中选2名学生完成一件工作,
1.排列 定义:一般地,从 n 个不同元素中,任取 m (m≤n) 个元素,按照一定的顺序排成一列, 叫做从 n 个不同元素中取出 m 个元素的 一个排列.
说明:①一次性取出m个元素;②将这m个
元素按一定的顺序排成一列.③ m≤n
注:(相同排列:元素相同,顺序相同.)
例1.下列问题是不是排列问题? 1.某学校的高二(1)班有50名同学,从 中选出5人组成班委会,共有多少种选法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
4)甲不排头,也不排尾,共有几种排法?

5)甲只能排头或排尾,共有几种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
6)甲不排头,乙不排尾,共有多少种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩,三 家是女孩,现将这七个小孩站成一排照相留念。
1)甲站在正中间的排法有几种?

有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
2)甲乙两人必须站在两端的排法有几种?


3)甲乙两人不能站在两端的排法有几种?
有多少种不同的选法?
组合
2、从a,b,c,d四名学生中选2名学生完成两件不同的

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.捆绑法:元素相邻 3.插空法:元素不相邻
4.其它方法:元素限制条件多
二、间接法(排除法)
一、直接法
1.优限法:
有特殊元素或特殊位置,通常先排特殊元素或特殊 位置,称为“优限法”.
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
画龙点睛:特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
3.排列数公式: 4.组合数公式:
Anm n(n 1)(n 2)(n m 1)
n! (n m)!
Cn m
An m Am m
n(n 1)(n 2)(n m 1) m!
n!
m!(n m)!
排列与组合的区别与联系:与顺序有关为排列问题,与 顺序无关的为组合问题.
有限制条件的排列组合问题
解:A44 A31 A31 A33 78 A55 2 A44 A33 78
练习题1
7种不同的花种在排成一列的花盆里,若两种 葵花不种在中间,也不种在两端的花盆里, 问有多少不同的种法?
A A2 5 1440 45
例2. 七个家庭一起外出旅游,若其中四家是一个 男孩,三家是一个女孩,现将这七个小孩站成一排 照相留念。 (3)若三个女孩要站在一起,有多少种不同的排法?
BA
解:A,B两小孩的站法有:2 A2(2 种),其余人的站法
有A55(种),所以共有 2 A22 A55 480(种) 排法。
变式1. 将5列车停在5条不同的轨道上,其中a列车不 停在第一轨道上,b列车不停在第二轨道上,那么不同 的停放方法有( ). (A)120种 (B)96种 (C)78种 (D)72种
解: A22 A44 A52 960
另解:A22 A55 A41 960
(5)学校组织老师学生一起看电影,同一排电影票12张。 8个学生,4个老师,要求老师在学生中间,且老师互不 相邻,共有多少种不同的坐法?
分析 此题涉及到的是不相邻问题,并且是对老师有特殊 的要求,因此老师是特殊元素,在解决时就要特殊对待. 所涉及问题是排列问题.
有限制条件的排列组合综合问题是主要考 查方向.解决此类问题要遵循“谁特殊谁 ___优__先__”的原则,采取分类或分步,或用 间接法处理;对于选排列问题可采用先__选__ 后___排___的方法,分配问题的一般思路是先 ____选__取____再分配.
有限制条件的排列组合问题常用方法 一、直接法
1.优限法:先特殊后一般
捆绑法
解:将三个女孩看作一人与四个男孩排队,有A55种 排法,而三个女孩之间有A33种排法,所以不同的排 法共有:A55 A33 720(种)。
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。 (4)若三个女孩要站在一起,四个男孩也 要站在 一起,有多少种不同的排法?
解:将1与2,3与4,5与6捆绑在一起排成一列
有A33 23 48 种,再将7、8插入4个空位中的两个 有 A42 12 种,故有 4812 576 种.
(4)七人排成一排,甲、乙两人必须相邻,且甲、 乙都不与丙相邻,则不同的排法有( )种.
(A)960种 (B)840种 (C)720种 (D)600种
插空法
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。 (6)若三个女孩互不相邻,四个男孩也互不相 邻,有多少种不同的排法?
不同的排法共有: A44 A33 144(种)
插空法一般适用于 互不相邻 问题的处理。
一、直接法
3.插空法:元素不相邻宜采用插空法
实际问题 得 实 际 问 题 的 解
转化 (建模)
求排列数
排列问题 求 数 学 模 型 的 解
以元素相邻为附加条件的应把相邻元素视为一个整 体,即采用“捆绑法”;以某些元素不能相邻为附 加条件的,可采用“插空法”。“插空”有同时 “插空”和有逐一“插空”,并要注意条件的限定.
有限制的排列问题
限制条件:某位置上不能排某元素或只能排某元素
常用方法:(1)直接法 1.优限法:先特殊后一般 (有特殊元素或特殊位置,通常先
排特殊元素或特殊位置,称为“优 限法” ) 2.捆绑法:元素相邻
3.插空法:元素不相邻
4.其它方法:元素限制条件多
4.其它方法:元素限制条件多 (1).定序问题倍缩空位插入策略 (2).重排问题求幂策略 (3).排列组合混合问题先选后排策略 (4).元素相同问题隔板策略 (5).平均分组问题除法策略 (6).合理分类与分步策略 (7).构造模型策略 (8).实际操作穷举策略
解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置
先排末位共有__C__31____
然后排首位共有__C_41___
最后排其它位置共有__A__43___ C41
A43
C31
由分步计数原理得
C31
C
1 4
A43
=288
位置分析法和元素分析法是解决排列组合问题最
常用也是最基本的方法。
由分步计数原理可得共有A55 A22 A22 =480
种不同的排法
要求某几个元素必须排在一起的问题,可以用 捆绑法来解决问题.
练习1.
5个男生3个女生排成一排,3个女生 要排在一起,有多少种不同的排法?
解:共有 A66 A33 4320 种不同的排法.
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。 (5)若三个女孩互不相邻,有多少种不同的排法?
不同的排法有:A22 A33 A44 288(种)
捆绑法一般适用于 相邻 问题的处理。
一、直接法
2.捆绑法:用于解决元素相邻问题
例2. 7人站成一排 ,其中甲乙相邻且丙丁 相邻, 共有多少种不同的排法.
变式1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:
甲乙 丙丁
解 先排学生共有 P88 种排法,然后把老师插入学生 之间的空档,共有7个空档可插,选其中的4个空档,共 有 P74 种选法.根据乘法原理,共有的不同坐法为 P88P74 种.
结论 插入法:对于某两个元素或者几个元素要求不相 邻的问题,可以用插入法.即先排好没有限制条件的元 素,然后将有限制条件的元素按要求插入排好元素的 空档之中即可.
尾两个空位共有种 A64 不同的方法,
由分步计数原理,节目的不同顺序共有
A A55
4 6
种.
元素不相邻问相题可先独把没有独位置要求独的元素相进行排队 再把不相邻元素插入中间和两端
练习1:
某班新年联欢会原定的5个节目已排成节目单,开
演前又增加了两个新节目.如果将这两个新节目插
入原节目单中,且两个新节目不相邻,那么不同
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
(1)若其中的A小孩必须站在B小孩的左边,有 多少种不同的排法?
解:A在B左边的一种排法
必对应着A在B右边的一种
A
B 排法,所以在全排列中,
A在B左边与A在B右边的排
法数相等,因此有:
1 2
A77
252ห้องสมุดไป่ตู้(种)
解:先把四个男孩排成一排有 A44种排法,在每一排 列中有五个空档(包括两端),再把三个女孩插入 空档中有A53种方法,所以共有:A44 A53 1440(种) 排法。
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。 (5)若三个女孩互不相邻,有多少种不同的排法?
插3法0的种数为
.
课堂练习:
(1)三个男生,四个女生排成一排,男生、女生 各站一起,有几种不同方法?
捆绑法:A22 A33 A44
(2)三个男生,四个女生排成一排,男生之间、 女生之间不相邻,有几种不同排法?
插空法:A33 A44
(3)用1、2、3、4、5、6、7、8组成 没有重复数字的八位数,要求1与2相邻,3与 4相邻,5与6相邻,而7与8不相邻,这样的 八位数共有___________个.(用数字作答)
1.1.3 排列组合的应用 (一)
(1)使学生掌握组合数的计算公式、组合数 (2)会用排列数公式和组合数公式解决实际问题. (3)通过学习组合知识,让学生掌握类比的学习方 法,并提高学生分析问题和解决问题的能力.
本节课,我们对有关排列组合的几种常见的解 题策略加以复习巩固。排列组合历来是学习中的难 点,通过我们平时做的练习题,不难发现排列组合 题的特点是条件隐晦,不易挖掘,题目多变,解法 独特,数字庞大,难以验证。同学们只有对基本的 解题策略熟练掌握。根据它们的条件,我们就可以 选取不同的技巧来解决问题.
B
A 排法。
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
(1)若其中的A小孩必须站在B小孩的左边,有 多少种不同的排法?
A
B
A75 2520
例2.七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。 (2)若前排站三人,后排站四人,其中的A.B两小 孩必须站前排且相邻,有多少种不同的排法?
敬请指导
对于一些比较复杂的问题,我们可以将几种策略 结合起来应用把复杂的问题简单化,举一反三,触 类旁通,进而为后续学习打下坚实的基础。
1.排列的定义:
从n个不同元素中,任取m个元素,按照一定的顺 序排成一列,叫做从n个不同元素中取出m个元
素的一个排列.
2.组合的定义: 从n个不同元素中,任取m个元素,并成一组,叫 做从n个不同元素中取出m个元素的一个组合.
变式1.一个晚会的节目有4个舞蹈,2个相 声,3个独唱,舞蹈节目不能连续出场,则节目 的出场顺序有多少种?
相关文档
最新文档