第二十二届“华杯赛”决赛初一组试题.pdf

合集下载

华杯赛试题及答案

华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. 1B. -1C. -5D. 5答案:C2. 若a和b是两个不同的实数,且a^2 + b^2 = 0,下列哪个选项是正确的?A. a = 0,b ≠ 0B. a ≠ 0,b = 0C. a = 0,b = 0D. a ≠ 0,b ≠ 0答案:C3. 计算下列几何图形的面积:一个半径为3的圆。

A. 9πB. 18πC. 27πD. 36π答案:C4. 一个数列的前三项分别是1, 2, 4,每一项都是前一项的两倍,这个数列的第五项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题5分,共20分)5. 一个等差数列的首项是5,公差是3,那么这个数列的第10项是________。

答案:286. 已知一个直角三角形的两条直角边长分别为6和8,那么这个三角形的斜边长是________。

答案:107. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是________。

答案:24立方厘米8. 一个分数的分子是15,分母是20,化简后这个分数是________。

答案:3/4三、解答题(每题15分,共30分)9. 已知一个二次函数y = ax^2 + bx + c,其中a = 2,b = -3,c = 1,求这个函数的顶点坐标。

答案:顶点坐标为(3/2, -5/2)。

10. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是3/5。

第22届华杯赛总决赛全部四组题目

第22届华杯赛总决赛全部四组题目

总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。

18~22届华杯赛初一组初赛试题及参考答案

18~22届华杯赛初一组初赛试题及参考答案

A. 4
B. 1
C. 1
3
2
3
D. 20 3
7.【第 18 届华杯赛初赛 B 卷第 3 题】
将乘积 0.2 43 0.325233 化为小数,小数点后第 2013 位数字是 ______ .
A.9
B.3
C.1
D.7
8.【第 18 届华杯赛初赛 B 卷第 4 题】
如果 a、b、c 都是大于 1 的负数,那么下列式子成立的是 ______ . 2
______ .A.1Fra bibliotekB.1007
C.2013
D.2014
16.【第 19 届华杯赛初赛 B 卷第 6 题】
x a 0 已知关于 x 的不等式组 5 2x 1 只有 5 个整数解,实数 a 的最大值是 ______ .
A. -4
B.1
C.0
D.-3
17.【第 20 届华杯赛初赛卷第 1 题】
D.16
12.【第 19 届华杯赛初赛 A 卷第 5 题】
已知:
a1 12 8, a2 102 98, a3 1002 998, a4 10002 9998,, a20 100 02 99 98
19 个 0
19 个 9
若 S a1 a2 a20 ,则 S 的各个数位上的数字总和是 ______ .
(2014)2 2 (2014) 2013 (2013)2 2 (2014) 4026 ______ .
A.1
B.0
C.-1
D.2
11.【第 19 届华杯赛初赛 A 卷第 2 题】
满足式子 x 5 4 y 2 10 的整数对 (x, y) 有 ______ 对.
A.4
B.8

华杯赛初赛试题及答案

华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。

答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。

答案:803. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-54. 一个数除以2的结果是3,那么这个数是______。

答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。

答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。

根据题意,2x=10,解得x=5。

答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。

证明:设直角三角形的两直角边分别为a和b,斜边为c。

根据勾股定理,有a^2 + b^2 = c^2。

答案:证明完毕。

2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。

证明:设这个数为x,那么x^2 = -x。

将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。

七年级数学华杯赛试卷

七年级数学华杯赛试卷

一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 25B. 39C. 53D. 642. 下列哪个不是偶数?A. 18B. 20C. 21D. 223. 一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的面积是:A. 40cm²B. 50cm²C. 60cm²D. 80cm²4. 小明骑自行车去学校,他每小时可以骑行10km。

如果他要在1小时内到达学校,那么他至少需要骑行:A. 5kmB. 8kmC. 9kmD. 10km5. 下列哪个分数可以化简为最简分数?A. 24/36B. 30/45C. 40/60D. 50/756. 一个长方形的长是6cm,宽是4cm,那么它的周长是:A. 20cmB. 24cmC. 28cmD. 30cm7. 小华有一些铅笔和橡皮,铅笔的数量是橡皮数量的3倍。

如果小华有24个橡皮,那么他有多少支铅笔?A. 6B. 12C. 18D. 248. 一个正方形的对角线长为10cm,那么它的面积是:A. 50cm²B. 100cm²C. 150cm²D. 200cm²9. 下列哪个数是整数?A. 2.5B. 3.14C. 3.1416D. 310. 小明有5个苹果,他每天吃掉一个苹果,连续吃5天,那么他最后还剩下多少个苹果?A. 0B. 1C. 2D. 3二、填空题(每题5分,共20分)11. 12 + 3 × 4 = ______12. 7 - 5 ÷ 2 = ______13. 2 × 5 + 3 ÷ 2 = ______14. 36 ÷ 6 - 4 × 2 = ______15. (8 + 3) × 2 - 5 = ______三、解答题(每题10分,共30分)16. 解方程:3x - 5 = 1917. 一个长方体的长、宽、高分别为5cm、4cm、3cm,求它的体积。

18~22届华杯赛初一组决赛试题及参考答案

18~22届华杯赛初一组决赛试题及参考答案

18~22届“华杯赛”【初一组】决赛试题及参考答案目录计算 (1)计数 (3)几何 (6)数论 (13)应用题、行程 (16)组合 (18)第一章计算1.【第18届华杯赛决赛A 卷第1题】计算:______90030010093186293140020010042)1(8424211=⨯⨯+⋅⋅⋅+⨯⨯+⋅⋅⋅+⨯⨯+⨯⨯⨯⨯-⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯⨯-⨯⨯-n n n n n n n .2.【第18届华杯赛决赛A 卷第7题】设d cx bx ax x P +++=23)(,若4,3,2,1,1)(==k k k P ,那么______=+-ba d c .3.【第18届华杯赛决赛A 卷第10题】解关于x 的方程:259]15[]2[-=+++x x x ,其中][x 表示不超过x 的最大整数4.【第18届华杯赛决赛A 卷第12题】整数d c b a 、、、满足105,183,82+=-=+=d c c b b a ,求a d 7+的最小值5.【第18届华杯赛决赛B 卷第1题】已知18=+b a ,17=ab ,求______=-b a .6.【第18届华杯赛决赛B 卷第10题】已知3128))(331(4)(332730+-⋅⋅⋅+--+⋅⋅⋅+-=a a n a a a f n ,求)(a f 被12-a 除的余式7.【第19届华杯赛决赛卷第1题】计算:______]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-.8.【第19届华杯赛决赛卷第4题】正整数c b a 、、满足三个等式:68,943,3222=+=⎪⎭⎫ ⎝⎛++=b a c b a c b a ,则c 等于______.9.【第20届华杯赛决赛卷第1题】计算:______)1024110813412211(2048=+⋅⋅⋅+++⨯.10.【第20届华杯赛决赛卷第3题】正整数d c b a 、、、满足4332<<<d c b a ,当d c b a +++最小时,______=c ,______=d .11.【第20届华杯赛决赛卷第11题】已知,23,43111=++=-+ab c ac b bc a a c b 0)2(4222=---c b b c c b ,b 与c 同号,且c b 2≠,求444c b a ++.12.【第21届华杯赛决赛卷第1题】已知n 个数n x x x ,,,21⋅⋅⋅,每个数只能取0,1,-1中的一个.若201621=+⋅⋅⋅++n x x x ,则20152015220151n x x x +⋅⋅⋅++的值为______.13.【第21届华杯赛决赛卷第4题】设正整数y x 、满足2099=--y x xy ,则______22=+y x .14.【第21届华杯赛决赛卷第6题】已知5=++z y x ,5111=++zy x ,1=xyz ,则______222=++z y x .15.【第21届华杯赛决赛卷第7题】关于y x 、的方程组⎪⎩⎪⎨⎧=-=+121y x a y x 只有唯一的一组解,那么a 的取值为______.16.【第22届华杯赛决赛卷第1题】数轴上10个点所表示的数分别为1a ,2a ,…10a ,且当i 为奇数时,21=-+i i a a ,当i 为偶数时,11=-+i i a a ,那么______610=-a a .17.【第22届华杯赛决赛卷第3题】如下的代数和10071010)12016()1(2015220161⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 的个位数字是______,其中m 是正整数.第二章计数1.【第18届华杯赛决赛A 卷第8题】【第18届华杯赛决赛B 卷第6题】见右图,长宽比例是2:1的长方形镶有黑色宽边且一端带有1:1正方形对角线的图案,用8个这种长方形拼成一个正方形图案,要求其中4个水平放置,4个竖直放置,若一个这样拼成的正方形图案经过旋转与另一个拼成的正方形图案相同,则认为两个拼成的正方形图案相同,那么有对称轴的不同的图形有______种2.【第18届华杯赛决赛B 卷第4题】如图,一只青蛙开始在正六边形ABCDEF 顶点A 处,它每次可随意地跳到相邻的两个顶点之一,在D 点处有只飞虫,若青蛙在5次之内跳到D 点,则可以捕捉到飞虫,否则飞虫会逃走,那么青蛙从开始到抓住飞虫,有______种不同跳法解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;3.【第18届华杯赛决赛B 卷第8题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值4.【第19届华杯赛决赛卷第7题】方程023=+++C Bx Ax x 的系数,C B A 、、为整数,10,10,10<<<C B A ,且1是方程的根,那么这种方程总共有______个5.【第20届华杯赛决赛卷第10题】(1)右图有几个四边形?(2)在右图的每个顶点处分别标上1和-1,共有4个1和4个-1,将每个四边形4个顶点处的数相乘,再将所得的所有的积相加,问:至多有多少个不同的和?6.【第21届华杯赛决赛卷第3题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 为“好点”.那么在这张格子纸上共有______个“好点”.7.【第21届华杯赛决赛卷第8题】右图是一个骰子的展开图,每个面是一个单位正方形.用四个骰子粘成一个2×2×1的长方体放到桌面上,要求每两个粘在一起的面上的“点数”相同.长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面,两个长方体不同是指对应六个面的“点”的拼图不同.不考虑长方体的旋转,共可以粘出______种不同的长方体.8.【第22届华杯赛决赛卷第7题】右图是A,B,C,D,E五个防区和连接这些防区的条公路的示意图.已知每一个防区驻有一支部队.现在这五支部队都要换防,且换防时,每一支部队只能经过一条公路,换防后每一个防区仍然只驻有一支部队,则共有______种不同的换防方式.第三章几何1.【第18届华杯赛决赛A 卷第2题】将ABC ∆沿DE 、HG 、EF 翻折后压平,ABC ∆的三个顶点C B A 、、均落在点O 处,若o 512=∠,则1∠的度数为______.2.【第18届华杯赛决赛A 卷第4题】将长为8,宽为6的长方形ABCD 纸片一组对角的顶点D B 、重合,压平,折出右面的图形D AEFC ',则三角形AED 的面积为______.3.【第18届华杯赛决赛A 卷第11题】若用一张斜边长为15厘米的红色直角三角形纸片,一张斜边长为20厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,如右图恰拼成一个直角三角形,则黄色正方形纸片的面积是多少平方厘米4.【第18届华杯赛决赛A 卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于5和cm10,若三角形COD的面∠且它们的腰成分别为cm=O,顶角CEDBAC∠8cm,求四边形ABDE的面积积为25.【第18届华杯赛决赛B卷第3题】将的长方形ABCD纸片一组对角的顶点DB、重合,压平,折出右面的图形DAEFC',如果bAB==,,则三角形AED的面积与长方形ABCD的面积之aAD比为______.6.【第18届华杯赛决赛A卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于∠且它们的腰成分别为cm10,若三角形COD的面5和cm=BAC∠O,顶角CED8cm,求四边形ABDE的面积积为27.【第18届华杯赛决赛B卷第5题】若F E 、分别为三角形ABC 中边AC AB 、上的点,CE 和BF 相交于P ,已知三角形EBP 与三角形EPC 以及四边形AEPF 的面积都是4,则三角形PBC 的面积为______.7.【第18届华杯赛决赛B 卷第13题】如图所示,两个等腰三角形ABC 和ECD 的底边在一条直线BD 上,AD 交EC 于O ,顶角CED BAC ∠=∠且它们的腰成分别为cm 5和cm 10,若四边形ABDE 的面积为25.52cm ,求三角形COD 的面积9.【第19届华杯赛决赛卷第2题】如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点,以格点为顶点做一个三角形,记L 为三角形边上的格点数目,N 为三角形内部的格点数目,三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积121-+=N L 如果三角形的边上和内部共有20个点,则三角形面积最大等于______,最小等于______.10.【第19届华杯赛决赛卷第3题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,EB CE DC AD ==,,则线段DE 的长度最小为______.11.【第19届华杯赛决赛卷第5题】如图,直角三角形ABC 中,F 为AB 上的点,且FB AF 2=,四边形EBCD 为平行四边形,那么______=EFFD .12.【第19届华杯赛决赛卷第10题】如右图,在ABC ∆中,D 为BC 的中点,AE CE FB AF 3,2==,连接CF 交DE 于P 点,求DPEP 的值13.【第20届华杯赛决赛卷第7题】如右图,正六边形中两个等边三角形的面积都是30平方厘米,那么正六边形的面积是______平方厘米14.【第20届华杯赛决赛卷第13题】如图,ABC ∆中,D 为BC 上一点,E DB CD ,3:2:=是AB 上一点,且F EB AE ,1:2:=是CA 的延长线上的一点,且3:4:=FA CA 若DFE ∆的面积是1209,求ABC ∆的面积15.【第21届华杯赛决赛卷第9题】在恰有三条边相等的四边形中,有两条等长的边所夹的内角为直角.若从该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形,求该直角所对的角的度数.16.【第21届华杯赛决赛卷第11题】两张8×12的长方形纸片重叠地放置,有一个顶点重合,尺寸如右图所示.问图中阴影部分的面积是多少?17.【第21届华杯赛决赛卷第13题】如右图,ABCD是正方形,F是其两条对角线的交点,E在BC边上,DE2:1BE与对角线AC的交点为G,三角形DFG的面积等于2.求正方:EC形ABCD的面积.18.【第22届华杯赛决赛卷第2题】如右图,三角形ABC,三角形AEF和三角形BDF均为正三角形,且三角形ABC,三角形AEF的边长分别为3和4,则线段DF长度的最大值等于______.19.【第22届华杯赛决赛卷第10题】如右图,已知正方形ABDF的边长为6厘米,三角形EBC的面积为6平方厘米,点C在线段FD的延长线上,点E为线段BD和线段AC的交点.求线段DC的长度.20.【第22届华杯赛决赛卷第11题】如右图,先将一个菱形纸片沿对角线AC折叠,使顶点B和D重合.再沿过A、和C其中一点的直线剪开折叠后的纸片,然后将纸片展开.这些纸片中)B(D菱形最多有几个?请说明理由.第四章数论1.【第18届华杯赛决赛A 卷第5题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值2.【第18届华杯赛决赛B 卷第11题】一个三位数,将它的三个数字、三个数字两两乘积、三个数字的乘积相加,其和恰好等于它本身,这样的三位数中最小的是多少?3.【第18届华杯赛决赛B 卷第12题】将2613表示为不少于5个非零连续自然数n a a a ,,,21⋅⋅⋅之和,即5,261321≥=+⋅⋅⋅++n a a a n ,则第一项(最小的数)1a 可以取的最大值与最小值分别是多少?4.【第18届华杯赛决赛B 卷第14题】某些不为0的自然数是2010个数码和相同的自然数之和,也是2012个数码和相同的自然数之和,还是2013个数码和相同的自然数之和,求其中最小的那个自然数5.【第19届华杯赛决赛卷第8题】如果c b a 、、为不同的正整数,且222c b a =+,那么乘积abc 最接近2014的值是______.6.【第19届华杯赛决赛卷第12题】将一个四位数中的四个数字之和的两倍与这个四位数相加得2379,求这个四位数7.【第19届华杯赛决赛卷第13题】求质数c b a 、、,使得abc bc ab a =++715.8.【第20届华杯赛决赛卷第6题】设c b a 、、为1到9中的三个不同整数,则cb a abc ++的最大值是______,最小值是______.(abc 是个三位数)9.【第20届华杯赛决赛卷第9题】算式:20146422013531⨯⋅⋅⋅⨯⨯⨯+⨯⋅⋅⋅⨯⨯⨯的值被2015除的余数是多少?10.【第20届华杯赛决赛卷第14题】求使得n n 22+是完全平方数的自然数n .11.【第21届华杯赛决赛卷第12题】证明:对任何非零自然数12123,23-++n n n n 都是整数,并且用3除余2.12.【第22届华杯赛决赛卷第4题】已知20162015<<x ,设][x 表示不大于x 的最大整数,定义{}][x x x -=,如果{}][x x ⨯是整数,则满足条件的所有x 的和等于______.13.【第22届华杯赛决赛卷第5题】设z y x 、、是自然数,则满足36222=+++xy z y x 的z y x 、、有______组.14.【第22届华杯赛决赛卷第6题】设pq q p q p 113--、、、都是正整数,则22q p +的最大值等于______.15.【第22届华杯赛决赛卷第8题】下面两串单项式各有2017个单项式:100831008210078100772535131287326050604960476046132387542,,,,,,,)2(;,,,,,,,)1(y x y x y x y x y x y x y x y x y x y x y x xy m m n n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----其中m n 、为正整数,则这两串单项式中共有______对同类项.16.【第22届华杯赛决赛卷第9题】是否存在长方体,其十二条棱的长度之和、体积、表面积的数值均相等?如果存在,请给出一个例子;如果不存在,请说明理由.17.【第22届华杯赛决赛卷第12题】证明:任意5个整数中,至少有两个整数的平方差7是的倍数.18.【第22届华杯赛决赛卷第14题】已知关于y x 、的方程201722=+-k y x 有且只有六组正整数解,且y x ≥,求k 的最大值.第五章应用题、行程1.【第18届华杯赛决赛A 卷第3题】【第18届华杯赛决赛B 卷第2题】若干人完成了植树2013棵的任务,每人植树的数目相同,如果有5人不参加植树,则剩余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务,那么共有______参加植树.2.【第18届华杯赛决赛A 卷第6题】【第18届华杯赛决赛B 卷第7题】甲、乙两车分别从A、B 地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米,两车分别到达B 地和A 地后,立即返回,返回时甲车的速度增加二分之一,乙车的速度增加五分之一,已知两车两次相遇处的距离是50千米,则A、B 两地的距离为______千米.3.【第19届华杯赛决赛卷第6题】一辆公交快车和一辆公交慢车沿某环路顺时针运行,它们的起点分别在A 站和B 站,快车每次回到A 站休息4分钟,慢车每次回到B 站休息5分钟,两车在其他车站停留的时间不计,已知沿顺时针方向A 站到B 站的路程是环路全程的52,两车环形一次各需45分钟和51分钟(不包括休息时间),那么,它们从早上6时同时出发,连续运行到晚上10时,两车同在B 站______次.4.【第20届华杯赛决赛卷第4题】圆形跑道上等距插着2015面旗子,甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈,不算起始点旗子位置,则中间有______次甲正好在旗子位置追上乙.5.【第21届华杯赛决赛卷第2题】某停车场白天和夜间两个不同时段的停车费用的单价不同.张明2月份白天的停车时间比夜间要多40%,3月份白天的停车时间比夜间要少40%.若3月份的总停车时间比2月份多20%,但停车费用却少了20%,那么该停车场白天时段与夜间时段停车费用的单价之比是______.6.【第21届华杯赛决赛卷第5题】甲、乙两队修建一条水渠.甲先完成工程的三分之一,乙后完成工程的三分之二,两队所用的天数为A;甲先完成工程的三分之二,乙后完成工程的三分之一,两队所用天数为B;甲、乙两队同时工作完成的天数为C.已知A比B多5,A是C的2倍多4.那么甲单独完成此项工程需要天______.第六章组合1.【第18届华杯赛决赛A 卷第9题】恰用4个数码4和一些加、乘、幂运算、负号、分数线和括号,写出5个值都等于5的不同算式2.【第18届华杯赛决赛A 卷第14题】若干红,黄,蓝三种颜色的球放在155个盒子中,现将这些盒子分类:第一种分类方法是将红色球数目相同的盒子归为一类,第二种方法是将黄色球数目相同的盒子归为一类,第三种方法是将蓝色球数目相同的盒子归为一类,结果发现从1到30之间所有整数都是某种方法分类中的某一类的盒子数那么,(1)三种分类的类数之和是多少?(2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同3.【第18届华杯赛决赛B 卷第9题】在直线上依次排列有D C B A 、、、四点,请证明:BDAC AD BC CD AB ⨯=⨯+⨯4.【第19届华杯赛决赛卷第9题】有三个农场在一条公路边,如图A、B、C 处,A 处农场年产小麦50吨,B 处农场年产小麦10吨,C 处农场年产小麦60吨,要在这条公路上修建一个仓库收买这些小麦,假设运费从A 到C 方向是1.5元/吨千米,从C 到A 方向是1元/吨千米,那么仓库应建在何处才能使运费最低?5.【第19届华杯赛决赛卷第11题】某地参加华杯赛决赛的104名小选手来自14所学校,请证明:一定有选手人数相同的两所学校.6.【第19届华杯赛决赛卷第14题】如果有理数10321,,,,a a a a ⋅⋅⋅满足条件:10,10,0109432110321≤++⋅⋅⋅++≤+≥≥⋅⋅⋅≥≥≥a a a a a a a a a a ,那么210232221a a a a +⋅⋅⋅+++的最大值是多少?7.【第20届华杯赛决赛卷第2题】一堆彩球只有红、黄两色,先数出的50个球有49个红球,此后,每数出8个球中都有7个红球,恰好数完,已数出的球中红球不少于90%,这堆彩球最多有______个.8.【第20届华杯赛决赛卷第5题】现有2015张卡片,每张上写有数字+1或-1,如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答,那么,至少问______次才能确定这2015张卡片所写的数字的乘积.9.【第20届华杯赛决赛卷第8题】从一副扑克牌中抽走一些牌,在剩下的牌中至少要数出20张,才能确保数出的牌中有两张同花色的牌的点数和为15,那么最多抽走______张牌,最少抽走______张牌(K Q J 、、的点数为11,12,13,大小王的点数为0,一副扑克牌有54张牌,其中52张正牌,另两张是副牌(大王和小王),52张正牌又均分为13张一组,并以黑桃、红桃、草花、方块四种花色表示各组,每组花色的牌包括1至10(1通常表示为A ),以及K Q J 、、标示的13张牌).10.【第20届华杯赛决赛卷第12题】加工十个同样的木制玩具,需用260毫米和370毫米的标准木方分别为30根和40根,仓库里有长度分别为900毫米,745毫米,1385毫米的三种标准木方,用着三种标准木方锯出所需长度的木方,每锯一次要损耗5毫米的长木方,问是否可以用三种木方,每种木方选一些,恰好锯出十个玩具所需的木方?如果可以,锯的次数最少,那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方,即不能从一端锯).11.【第21届华杯赛决赛卷第10题】围着一张可以转动的圆桌,均匀地放着8把椅子,在桌子上对着椅子放有8个人的名片.这8个人入座后,将圆桌顺时针转动,第一次转45°,从第二次开始,每次转动比上一次多转45°.每转动一次,当某人对着自己的名片时,取走自己的名片.如果入座时谁都没有对着自己的名片,那么桌子至少转多少度才能保证所有入座可能的情况下8个人都拿到了自己的名片?12.【第21届华杯赛决赛卷第14题】排成一行的学生,从左到右1至3报数,最后一个人报2.从右到左1至m 报数,最后一个人报1,这里m 与3互质.现凡报过1的学生出列,其余原地不动,共留下62名,其中只有21对学生原来相邻.问原来有多少名学生?m 的值是多少?13.【第22届华杯赛决赛卷第13题】直线a 平行于直线b ,a 上有10个点1021,,,A A A ⋅⋅⋅,b 上有11个点1021,,,B B B ⋅⋅⋅,用线段连接i A 和j B (11,,1,10,,1⋅⋅⋅=⋅⋅⋅=j i ),所得到的图形中一条边在a 上或者在b 上的三角形有多少个?目录计算 (21)计数 (27)几何 (32)数论 (39)应用题、行程 (46)组合 (49)第一章计算1.【第18届华杯赛决赛A 卷第1题】解析:【知识点】计算原式275427162410127820310193)102101(4210110041931)515041*********(421)100994321(931)10042(2)100994321[(421)100994321(931)100994321(42122222222422333333333333333333333333333-=⨯⨯-=⨯⨯-⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯+⋅⋅⋅++⨯-++⋅⋅⋅++++⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯-+⋅⋅⋅+-+-⨯⨯⨯=2.【第18届华杯赛决赛A 卷第7题】解析:【知识点】计算将4,3,2,1=k 代入d cx bx ax x P +++=23)(,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++2450243524102414141664313927212481d c b a d c b a d c b a d c b a d c b a 则9851015035-=+---=+-b a d c 3.【第18届华杯赛决赛A 卷第10题】解析:【知识点】计算][x 表示不超过x 的最大整数,则15]15[115,2]2[12+≤+<-++≤+<-+x x x x x x即36259]15[]2[16+≤-=+++<+x x x x ,化简得61167≤<x ,则142598≤-<x ,259-x 为整数,其取值只能是9,10,11,12,13,14,分别解方程,得到:(1)9259=-x ,解得1823=x ,代入验算:1073=+=左,92523=-=右,右左≠,则1823=x 不是解;(2)10259=-x ,解得1825=x ,代入验算:1073=+=左,102525=-=右,右左=,则1825=x 是解;(3)11259=-x ,解得1827=x ,代入验算:1183=+=左,112527=-=右,右左=,则1827=x 是解;(4)12259=-x ,解得1829=x ,代入验算:1293=+=左,122529=-=右,右左=,则1829=x 是解;(5)13259=-x ,解得1831=x ,代入验算:1293=+=左,132531=-=右,右左≠,则1831=x 不是解;(6)14259=-x ,解得1833=x ,代入验算:13103=+=左,142533=-=右,右左≠,则1833=x 不是解;所以,原方程的解为1829,1827,1825=x .4.【第18届华杯赛决赛A 卷第12题】解析:【知识点】最值将105+=d c 代入183-=c b ,得到121518)105(3+=-+=d d b ,代入到82+=b a ,得32308)1215(2+=++=d d a ,所以224211)3230(77+=++=+d d d a d ,由于d 是整数,所以当1-=d 时a d 7+可以取到最小值1313=-.5.【第18届华杯赛决赛B 卷第1题】解析:【知识点】计算22)(4)(b a ab b a -=-+,即25617418)(22=⨯-=-b a ,则16±=-b a .6.【第18届华杯赛决赛B 卷第10题】解析:【知识点】计算,多项式312825221916131074)(36912151821242730+-+-+-+-+-=a a a a a a a a a a a f ,当k n 2=,即n 为偶数时,k n a a 2=,1122=-=k k a a ,12-k a 可以被12-a 整除,则k a 2除以12-a ,余式为1;当12+=k n ,即n 为奇数时,12+=k n a a ,a a a a k k +-=+)1(212,)1(2-k a a 可以被12-a 整除,则12+k a 除以12-a ,余式为a ;则)(a f 除以12-a 的余式为:96803128252219161310741+-=+-+-+-+-+-a a a a a a .7.【第19届华杯赛决赛卷第1题】解析:【知识点】计算原式2611225299202135]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233-=-=--+--=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-=8.【第19届华杯赛决赛卷第4题】解析:【知识点】计算b ac c b a 33=⇒=,c b a 、、是正整数,则3239432=++⇒=⎪⎭⎫ ⎝⎛++c b a c b a ,则3233-+=b a c ,则有)2()2(33233a b a a b b a a -=-⇒=⎪⎭⎫ ⎝⎛-+⋅,b a -=显然不符合条件,则只能是02=-a ,即2=a ,解得12,8,2===c b a .9.【第20届华杯赛决赛卷第1题】解析:【知识点】计算原式1146862046552048)1024102355(20481024141211021(2048=+⨯=+⨯=+⋅⋅⋅++++⋅⋅⋅++⨯=10.【第20届华杯赛决赛卷第3题】解析:【知识点】计算通分,统一分子,可以得到acac ad ac cb ac ac ac 86666696<<<,分子相同,分母越大,分数值越小,则c d c dc d c ac ad ad ac 233434238669<<⇒⎩⎨⎧<>⇒⎩⎨⎧>>,要使得d c b a +++最小,则d c b a 、、、的取值尽可能小,1=c 时,2334<<d ,无解;2=c 时,338<<d ,无解;3=c 时,294<<d ,无解;4=c 时,6316<<d ,无解;5=c 时,215320<<d ,7=d ;则7,5==d c .11.【第20届华杯赛决赛卷第11题】解析:【知识点】计算23222=++abc c b a ,b 与c 同号,则0>a ,a c b 14311+=+,所以b 和c 也是正数,0)4)(2()2(42)2(422222=--=---=---bc c b c b b c c b c b b c c b ,c b 2≠,则4=bc ,代入a c b 14311+=+,得ac b 43+=+,222222262323a a a abc c b abc c b a -=-=+⇒=++,2222243243)(⎪⎭⎫ ⎝⎛+=++⇒⎪⎭⎫ ⎝⎛+=+a bc c b a c b ,226843a a a -=-⎪⎭⎫ ⎝⎛+,解得4=a ,则4443=+=+c b ,且4=bc ,解得2==c b ,则288224444444=++=++c b a 12.【第21届华杯赛决赛卷第1题】解析:【知识点】计算令2016=n ,且12016321==⋅⋅⋅===x x x x ,满足201621=+⋅⋅⋅++n x x x ,则2016201520162015220151=+⋅⋅⋅++x x x .13.【第21届华杯赛决赛卷第4题】解析:【知识点】计算20818199=-+--y x xy ,则101)9)(9(=--y x ,101是质数,则只有两种情况,1019,19=-=-y x 或19,1019=-=-y x ,则110,10==y x 或10,110==x y ,则1220012100100110102222=+=+=+y x .14.【第21届华杯赛决赛卷第6题】解析:【知识点】计算25222)(2222=+++++=++yz xz xy z y x z y x ,5111=++=++xyzyz xz xy z y x ,则5=++yz xz xy ,152525222=⨯-=++z y x .15.【第21届华杯赛决赛卷第7题】解析:【知识点】方程组根据x 的取值,分类讨论,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧-=+=⇒⎪⎩⎪⎨⎧=-=+31323232121a y a x y x a y x 当0<x 时,⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=--=+a y a x y x a y x 222121只有一组解,则1223232-=⇒--=+a a a .16.【第22届华杯赛决赛卷第1题】解析:【知识点】计算,2,9,1,8,2,7,1,6,2,5,1,4,2,3,1,2,2,19108978675645342312=-==-==-==-==-==-==-==-==-=a a i a a i a a i a a i a a i a a i a a i a a i a a i 14,811016+=+=a a a a ,则6610=-a a .17.【第22届华杯赛决赛卷第3题】解析:【知识点】计算50803050510065052100915052100720151009100752011320131201510071010)12016()1(2015220161=⨯=⨯+-⨯+=-+⋅⋅⋅+-+-+-=⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 则个位数字为0.第三章计数1.【第18届华杯赛决赛A卷第8题】【第18届华杯赛决赛B卷第6题】解析:【知识点】计数分两种情况考虑,第一种以对边中点的连线为对称轴,由于竖直方向旋转90度与水平方向重合,所以只考虑竖直方向即可,如下图,总共有24种情况;第二种以对角线为对称轴,由于一条对角线旋转90度与另一条对角线重合,所以只考虑一条对角线即可,没有符合题意的拼法;2.【第18届华杯赛决赛B卷第4题】解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;同理,青蛙按D E F A →→→的路线到达D 点,也是4种跳法;那么青蛙从开始到抓住飞虫总共有8种跳法。

2016年第22届“华杯赛”决赛初一组试题(pdf版)

2016年第22届“华杯赛”决赛初一组试题(pdf版)


的个位数字是 4.
, 其中 m 是正整数.
已知 x . 设 x 表示不大于 x 的最大整数, 定义 x x x . 如果 x x 是整数, 则满足条件的所有 x 的和等于 . 组.

线
5.
设 x, y, z 是自然数, 则满足 x y z xy 的 x, y, z 有
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 直线 a 平行于直线 b, a 上有 个点 A , A , , A , b 上有 个点 B , B , ,
B , 用线段连接 Ai 和 B j ( i= , , , j= , , ), 所得到的图形中一条边
在 a 上或者在 b 上的三角形有多少个?
14. 已知关于 x, y 的方程 x y k 有且只有六组正整数解, 且 x y , 求 k 的最大值.
-2-
2. 如右图, △ABC, △AEF 和△BDF 均为正三 角形, 且△ABC, △AEF 的边长分别为 和 , 则线段 DF 长度的最大值等于 .

学校____________ 姓名_________ 参赛证号


3.

如下的代数和
() m m ( m )
p q , 都是正整数, 则 p q 的最大值等于 q p

6.
设 p, q,
.
7.
右图是 A, B, C, D, E 五个防区和连接这些防区的 条公路的示意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换防, 且换防时, 每一支部队 只能经过一条公路, 换防后每一个防区仍然只驻有 一支部队, 则共有 种不同的换防方式.

第二十二届 华杯赛公开题及答案

第二十二届  华杯赛公开题及答案

小学中年级组【题目】《火星救援》中,马克不幸没有跟上其他 5 名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援. 马克的居住舱内留有每名航天员的 5 天食品和 50 千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆, 30 天后每平方米可以收获 2.5 千克,但是需要浇灌 4 千克的水.马克每天需要吃 1.875 千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?解:130天。

详解:由已知可得,一共有6名航天员,现在共有5×6=30天的食物和50×6=300升的非饮用水,现在的食物可以食用30天,30天后最多可得到300÷4×2.5=187.5千克的土豆,30天后最多可以支撑187.5÷1.875=100天,则食品和土豆一共最多可以支撑30+100=130天。

小学中年级组【题目】小明从家出发,乘地铁到学校需要 30 分钟,乘公交车到学校需要 50分钟.某天小明因故先乘地铁,再换乘公交车,用了40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)12解:C详解:方法一:设数法设从家到学校需要[30.50]=150份,那么地铁的速度是150÷30=5份/分钟,公交车的速度是150÷50=3份/分钟,设这天小明乘公交用了x分钟,根据题意列出方程5(40-6-x)+3x=150 解得x=10方法二:比例解行程路程相同时,时间和速度成反比可知,地铁时间比公交时间为3:5,这天小明去学校坐车共用了40-6=34分钟,比地铁多34-30=4分钟,因此,乘公交时间为4÷(5-3)×5=10分钟,。

华杯赛第22届初赛

华杯赛第22届初赛

第二十二届华罗庚金杯少年数学邀请赛1、两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值。

(A)16 (B)17 (C)18 (D)19解析:【知识点】数论、极值问题,估算为方便计算,令A为整数部分为7的有限小数,令B为整数部分为10的有限小数,那么BA、的范围可以确定,即8A,即88⨯B70<⨯A;<B<⨯<B,那么,1110<<A,11810<7⨯7<当B10.001001.7=⨯B=70A,所以B⨯=.7A、都比较小时,令001A,001.B,017001.=10A⨯的整数部分是可以取70的;当B10.87999⨯A,B⨯B=.7=999=.7A、都比较大时,令999.A,999B,981001.=10A⨯的值可以无限趋近于88,但就是小于88,所以BA⨯的整数部分最大只能取87;那么,这两个有限小数乘积的整数部分取值范围就是8770,总共有18种可能的取值。

~故正确答案选C总结:本题考查的是数论中的极值问题,并涉及到计算模块中的估算,首先要确定取值范围,然后在范围中找出满足条件的解,注意最大值、最小值的限制。

2、小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟,某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟。

(A)6 (B)8 (C)10 (D)12解析:【知识点】行程问题,列方程解应用题涉及到行程问题,就要想到行程问题的基本公式“路程=速度×时间”;为了方便计算,我们可以设从小明家到学校这段路程为1,小明乘地铁需要30分钟,那么地铁的速度就是301,而小明乘公交车需要50分钟,那么公交车的速度就是501; 小明某天先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么他乘车时间就是40-6=34分钟,我们可以设小明乘地铁花了x 分钟,乘公交车花了y 分钟,则可以列出方程:34=+y x ,我们设了两个未知数,所以还需要一个方程才能求解;小明步行所走过的路程我们可以忽略不计,他乘地铁花了x 分钟,乘公交车花了y 分钟,走过的路程是从家到学校的距离,即为1,我们还知道地铁和公交车各自的速度,则可以列出方程:1501301=+y x ,将两个方程联立起来,得到二元一次方程组: ⎪⎩⎪⎨⎧=+=+341501301y x y x 化简得到⎩⎨⎧=+=+3415035y x y x 解得⎩⎨⎧==1024y x 所以小明乘公交车用了10分钟,正确答案选C 。

第十二届华杯赛总决赛一、二试试题

第十二届华杯赛总决赛一、二试试题

第十二届华杯赛总决赛一试试题1.从下面每组数中各取一个数,将它们相乘,则所有这样的乘积的总和是___.第一组:,0.15;第二组:4,;第三组:,1.22.一个正方体,平放于桌面,下图是从初始状态向不同方向翻滚一次所得到的三幅视图,则这个正方体初始状态的正面是___色,右面是___色.3.如图所示,已知APBCD是以直线l为对称轴的图形,且∠APD=116°,∠DPC=40°,DC>AB,那么,以A、P、B、C和D五个点为顶点的所有三角形中有___个钝角三角形,有___个锐角三角形.4.A、B、C三项工程的工作量之比为1∶2∶3,由甲、乙、丙三个工程队分别承担,同时开工,若干天后,甲完成的工作量是乙未完成工作量的二分之一,乙完成的工作量是丙未完成工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙三个队的工作效率的比是多少?5.将1分、2分、5分和1角的硬币投入19个盒子中,使每个盒子里都有硬币,且任何两个盒子里的硬币的钱数都不相同。

问:至少需要投入多少硬币?这时,所有的盒子里的硬币的总钱数至少是多少?6.下图是一种电脑射击游戏的示意图,线段CD、EF和GH的长度都是20厘米,O、P、Q是它们的中点,并且位于同一条直线AB上,AO=45厘米,OP=PQ=20厘米,已知CD上的小圆环的速度是每秒5厘米,EF上的小圆环的速度是每秒9厘米,GH上的小圆环的速度是每秒27厘米。

零时刻,CD、EF、GH上各有一个小圆环从左端点同时开始在线段上匀速往返运动。

问:此时,从点A向B发射一颗匀速运动的子弹,要想穿过三个圆环,子弹的速度最大为每秒多少厘米?第十二届华杯赛总决赛二试试题1.设,其中a、b、c、d都是非零自然数,则a+b+c+d=___.2.下图是半个圆柱的表面展开图,由两个半园和两个长方形组成,总面积是a,圆柱底面半径是r。

用a、r和圆周率π所表示的这个半圆柱的体积的式子是____.3.在8×8的方格网填入不同的自然数,使每个方格里都只有一个数,如果一个方格里的数,大于它所在的行中至少6个方格内的数,并且大于它所在的列中至少6个方格内的数,则称这个方格为“好格”。

2017第二十二届“华杯赛”决赛小中年级组试题及答案

2017第二十二届“华杯赛”决赛小中年级组试题及答案

第二十二届华罗庚金杯少年数学邀请赛决赛试题(小学中年级组)(时间: 2017年3月11日10:00~11:30)一、填空题(每小题 10分, 共80分)1.在2017个自然数中至少有一个两位数, 而且其中任意两个数至少有一个三位数, 则这2017个数中有 个三位数.2.如右图(1)所示, 一个棋子从A到B 只能沿着横平竖直的路线在网格中行走, 给定棋子的一条路线, 将棋子在某一列中经过的格子数标在该列的上方, 在某一行中经过的格子数标在该行的左方. 如果右图(2)中网格上方和左方的数字也是根据以上规则确定的, 那么图中x 代表的数字为 .3.用[]x 表示不超过x 的最大整数, 例如[]10.210=. 则201732017420175201762017720178111111111111⨯⨯⨯⨯⨯⨯⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦等于 .4.盒子里有一些黑球和白球. 如果将黑球数量变成原来的5倍, 总球数将会变成原来的2倍. 如果将白球数量变成原来的5倍, 总球数将会变成原来的倍.5.能被自己的数字之和整除的两位数中, 奇数共有个.6.如右图, 将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形, 最后剩下一个长方形. 正方形边长和三角形直角边长都是整数. 若剪去部分的总面积为40平方厘米,则长方形的面积是平方厘米.7.小龙从家到学校的路上经过一个商店和一个游乐场. 从家到商店距离是500米, 用了7分钟; 从商店到游乐场以80米/分钟的速度要走8分钟; 从游乐场到学校的距离是300米, 走的速度是60米/分钟. 那么小龙从家到学校的平均速度是米/分钟.8.亚瑟王在王宫中召见6名骑士, 这些骑士中每个骑士恰好有2名朋友. 他们围着一张圆桌坐下(骑士姓名与座位如右图), 结果发现这种坐法, 任意相邻的两名骑士恰好都是朋友. 亚瑟王想重新安排座位,那么亚瑟王有种不同方法安排座位, 使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).二、简答题(每小题15分, 共60分, 要求写出简要过程)9.如右图所示, 两个边长为6的正方形ABFE和CDEF拼成长方形ABCD. G为DE的中点. 连接BG交EF于H.求图中五边形CDGHF的面积.10.乌龟和兔子进行1000米赛跑, 兔子速度是乌龟速度的5倍, 当它们从起点同时出发后, 乌龟不停地跑, 兔子跑到某一地点开始睡觉, 兔子醒来时乌龟已经领先它, 兔子奋起直追, 但乌龟到达终点时, 兔子仍落后10米. 求兔子睡觉期间, 乌龟跑了多少米?的直线分割成边长为1的54个小正三角形, 那么以这些小正三角形的顶点为顶点的正六边形共有多少个?12.如右图, 将1至9这九个数字填入网格中, 要求每个可以填的数字最大是多少?第二十二届华罗庚金杯少年数学邀请赛决赛试题参考答案(小学中年级组)一、填空(每题10 分, 共80分)二、解答下列各题(每题15 分, 共60分, 要求写出简要过程)9.【答案】3310.【答案】802米11.【答案】36个12.【答案】6。

第22届华杯赛初赛试题.docx

第22届华杯赛初赛试题.docx

第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间 2016 年 12 月 10 日 10 : 00 〜11 : 00 )一、选择题(每题 10分,满分 60分,以下每题的四个选项屮,仅有一个是正确的,请将表示 正确答案的英文字母写在每题的圆括号内。

1. 两个有限小数的整数部分分别是可能的取值.答案选C 。

2.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了 40分钟到达学校,其屮换乘过程用了 6分钟,那么这天小明乘坐公交车用了 ()分钟.总分7和10 ,那么这两个有限小数的积的整数部分有((A) 16(B)17 C) 18 (D) 19解析:设这两个有限小数为 A 、B, 则7X 10=70<AB<8X 11=88,很明显,积的整数部分可以是70-87的整数,所以这两个有限小数的积的整数部分有87-70+1 = 18 种。

(A) 6(B) 8(C) 10 (D) 12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1”,乘地铁的速度为——,乘公301 X 34= 17 ,所以坐公交车用了 ( 17 能走一 一30交车速度为一,40-6=34分钟,假设全程都做地铁,5015 15-7-(———)=10 分钟。

30 50方法二:设数法和假设法,设小明家距学校的路程为[30, 50]=150m ,乘地铁的速度为50=3m/min,乘公交车速度为 150-r30=5m/min, 40-6=34分钟,假设全程都做地铁,能走150-r15_ X30 34=170m,所以坐公交车用了( 170-150 )十(5-3 ) =10分钟。

方法三:时间比和比例。

同一段路程,乘地铁和乘公交车时间比为3:5 ,全程乘地铁需要30分钟,有一段乘公交车则用40・6=34分钟,所以乘公交车的那段路比乘地铁多用34-30=4分钟,所以坐公交车用了4三(5-3 ) X 5=10分钟。

第22届“华杯赛”初赛试卷( 小中组六年级)参考答案

第22届“华杯赛”初赛试卷( 小中组六年级)参考答案

第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(同文六年级组) (时间: 2016年11月) 第一部分 一、填空题。

(每小题10分, 共80分.请将正确答案填入括号内.) 1. 计算: (1)(+)×+= 5.5 ; (2)1.1111×1.9999-0.1111×0.9999= 2.111 ; 2. 六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局。

比赛结束时发现,有两人并列第二名,两人并列第五名。

那么第四名得 4 分。

3. 一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶。

走完这12级台阶,共有 12 种不同的走法。

4. 三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给两外两个人中的任意一个。

先由红衣人发球,并作为第一次传球,经过7次传球后传到蓝衣人手中。

那么整个传球过程共有 43 种不同的可能。

5. 9名同学做一道单选题,它有A 、B 、C 三个选项,每个同学都选了其中一个选项。

三个选项的统计结果共有 55 种可能。

6. 一只青蛙沿着一条直线跳跃8次后回到起点。

如果它每一次跳跃的长度都是1分米,那么这只青蛙共有 70 种可能的跳法。

装订线总分7. 右图中的长方形被分成若干小块,其中四块的面积已经标出,那么阴影部分的面积是 35 。

8. 右图中,已知ABCDEF 是正六边形,ABGHI 是正五边形,那么∠AIF = 84 度。

二、 解答题。

(每小题10分, 共20分.请写出具体的解答过程.)1.(+)×()-()×()原式=(A +B)×C -(A +C)×B =(A C +B C)-(A B +B C)=A ×( C - B)==2. 如图,ABCD 是一个长方形,E 为CD 边的一个四等分点,如果图中三角形CEO 面积为1,求长方形ABCD 的面积。

初一数学华赛试题及答案

初一数学华赛试题及答案

初一数学华赛试题及答案【试题一】题目:某学校共有学生1000人,其中男生人数是女生人数的1.5倍。

求男生和女生各有多少人?【答案】设女生人数为x,则男生人数为1.5x。

根据题意,男生和女生的总人数为1000人,所以有方程:x + 1.5x = 10002.5x = 1000x = 400所以女生有400人,男生有1.5x = 1.5 * 400 = 600人。

【试题二】题目:一个长方体的长、宽、高分别为a、b、c,且a > b > c。

已知长方体的体积为120立方厘米,求a、b、c的值。

【答案】设长方体的长、宽、高分别为a、b、c,根据题意有:abc = 120由于a > b > c,且体积为120立方厘米,我们可以找到120的因数组合,满足a > b > c的条件。

120的因数有:1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120。

满足条件的一组因数是:a = 10, b = 6, c = 2。

因为10 > 6 > 2,且10 * 6 * 2 = 120。

【试题三】题目:一个圆的半径为r,圆内接一个等边三角形,求三角形的边长。

【答案】设圆的半径为r,内接等边三角形的边长为a。

根据等边三角形的性质,其高等于边长的√3/2倍。

由于三角形的高也是圆的半径,所以有:a * √3 / 2 = ra = (2 * r) / √3a = 2r / √3【试题四】题目:一个直角三角形的两条直角边分别为a和b,斜边为c。

已知a + b + c = 60,a * b = 100,求a、b和c的值。

【答案】设直角三角形的两条直角边分别为a和b,斜边为c。

根据勾股定理,有:a^2 + b^2 = c^2根据题意,有以下方程组:a +b +c = 60a *b = 100将第一个方程改写为c = 60 - a - b,代入勾股定理中,得到:a^2 + b^2 = (60 - a - b)^2展开并化简,得到:a^2 + b^2 = 3600 - 120a - 120b + a^2 + 2ab + b^2将a * b = 100代入,得到:100 = 3600 - 120a - 120b120a + 120b = 3600 - 100120(a + b) = 3500a +b = 3500 / 120a +b = 29.1667由于a + b + c = 60,所以c = 60 - 29.1667 = 30.8333。

初一数学历年“华罗庚杯”竞赛试题

初一数学历年“华罗庚杯”竞赛试题

初一数学试题集
初一数学
历年“华罗庚杯”竞赛试题
(由我爱我家整理)
二〇〇九年九月十六日
第一届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
[初一组]第一届“华杯赛”数学第2试答案
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第三届“华杯赛”数学第1试答案
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第四届“华杯赛”数学第1试
第四届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第五届“华杯赛”数学第2试
第五届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第六届“华杯赛”数学第1试答案
[初一组]第六届“华杯赛”数学第2试。

华杯赛初一组决赛试题

华杯赛初一组决赛试题

华杯赛初一组决赛试题参考答案第一届华杯赛初赛试题答案:1.【求解】就是这五个数的平均数,所以和=×5=。

2.【解】方框的面积是。

每个重叠部分占的面积是一个边长为1厘米的正方形。

重叠部分共有8个()×5一l×8=(100―64)×5―8=36×5―8=172(平方厘米)。

故被遮住的面积就是172平方厘米。

3.【解】105=3×5×7,共有(1+1)×(1+1)×(1+1)=8个约数,即1,3,5,7,15,21,35,105。

4.【求解】在这道题里,最合理的精心安排必须最省时间。

先洗开水壶,接着烧开水,烧上水以后,小明须要等15分钟,在这段时间里,他可以洗脸茶壶,洗脸茶杯,拎茶叶,水上开了就泡茶,这样就用16分钟。

5.【解】149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

6.【求解】松鼠改采了:112÷14=8(天)假设这8天都是晴天,可以采到的松籽是:20×8=160(个)实际只挖掘出112个,共少采松籽:160-112=48(个)每个下雨天就要少采:20-12=8(个)所以存有48÷8=(6)个雨天。

7.【解】因为正方体的边长是1米,个正方体堆成实心长方体的体积就是立方米。

已经晓得,低为10米,于是短×阔=210平方米把210分解为质因数:210=2×3×5×7由于短和阔必须大于低(10米),短和阔就可以就是:3×5和2×7。

也就是15米和14米。

14米+15米=29米。

答:长与宽的和是29米。

8.【求解】39-32=7。

这7分钟每辆高速行驶的距离恰好等同于第二辆车在8点32支行过的距离的1(=3-2)倍。

因此第一辆车在8点32分已行及7×3=21(分后),它就是8点11分后返回化肥厂的(32-21=11)。

第二十二届“华杯赛”小学中年级组初赛试题

第二十二届“华杯赛”小学中年级组初赛试题

第二十二届“华杯赛”小学中年级组初赛试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第二十二届“华杯赛”小学中年级组初赛试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第二十二届“华杯赛”小学中年级组初赛试题的全部内容。

第二十二届华罗庚金杯少年邀请赛初赛试题(小学中年级组)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1、两个小三角形不重叠放置可以拼成一个大三角形, 那么这个大三角形不可能由()拼成。

(A)两个锐角三角形(B)两个直角三角形(C)两个钝角三角形(D)一个锐角三角形和一个钝角三角形2、从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10。

(A)4 (B)5 (C)6 (D)73、小明行李箱锁的密码是由两个数字8与5构成的三位数。

某次旅行,小明忘记了密码,他最少要试()次, 才能确保打开箱子。

(A)9 (B)8 (C)7 (D)64、猎豹跑一步长为2米, 狐狸跑一步长为1米.猎豹跑2 步的时间狐狸跑3步,猎豹距离狐狸30米, 则猎豹跑动()米可追上狐狸。

(A)90 (B)105 (C)120 (D)1355、图1 中的八边形是将大长方形纸片剪去一个小长方形得到。

则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.(A)4 (B)3 (C)5 (D)106、一个数串219…,从第4个数字开始, 每个数字都是前面3个数字和的个位数。

下面有4个四位数:1113, 2226, 2125,2215 ,其中共有()个不出现在该数串中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二届华罗庚金杯少年数学邀请赛
决赛试题(初中一年级组)
(时间: 2017 年 3 月11 日10:00~11:30)
一、填空题(每小题10 分, 共80 分)
1.数轴上10个点所表示的数分别为a
1, a
2
, , a
10
, 且当i 为奇数时,
a i +1-a
i
=2 , 当i 为偶数时, a
i +1
-a
i
=1, 那么a
10
-a
6
= .
2.如右图, △ABC, △AEF 和△BDF 均为正三角形, 且
△ABC, △AEF 的边长分别为3和4, 则线段DF 长度
的最大值等于.
3.如下的代数和
-1⨯2016+2⨯2015- + (-1)m m ⨯ (2016-m +1) + +1010⨯1007
的个位数字是, 其中m 是正整数.
4.已知2015<x <2016. 设[x]表示不大于x 的最大整数, 定义{x}=x -[x].如
果{x}⨯[x]是整数, 则满足条件的所有x 的和等于.
5.设x, y, z 是自然数, 则满足x2+y2+z2+xy =36的x, y, z 有组.
6.设p , q , 3p-1
,
q
q -1
都是正整数, 则p2+q2的最大值等于.
p
7.右图是A, B, C, D, E 五个防区和连接这些防区的10条公路的示
意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换防, 且换防时, 每一支部队只能经过一条公路, 换防后每一个防区
仍然只驻有一支部队, 则共有种不同的换防方式.
8.下面两串单项式各有2017个单项式:
(1)
(2) xy2, x4y5, x7y8, , x3n-2y3n -1, , x6046y6047, x6049y6050; x2y3, x7y8, x12y13, , x5m-3y5m-2, , x10077y10078, x10082y10083,
其中n, m 为正整数, 则这两串单项式中共有对同类项.
二、解答下列各题(每题10 分, 共40 分, 要求写出简要过程)
9.是否存在长方体, 其十二条棱的长度之和、体积、表面积的数值均相等?如
果存在, 请给出一个例子; 如果不存在, 请说明理由.
10.如右图, 已知正方形ABDF 的边长为6 厘米, △EBC 的面
积为6 平方厘米, 点C 在线段FD 的延长线上, 点E 为线
段BD 和线段AC 的交点. 求线段DC 的长度.
11.如右图, 先将一个菱形纸片沿对角线AC 折叠,使顶点
B 和D 重合. 再沿过A, B (D) 和
C 其中一点的直线剪
开折叠后的纸片, 然后将纸片展开. 这些纸片中菱形
最多有几个? 请说明理由.
12.证明: 任意5个整数中, 至少有两个整数的平方差是7的倍数.
三、解答下列各题(每小题15 分,共30 分,要求写出详细过程)
13.直线a 平行于直线b, a 上有10个点A
1, A
2
, , A
10
, b 上有11个点B
1
, B
2
, ,
B 11, 用线段连接A
i
和B
j
( i=1, ,10 , j=1, ,11), 所得到的图形中一条边
在a 上或者在b 上的三角形有多少个?
14.已知关于x, y 的方程x2-y2+k
求k 的最大值.
=2017有且只有六组正整数解, 且x ≥y ,。

相关文档
最新文档