数学模型实验商人过河
数学建模—商人们怎样安全过河
![数学建模—商人们怎样安全过河](https://img.taocdn.com/s3/m/7638d68ccfc789eb172dc8da.png)
36 18 10 4 2 1 18 9 5 2 11 36 2 2 2 22
•逆向思维:
每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
3 某人家住T市在他乡工作,每天下班后乘火车于 6时抵达T市车站,它的妻子驾车准时到车站接他 回家。一日他提前下班搭早一班火车于5时半抵达 T市车站,随即步行回家,它的妻子像往常一样驾 车前来,在半路上遇到他接回家时,发现比往常 提前了10分钟。问他步行了多长时间?
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型
• 亲自动手,认真作几个实际题目
•练习
1 某甲早8时从山下旅店出发沿一条路径上山,下 午5时到达山顶并留宿;次日早8时沿同一条路径 下山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点。为什么?
甲
乙
A
B
2 37支球队进行冠军争夺赛,每轮比赛中出场的 每两支 球队中的胜者及轮空者进入下一轮,直 至比赛结束。问共需进行多少场比赛?
5:30
5:55
车 站 5分钟
6:00 5分钟 共走了25分钟。
相遇
家 早10钟
4 甲乙两站有电车相通,每隔10分钟甲乙两站互发 一趟车,但发车时间不一定相同。甲乙两站有一中 间站丙,某人每天在随机的时刻到达丙站,并搭乘 最先经过丙站的那趟车,结果发现100天中约有 90天到达甲站,仅约有10天到达乙站。问开往甲 乙两站的电车经过丙站的时刻表是如何安排的?
商品便宜这种现象吗?比如洁银牙膏50g装的每支 1.50元,120g装的每支3.00元,二者单位重量的价 格比是1.2:1,试用比例方法构造模型解释这种现 象。
商人过河问题数学建模(最新整理)
![商人过河问题数学建模(最新整理)](https://img.taocdn.com/s3/m/841b45f35901020206409cac.png)
作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1. 过河途中不会出现不可抗力的自然因素。
2. 当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4. 随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..综合(4)可得 和(6)k k x y ={}(,)|0,0,1,2,3,4k k k k k S x y x y ===还要考虑 (7){}'(',')|'0,'0,1,2,3,4kk k k k S x y x y ===把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得(8){}(,)|4,0,1,2,3,4k k k k k S x y x y ===综合(6)(7)(8)式可得 满足条件的情况满足下式(9){}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ====所以我们知道满足条件的点如上图所示:点移动由(8){}(,)|4,0,1,2,3,4k k k k k S x y x y ===到达(6){}(,)|0,0,1,2,3,4kk k k k S x y x y ===时,可以认为完成渡河。
数学建模:研究商人过河问题
![数学建模:研究商人过河问题](https://img.taocdn.com/s3/m/051e932382c4bb4cf7ec4afe04a1b0717fd5b390.png)
数学建模试验一陈述 【1 】试验标题:研讨商人过河问题一.试验目标:编写一个程序(可所以C,C++或Mathlab )实现商人安然过河问题.二.试验情形:Turbo c 2.0..Matlab 6.0以上三.试验请求:请求该程序不但能找出一组安然过河的可行筹划,还可以得到所有的安然过河可行筹划.并且该程序具有必定的可扩大性,即不但可以实现3个商人,3个侍从的过河问题.还应能实现n 个商人,n 个侍从的过河问题以及n 个不合对象且每个对象有m 个元素问题(解释:对于3个商人,3个侍从问题分离对应于n=2,m=3)的过河问题.从而给出课后习题5(n=4,m=1)的全部安然过河筹划.四.试验步调:第一步:问题剖析.这是一个多步决议计划进程,涉及到每一次船上的人员以及要斟酌此岸和此岸上残剩的商人数和侍从数,在安然的前提下(两岸的侍从数不比商人多),经有限步使全部人员过河.第二步:剖析模子的组成.记第k 次渡河前此岸的商人数为k x ,侍从数为k y , 2,1=k ,n y x k k 2,1,=,(具有可扩大性),将)(k k y x ,界说为状况,状况聚集成为许可状况聚集(S ).S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,侍从数为k v ,决议计划为),(k k v u ,安然渡河前提下,决议计划的聚集为许可决议计划聚集.许可决议计划聚集记作D,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向此岸,k 为偶数时船由此岸驶向此岸,所以状况k s 随决议计划k d 变更的纪律是k k k k d s s )1(1-+=-,此式为状况转移律.制订安然渡河筹划归结为如下的多步决议计划模子:求决议计划)2,1(n k D d k =∈,使状况S s k ∈按照转移律,由初始状况)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模子求解.#include "stdio.h"#include "string.h"#include <memory>#include <stdlib.h>#include <iostream>using namespace std;#include "conio.h"FILE *fp;/*设立文件指针,以便将它用于其他函数中*/struct a{long m,s;struct a *next;};/*数组类型a :记载各类情形下船上的商人和家丁数,m :代表商人数 s :代表家丁数*/ struct a *jj,head;/*head 为头指针的链表单元(船上的人数的各类情形的链表)*/ int n,total=0,js=0;/*total 暗示船上各类情形总数*/struct aim {long m1,s1,m2,s2;int n;struct aim *back,*next;};/*用于树立双向的指针链表,记入相符的情形,m1,s1暗示要过岸的商人数和家丁数;m2,s2暗示过岸了的商人数和家丁数,n暗示往返的次数*/ int k1,k2;void freeit(struct aim *p){struct aim *p1=p;p1=p->back;free(p);if(p1!=NULL)p1->next=NULL;return;}/*释放该单元格,并将其上的单元格的next指针还原*/int determ(struct aim *p){ struct aim *p1=p;if(p->s1>k2)return -1;/*家丁数不克不及超出总家丁数*/if(p->m1>k1)return -1;/*商人数不克不及超出总商人数*/if(p->s2>k2)return -1;/*对岸,同上*/if(p->m2>k1)return -1;/*对岸,同上*/if(p->s1<0)return -1;/*家丁数不克不及为负*/if(p->s2<0)return -1;/*商人数不克不及为负*/if(p->m1<0)return -1;/*对岸,同上*/if(p->m2<0)return -1;/*对岸,同上*/if(p->m1!=0)if(p->s1>p->m1)return -1;if(p->m2!=0)if(p->s2>p->m2)return -1;/*两岸商人数均不克不及小于家丁数*/while(p1!=NULL){p1=p1->back;if(p1!=NULL)if(p1->n%2==p->n%2)if(p1->s1==p->s1)if(p1->s2==p->s2)if(p1->m1==p->m1)if(p1->m2==p->m2)return -1;}/*用于解决反复,算法思惟:即将每次算出的链表单元与以前的比拟较,若反复,则暗示消失轮回*/if(p->s1==0&&p->m1==0)if(p->n%2==0)return 1;else return -1;/*显然假如达到前提就解释ok了*/return 0;}/*断定函数*/int sign(int n){if(n%2==0)return -1;return 1;}/*符号函数*/void copyit(struct aim *p3,struct aim *p){p3->s1=p->s1;p3->s2=p->s2;p3->m1=p->m1;p3->m2=p->m2;p3->n=p->n+1;p3->back=p;p3->next=NULL;}/*复制内容函数,将p中的内容写入p3所指向的链表单元中*/ void print(struct aim *p3){struct aim *p=p3;js++;while(p->back){p=p->back;}printf("\n第%d种办法:\n",js);fprintf(fp,"\n第%d种办法:\n",js);int count=0;while(p){ printf("%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2); fprintf(fp,"%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2);p=p->next;count++;}cout<<"一共有"<<count<<"步完成"<<endl;}/*打印函数,将p3所指的内容打印出来*/void trans(struct aim *p){struct aim *p3;/*p3为申请的构造体指针*/struct a *fla;int i,j,f;fla=&head;p3=(struct aim *)malloc(sizeof(struct aim));f=sign(p->n);for(i=0;i<total;i++){copyit(p3,p);p3->s1-=fla->m*f;p3->m1-=fla->s*f;p3->s2+=fla->m*f;p3->m2+=fla->s*f;/*运算进程,即过河进程*/ j=determ(p3);/*断定,j记载断定成果*/if(j==-1){if(i<total-1){continue;}else{freeit(p3);break;}}int count1=0;if(j==1){if(i<total-1){print(p3);count1++;continue;}else{print(p3);freeit(p3);break;}//cout<<cout1<<endl;printf("%d",count1);printf("\n");}if(j==0)trans(p3);}return;}/*转移函数,即将人转移过河*//*n=0*/void main(){ struct aim *p,*p1;int j,a,e,f;struct a *flag;/*flag是用与记载头指针*/FILE*fpt;if((fpt=fopen("c:result.dat","w+"))==0){printf("can't creat it\n");exit(0);}fp=fpt;system("cls");printf("问题描写:三个商人各带一个侍从乘船过河,一只划子只能容纳X人,由他们本身荡舟.三个商人窃听到侍从们谋害,在河的随意率性一岸上,只要侍从的人数比上人多,就杀失落商人.但是若何乘船渡河的决议计划权在商人手里,商人们若何安插渡河筹划确保自身安然?\n");printf("\n");p=(struct aim *)malloc(sizeof(struct aim));p->back=NULL;p->next=NULL;p->s2=0;p->m2=0;p->n=1;/*设立初始头指针*/printf("please input the total of people on the board\n");fprintf(fp,"\n请输入船上的人数\n");scanf("%d",&n);fprintf(fp,"\n%d\n",n);flag=&head;for(e=0;e<=n;e++)for(f=0;f<=n;f++)if(e+f>0&&e+f<=n){ total++;jj=(struct a*)malloc(sizeof(struct a));jj->m=e;jj->s=f;flag->next=jj;jj->next=NULL;flag=jj;}/*********************************/printf("please input the total of merchant and salvent as follow: mechant,salvent;\n"); fprintf(fp,"\nplease input the total of merchant and salvent as follow: mechant,salvent;\n"); scanf("%ld,%ld",&p->m1,&p->s1);fprintf(fp,"\n%ld,%ld\n",p->m1,p->s1);/**********************************/k1=p->m1;k2=p->s1;trans(p);fclose(fpt);getch();}第一步:三个商人,三个侍从的模子求解答案为:运行后的成果为:第1 种筹划:(3,3) 到(0,0).(3,1) 到(0,2).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(0,2) 到 (3,1).(0,0) 到 (3,3)第2 种筹划:(3,3) 到(0,0).(3,1) 到(0,2).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(1,1) 到 (2,2).(0,0) 到 (3,3)第3 种筹划:(3,3) 到(0,0).(2,2) 到(1,1).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2)(.0,2) 到 (3,1).(0,0) 到 (3,3)第4 种筹划:(3,3) 到(0,0).(2,2) 到(1,1).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(1,1) 到 (2,2)(0,0) 到 (3,3)第二步:四个商人三个侍从,其成果为:第1种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第2种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第3种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第4种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第5种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第6种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第7种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第8种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第9种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第10种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第11种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第12种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第13种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第14种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第15种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第16种办法:2,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第17种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第18种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第19种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第20种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第21种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第22种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第23种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第24种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第25种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第26种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第27种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第28种办法:4,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第29种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第30种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第31种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第32种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第33种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第34种办法:2,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第35种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第36种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第37种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第38种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第39种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第40种办法:2,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第41种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第42种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第43种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第44种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第45种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第46种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,21,1::3,2 0,0::4,3 一共有12步完成第47种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第48种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第49种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成。
数学建模作业(商人过河问题)
![数学建模作业(商人过河问题)](https://img.taocdn.com/s3/m/28cdc64bf7ec4afe04a1df14.png)
数学建模作业(四)——商人过河问题一.问题描述有四名商人各带一名仆人过河,但船最多能载二人,商人已获得仆人的阴谋:在河的任一岸,只要仆人数超过商人数,仆人会将商人杀死并窃取财物且安排如何乘船的权力掌握在商人手中。
试为商人制定一个安全过河的方案。
二.解决方案用递归的源程序如下:开始时商人,强盗所在的河的这边设为0状态,另一边设为1状态(也就是船开始时的一边设为0,当船驶到对岸是设为1状态,在这两个状态时,都必须符合条件)#include <stdlib.h>struct node /*建立一个类似栈的数据结构并且可以浏览每一个数据点*/ {int x;int y;int state;struct node *next;};typedef struct node state;typedef state *link;link PPointer1=NULL;link PPointer2=NULL;int a1,b1;int a2,b2;/*栈中每个数据都分为0,1状态*/void Push(int a,int b,int n){link newnode;newnode=(link)malloc(sizeof(state));newnode-> x=a;newnode-> y=b;newnode-> state=n;newnode-> next=NULL;if(PPointer1==NULL){PPointer1=newnode;PPointer2=newnode;}else{PPointer2-> next=newnode;PPointer2=newnode;}}void Pop()/*弹栈*/{link pointer;if(PPointer1==PPointer2){free(PPointer1);PPointer1=NULL;PPointer2=NULL;}pointer=PPointer1;while(pointer-> next!=PPointer2)pointer=pointer-> next;free(PPointer2);PPointer2=pointer;PPointer2-> next=NULL;}int history(int a,int b,int n) /*比较输入的数据和栈中是否有重复的*/ {link pointer;if(PPointer1==NULL)return 1;else{pointer=PPointer1;while(pointer!=NULL){if(pointer-> x==a&&pointer-> y==b&&pointer-> state==n)return 0;pointer=pointer-> next;}return 1;}}int judge(int a,int b,int c,int d,int n)/*判断这个状态是否可行,其中使用了history函数*/{if(history(a,b,n)==0) return 0;if(a> =0&&b> =0&&a <=3&&b <=3&&c> =0&&d> =0&&c <=3&&d <=3&&a+c==3&&b+d==3){switch(n){case 1:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a==b){Push(a,b,n);return 1;}else return 0;}case 0:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a> =b){Push(a,b,n);return 1;}else return 0;}}}else return 0;}int Duhe(int a,int b,int n)/*递归法解决商人渡河问题,如果这一个状态符合*/ {/*则判断下一个状态,直至问题解决*/ if(a==0&&b==0) return 1;if(n==0)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a-1,b-1,4-a,4-b,1)){if(Duhe(a-1,b-1,1)==1)return 1;}if(judge(a,b-2,3-a,5-b,1)){if(Duhe(a,b-2,1)==1)return 1;}if(judge(a-2,b,5-a,3-b,1)){if(Duhe(a-2,b,1)==1)return 1;if(judge(a-1,b,4-a,3-b,1)){if(Duhe(a-1,b,1)==1)return 1;}if(judge(a,b-1,3-a,4-b,1)){if(Duhe(a,b-1,1)==1)return 1;}else{Pop(0);return 0;}}if(n==1)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a+1,b+1,2-a,2-b,0)){if(Duhe(a+1,b+1,0)==1)return 1;}if(judge(a,b+2,3-a,1-b,0)){if(Duhe(a,b+2,0)==1)return 1;}if(judge(a+2,b,1-a,3-b,0)){if(Duhe(a+2,b,0)==1)return 1;}if(judge(a+1,b,2-a,3-b,0)){if(Duhe(a+1,b,0)==1)return 1;}if(judge(a,b+1,3-a,2-b,0))if(Duhe(a,b+1,0)==1)return 1;}else{Pop(1);return 0;}}return 0;}main(){link pointer;Push(3,3,0);Duhe(3,3,0);pointer=PPointer1;while(pointer!=NULL){printf( "%d,%d---%d\n ",pointer-> x,pointer-> y,pointer-> state);pointer=pointer-> next;}getch();}。
数学建模 商人过河
![数学建模 商人过河](https://img.taocdn.com/s3/m/9b5018e719e8b8f67c1cb9e6.png)
数学建模商人过河(hjh)
问题
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.
乘船渡河的方案由商人决定.商人们怎样才能安全过河?
分析问题
(1),数据及其关系?(2)如何存储?(3)过程中数据上的操作?
(4)操作过程中需借助什么结构实现?
解答
(1)数据:河两岸的商人数x∈(0,3)和随从人数y∈(0,3)
关系:线性关系
(2)存储:用二维数组来实现。
(3)操作:前进(过河)、后退(返回)
(4)操作过程中需借助栈结构实现
具体分析
此岸商人数与随从人数为C【x】【y】,彼岸商人数与随从人数为B【3-x】【3-y】,C与B数组中x必须大于等于y。
C与B数组中,各个数组中每相邻两个二维数组|x+y|之差不得超过2。
其中过河途中船上人数用数组A表示A【x1】【y1】,返回途中船上人数A【x2】【y2】。
x1,x2,y1,y2=0,1,2。
x1+y1=1或2;y2+x2=1或2。
从此岸来考察,要从最开始的C【3】【3】变到C【0】【0】。
1,C【3】【3】→C【3】【1】,C【3】【1】→C【3】【2】;
2,C【3】【2】→C【3】【0】,C【3】【0】→C【3】【1】;3,C【3】【1】→C【1】【1】,C【1】【1】→C【2】【2】;4,C【2】【2】→C【0】【2】,C【0】【2】→C【0】【3】;5,C【0】【3】→C【0】【1】,C【0】【1】→C【0】【2】;6,C【0】【2】→C【0】【0】。
操作过程中需借助栈结构实现,具体如下图所示:
此岸人数已经全部转移到彼岸,任务圆满完成,商人们安全过河。
数学模型实验商人过河
![数学模型实验商人过河](https://img.taocdn.com/s3/m/e48cc56e19e8b8f67c1cb995.png)
《数学模型实验》实验报告姓名:王佳蕾学院:数学与信息科学学院地点:主楼402学号:20151001055 专业:数学类时间:2017年4 月16日一、实验名称:商人和仆人安全渡河问题的matlab实现二、实验目的:1.熟悉matlab基础知识,初步了解matlab程序设计;2.研究多步决策过程的程序设计方法;3.(允许)状态集合、(允许)决策集合以及状态转移公式的matlab表示;三、实验任务:只有一艘船,三个商人三个仆人过河,每一次船仅且能坐1-2个人,而且任何一边河岸上仆人比商人多的时候,仆人会杀人越货。
怎么在保证商人安全的情况下,六个人都到河对岸去,建模并matlab实现。
要求:代码运行流畅,结果正确,为关键语句加详细注释。
四、实验步骤:1.模型构成2.求决策3.设计程序4.得出结论(最佳解决方案)五、实验内容:(一)构造模型并求决策设第k次渡河前此岸的商人数为xk,随从数为yk,k=1,2,...,xk,yk=0,1,2,3.将二维向量sk=(xk,yk)定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S,S 对此岸和彼岸都是安全的。
S={(x,y)|x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2}设第k次渡船上的商人数为uk,随从数vk,将二维变量dk=(uk,vk)定义为决策,允许决策集合记为D,由小船的容量可知,D={(u,v)|1<=u+v<=2,u,v=0,1,2}k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,状态sk随决策变量dk的变化规律为sk+1=sk+(-1)^k*dk(状态转移律)这样制定安全渡河方案归结为如下的多步决策模型:求决策dk∈D(k=1,2,...,n),使状态sk∈S,按照转移律,由初始状态s1=(3,3)经有限步n到达状态sn+1=(0,0)。
(二)程序设计(三)运行结果、六、 结论体会:安全渡河问题可以看成一个多步决策过程。
【数学模型】商人们怎样过河?
![【数学模型】商人们怎样过河?](https://img.taocdn.com/s3/m/0284866c168884868762d6b6.png)
问题引出问题:三名商人各带一个随从过河,一只小船只能容纳两个人,随从们约定,只要在河的任何一岸,一旦随从人数多于商人人数就杀人越货,但是商人们知道了他们的约定,并且如何过河的大权掌握在商人们手中,商人们该采取怎样的策略才能安全过河呢?这次的问题是一个很经常遇到的过河问题,其实对于该类问题,我们经过逻辑思考就可以得到答案。
但是通过数学模型的建立,我们可以得到一个通用的解答,并且通过计算机的计算我们可以大大扩大问题的规模。
问题分析因为这个问题已经理想化了,所以我们无需对模型进行假设,该问题可以看作一个多步决策问题。
每一步,船由此岸划到彼岸或者由彼岸划回此岸,都要对船上的人员进行决策(此次渡河船上可以有几名商人和几名随从),在保证安全(两岸的随从都不比商人多)的前提下,在有限次的决策中使得所有人都到对岸去。
因此,我们要做的就是要确定每一步的决策,达到渡河的目标。
建立模型记第k 次过河前此岸的商人数为x k , 随从数为y k, k = 1, 2, 3…, x k ,yk = 0, 1, 2, 3定义状态:将二维向量s k = ( x k , y k ) 定义为状态将安全渡河状态下的状态集合定义为允许状态集合,记为S = {(x,y) | x=0,y=0,1,2,3; x=y=1; x=y=2; x=3,y=0,1,2,3}记第k 次渡河船上的商人数为u k,随从数为v k定义决策:将二维向量d k = (u k , v k) 定义为决策允许决策集合记作D = {(u,v) | 1 ≤ u+v ≤ 2, u,v = 0,1,2}因为小船容量为2,所以船上人员不能超过2,而且至少要有一个人划船,由此得到上式。
由我们定义的状态s k和决策d k,我们可以发现它们之间是存在联系的:•k 为奇数是表示船由此岸划向彼岸,k 为偶数时表示船由彼岸划回此岸••状态s k是随着决策d k变化的,规律为:•s k+1 = s k + (-1)k d k我们把上式称为状态转移律,因此渡河方案可以抽象为如下的多步决策模型:求决策d k∈D(k = 1,2,…,n) , 使状态s k∈S 按照转移率,初始状态s1 = (3,3) 经有限步n 到达状态s n+1= (0,0)到这里,整个数学模型就已经非常清晰了,接下来要做的就是求解模型得出结果。
数学建模:研究商人过河问题
![数学建模:研究商人过河问题](https://img.taocdn.com/s3/m/91534e09852458fb770b56ca.png)
数学建模实验一报告实验题目:研究商人过河问题一、实验目的:编写一个程序(可以是C,C++或Mathlab )实现商人安全过河问题。
二、实验环境:Turbo c 2.0、Microsoft Visual C++ 6.0、Matlab 6.0以上 三、实验要求:要求该程序不仅能找出一组安全过河的可行方案,还可以得到所有的安全过河可行方案。
并且该程序具有一定的可扩展性,即不仅可以实现3个商人,3个随从的过河问题。
还应能实现 n 个商人,n 个随从的过河问题以及n 个不同对象且每个对象有m 个元素问题(说明:对于3个商人,3个随从问题分别对应于n=2,m=3)的过河问题。
从而给出课后习题5(n=4,m=1)的全部安全过河方案。
四、实验步骤:第一步:问题分析。
这是一个多步决策过程,涉及到每一次船上的人员以及要考虑此岸和彼岸上剩余的商人数和随从数,在安全的条件下(两岸的随从数不比商人多),经有限步使全体人员过河。
第二步:分析模型的构成。
记第k 次渡河前此岸的商人数为k x ,随从数为k y ,2,1=k ,n y x k k 2,1,=,(具有可扩展性),将)(k k y x ,定义为状态,状态集合成为允许状态集合(S )。
S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,随从数为k v ,决策为),(k k v u ,安全渡河条件下,决策的集合为允许决策集合。
允许决策集合记作D ,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态k s 随决策k d 变化的规律是k k k k d s s )1(1-+=-,此式为状态转移律。
制定安全渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈,使状态S s k ∈按照转移律,由初始状态)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模型求解。
商人过河问题数学建模
![商人过河问题数学建模](https://img.taocdn.com/s3/m/f25029a8caaedd3382c4d3a4.png)
商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1.过河途中不会出现不可抗力的自然因素。
2.当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4.随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[x(k),y(k)]~过程的状态S~允许状态集合S={(x,y)x=0,y=0,1,2,3,4;x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k),v(k)=0,1,2;k(1) kv(k)~ 第 k 次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v u+v=1,2,u,v=0,1,2}状态因决策而改变 s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求 d(k)D(k=1,2,….n), 使 s(k)S 并 按 转 移 律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)随从 y商人 x数学模型:S k+1=S +(-1)D kx + x ' = 4kky + y ' = 4k k(2)(3)x ≥ y k.k (4)x ' ≥ y 'kk模型分析:由(2)(3)(5)可得(5)4 - x ≥ 4 - ykk化简得(( ( (( ( k(10) k综合(4)可得x = yk还要考虑x ≤ ykkk 和 S k = { x k , y k ) | x k = 0, y k = 0,1,2,3,4 }(6)S ' = { x ', y ') | x ' = 0, y ' = 0,1,2,3,4 }kkkkk(7)把(2)(3)带入(7)可得S = {(4 - x ,4 - y ) | 4 - x = 0,4 - y = 0,1,2,3,4 }kk k k k化简得S = { x , y ) | x = 4, y = 0,1,2,3,4 }kk k k k综合(6)(7)(8)式可得满足条件的情况满足下式S = { x , y ) | x = 0,4, y = 0,1,2,3,4; x = ykkkkk k k所以我们知道满足条件的点如上图所示:点移动由}(8)(9)S = { x , y ) | x = 4, y = 0,1,2,3,4 }kkkkk(8)到达S = { x , y ) | x = 0, y = 0,1,2,3,4 }kkkkk(6)时,可以认为完成渡河。
商人过河问题数学建模
![商人过河问题数学建模](https://img.taocdn.com/s3/m/0904b151fc4ffe473368abb8.png)
作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1. 过河途中不会出现不可抗力的自然因素。
2. 当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4. 随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v |u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k) ∈D(k=1,2,….n),使s(k)∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +kk D (-1) (1)'4k k x x += (2)'4k k y y += (3)k.k x y ≥ (4)''k k x y ≥ (5)模型分析:由(2)(3)(5)可得44k k x y -≥-化简得k k x y ≤综合(4)可得k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)还要考虑 {}'(',')|'0,'0,1,2,3,4kk k k k S x y x y === (7) 把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)时,可以认为完成渡河。
商人们怎样安全过河的数学模型
![商人们怎样安全过河的数学模型](https://img.taocdn.com/s3/m/81e8b852cd1755270722192e453610661ed95a3f.png)
商人们怎样安全过河的数学模型示例文章篇一:话说啊,商人们遇到了一个棘手的问题:他们得带着随从们一起过河,但随从们可不是省油的灯,一有机会就想着害商人抢货。
这河又不宽不窄,一只小船每次只能载两个人,怎么过河才能确保安全呢?咱们来聊聊这个问题吧。
首先,商人们得明白,随从们人多势众,要是他们比商人多了,那可就危险了。
所以,商人们得想个法子,让随从们没法儿耍花招。
其实啊,这个问题可以变成一个数学模型。
想象一下,我们把每次过河的人都看成是一个状态,就像打游戏一样,每过一次河就是进入了一个新的关卡。
在这个关卡里,商人们得保证自己的人数不能少于随从们。
那具体怎么做呢?咱们得先设定一些规则。
比如说,每次过河的人数只能是两个,这是小船的容量决定的。
然后,商人们得选择让哪些人过河,这就得靠他们的智慧和策略了。
想象一下这个场景:商人们先让两个随从过河,然后一个商人再带一个随从回来。
这样,河对岸的随从人数虽然多了,但商人这边还有足够的人手可以应对。
接下来,两个商人再过河,这样河对岸的商人数就比随从数多了,安全就得到了保障。
然后,再让一个商人带一个随从回来,这样河这边也有足够的商人保护随从不敢造次。
最后,两个随从再过河,问题就解决了。
这个数学模型虽然简单,但却非常实用。
它告诉我们,在面对困难和挑战时,只要我们善于运用智慧和策略,就一定能够找到解决问题的方法。
所以,商人们要想安全过河,就得靠他们的智慧和勇气了。
示例文章篇二:话说啊,有这么一个古老的谜题,叫做“商人过河”。
话说有三名聪明的商人,他们各自带着一个狡猾的随从,准备乘船过河。
这船啊,一次只能载两个人,问题就在于,这些随从们心里都有个小九九,他们密谋着,只要到了河的对岸,随从人数多于商人人数,就立马动手抢货。
这商人们也不是吃素的,他们知道随从们的阴谋,但他们毕竟都是聪明人,于是就想出了一个绝妙的策略。
咱们来想想啊,这过河其实就是一个多步决策的过程。
每次渡河,船上的人员选择都至关重要。
商人渡河数学模型
![商人渡河数学模型](https://img.taocdn.com/s3/m/9c194f5349d7c1c708a1284ac850ad02de8007e2.png)
商人渡河数学模型
1、商人渡河数学模型
商人渡河是一类有趣的动态规划问题,其本质是一类路径规划问题,用数学模型可以描述为:
假设有n种物品,体积大小分别为W1,W2,……,Wn,以及一艘能承重V的船,每次船只能装载一些物品,要求在尽可能少的船次内,将物品搬运到对岸。
令Xij表示第i次船运载物品的状态,其中0≤Xij≤1,Xij=1表示船上装有第j个物品,Xij=0表示船上没有第j个物品,那么商人渡河问题就可以用下面的数学模型表示:
目标函数:
(1) Min Z=X11+X12+ (Xi)
约束条件:
(2) W1X11+W2X12+……+WnXin≤V
(3) X11+X12+……+Xin=1
(4) 0≤Xij≤1
其中,约束条件(2)表示第i次船运的负载不超过容量V,约束条件(3)表示每次船运必须装一些物品,约束条件(4)表示每次船运的物品的数量限制在0与1之间。
商人过河案例建模
![商人过河案例建模](https://img.taocdn.com/s3/m/57b82ad5b14e852458fb576e.png)
商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。
随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。
而如何乘船渡河的大权掌握在商人们的手中。
商人们怎样才能安全渡河呢?因这已经是一个相当清晰的理想化问题,所以直接讨论其模型描述以及模型求解。
这里将其描述为一个动态决策问题:记第k次渡河前此岸的商人数为,随从数为, k=1,…,n。
将二维向量定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S, 。
记第k次渡船上的商人数为,随从数为, k=1,…,n。
将二维向量定义为决策。
考虑小船载人数的限制,应满足,而称为允许决策集合。
因为k为奇数时,船从此岸驶向彼岸;k为偶数时,船从彼岸驶回此岸,所以状态随决策的变化规律是(状态转移规律)。
求决策,使状态按照状态转移规律,由初始状态经有限步n到达状态。
接下来讨论模型的求解,设是某个可行的渡河方案所对应的状态序列,若存在某,且同为奇数或同为偶数,满足,则称所对应的渡河方案是可约的。
这时也是某个可行的渡河方案所对应的状态序列。
显然,一个有效的渡河方案应当是不可约的。
设渡河已进行到第k步,为当前的状态,记,,为保证构造的渡河方案不可约,则当前的决策除了应满足:1),且当k为奇数时,,当k为偶数时,;还须满足:2)当k为奇数时,;当k为偶数时,。
通过作图,可以得到两种不可约的渡河方案,如下图:思考题:(1)四名商人各带一名随从的情况(小船同前)。
(2)n名商人各带n名随从的情况(小船同前)。
商人过河实验报告
![商人过河实验报告](https://img.taocdn.com/s3/m/3e147b1df18583d04964592a.png)
数学模型实验—实验报告6学院:工商学院专业:电气二类(计算机)姓名:辛文辉尚磊张亨学号:___ 2012484019 2012484091 2012484055 ____ 实验时间:__ 3.18 ____ 实验地点:b3一、实验项目:Matlab程序设计安全渡河问题可以看成一个多步决策过程。
每一步,即船由此岸驶向彼岸或从彼岸驶回此岸,都要对船上的人员(商人随从各几人)作出决策,在保证安全的前提下(两岸的商人数都不比随从数少),在有限步内使人员全部过河。
用状态(变量)表示某一岸的人员状况,决策(变量)表示船上的人员状况,可以找出状态随决策变化的规律。
问题转化为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到渡河的目的。
此类智力问题经过思考,可以拼凑出一个可行方案。
但是,我们现在希望能找到求解这类问题的规律性,并建立数学模型,用以解决更为广泛的问题。
二、实验目的和要求a.了解Matlab程序设计有关基本操作b.掌握有关程序结构三、实验内容允许的状态向量0 00 10 20 30 40 50 60 70 80 90 100 111 12 23 34 45 56 67 78 89 910 1011 011 111 211 311 411 511 611 711 811 911 10允许的决策向量:0 10 20 30 40 50 61 01 12 02 12 23 03 13 23 34 04 14 25 05 16 0过河步骤:第1步:0商5仆过河,0商1仆返回第2步:5商1仆过河,1商1仆返回第3步:3商3仆过河,1商1仆返回第4步:3商3仆过河,1商1仆返回第5步:3商3仆过河,完成过河过程中状态变化:步骤此岸商此岸仆方向彼岸商彼岸仆1 11 6 ==> -8 -311 7 <== -8 -42 6 6 ==> -3 -37 7 <== -4 -43 4 4 ==> -1 -15 5 <== -2 -24 2 2 ==> 1 13 3 <== 0 05 0 0 ==> 3 3对于经典的3对商仆、小船容量为2人时的问题,运行程序求得结果如下11对商仆,小船容量为6人时,运行程序求得结果如下:图 3 11对商仆、小船容量为6时的求解结果事实上,11对商仆时的状态空间如图:图 4 12对商仆时的状态空间显然的船容量必须至少保证状态转移能够沿对角线方向向下移动,问题才会有解。
(完整word版)商人过河问题数学建模
![(完整word版)商人过河问题数学建模](https://img.taocdn.com/s3/m/49e26a6019e8b8f67c1cb9f5.png)
作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1. 过河途中不会出现不可抗力的自然因素。
2. 当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4. 随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v |u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k) ∈D(k=1,2,….n),使s(k)∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +k k D (-1) (1)'4k k x x += (2)'4k k y y += (3)k.k x y ≥ (4)''k k x y ≥ (5)模型分析:由(2)(3)(5)可得44kk x y -≥- 化简得k k x y ≤综合(4)可得k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)还要考虑 {}'(',')|'0,'0,1,2,3,4kk k k k S x y x y === (7) 把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)时,可以认为完成渡河。
商人过河问题数学建模
![商人过河问题数学建模](https://img.taocdn.com/s3/m/7cc1dc6ccfc789eb162dc80d.png)
作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1.过河途中不会出现不可抗力的自然因素。
2.当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4.随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[x(k),y(k)]~过程的状态S~允许状态集合S={(x,y)?x=0,y=0,1,2,3,4;x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k),v(k)=0,1,2;v(k)~第k次渡船上的随从数k=1,2…..d(k)=(u(k),v(k))~过程的决策D~允许决策集合D={u,v?u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k)?D(k=1,2,….n),使s(k)?S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +kk D (-1)(1) '4k k x x +=(2)'4k k y y +=(3)k.k x y ≥(4)''k k x y ≥(5)模型分析:由(2)(3)(5)可得化简得综合(4)可得k k x y =和{}(,)|0,0,1,2,3,4k k k k k S x y x y ===(6)还要考虑{}'(',')|'0,'0,1,2,3,4k k k k k S x y x y ===(7)把(2)(3)带入(7)可得化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y ===(8)综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ====(9) 所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y ===(8)到达{}(,)|0,0,1,2,3,4k k k k k S x y x y ===(6)时,可以认为完成渡河。
商人过河问题数学建模
![商人过河问题数学建模](https://img.taocdn.com/s3/m/065a26c5cfc789eb162dc84f.png)
作业1、2:之公保含烟创作商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两团体过河,包括划船的人.随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.搭船渡河的方案由商人决议.商人们怎样才华平安过河?问题二:假设小船可以容3人,请问最多可以有几名商人各带一名随从平安过河.二、问题剖析问题可以看做一个多步决策进程.每一步由彼岸到彼岸或彼岸到彼岸船上的人员在平安的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.用状态变量暗示某一岸的人员状况,决策变量暗示船上的人员情况,可以找出状态随决策变卦的规律.问题就转换为在状态的允许变卦范围内(即平安渡河条件),确定每一步的决策,到达平安渡河的目标.三.问题假定1. 过河途中不会呈现不成抗力的自然因素.2. 当随从人数年夜于商人数时,随从们不会改动杀人的方案. 3.船的质量很好,在屡次满载的情况下也能正常运作.4. 随从会听从商人的调度.四、模型构成x(k)~第k 次渡河前彼岸的商人数 x(k),y(k)=0,1,2,3,4; y(k)~第k 次渡河前彼岸的随从数 k=1,2,…..s(k)=[ x(k), y(k)]~进程的状态 S~允许状态集合S={(x,y)|x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3} u(k)~第k 次渡船上的商人数 u(k), v(k)=0,1,2;v(k)~ 第k 次渡船上的随从数 k=1,2…..d(k)=( u(k), v(k))~进程的决策 D~允许决策集合 D={u,v|u+v=1,2,u,v=0,1,2}状态因决策而改动s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k)ÎD(k=1,2,….n),使s(k)ÎS 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)抵达(0,0)数学模型: k+1k S =S +k k D (-1)(1)'4k k x x += (2)'4k k y y +=(3)k.k x y ≥ (4)''k k x y ≥(5)模型剖析:由(2)(3)(5)可得化简得综合(4)可得k k x y =和 {}(,)|0,0,1,2,3,4k k k k k S x y x y ===(6)还要思索{}'(',')|'0,'0,1,2,3,4k k k k k S x y x y === (7)把(2)(3)带入(7)可得化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8)综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ====(9) 所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8)抵达{}(,)|0,0,1,2,3,4k k k k k S x y x y ===(6)时,可以认为完成渡河. 因为移动的格数小于等于2,只有中心点(2,2)到(6)点和(8)点的间隔为2,所以中心点(2,2)成为渡河的关键点.当我们移动到(2,2)点时,就无法停止下去.故4个商人,4个随从,船容量为2人时,无法平安渡河. 关于问题二,我们可以树立模型为:k+1k S =S +k k D (-1)(10)'k k x x M+= (11) 'k k y y M += (12)k.k x y ≥(13)''k k x y ≥ (14) u(k), v(k)=0,1,2,3; (15)通过相似于问题一的步伐可以知道:坐标上的关键点是(3,3),最多可以五名商人带五名随从过来.需要确定五名商人带五名随从的方案可行再确定六名商人带六名随从的方案不成行1、五名商人带五名随从的情况:(1)首先不成能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河(2)三个随从先过河(5,2),回来一个随从(5,3),过来两个随从(5,1)回来一个随从(5,2),再过来三个商人(2,2),回来一个商人一个随从(3,3),再过来三个商人(0,3),回来一个随从(0,4),过来三个随从(0,1),回来一个随从(0,2)再过来两个随从(0,0)综上可知:五名商人带五名随从,小船可以载三团体可以过河2、六名商人带六名随从的情况:(1)首先不成能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河(2)三个随从先过河(6,3),回来一个随从(6,4),过来两个随从(6,2)回来一个随从(6,3),过来三个商人(3,3),此时两岸都是(3,3),由坐标法剖析知,这是最接近终点的临界点,然则如果回来的时候一定是回来一个商人和一个随从,如果这一步可行,前面就停止不去综上所述,六个商人带六个随从,小船载三团体的情况下不能渡河结合1、2知,当小船最多载三团体的时候,最多五名商人各带一个随从可以过河.五、模型的检验与评价由少数人的过河问题推广到了更少数人的过河问题,使得问题变得明了有规律.六、参考文献[1]章胤,2014年燕山年夜学全国年夜学生数学建模竞赛培训ppt,2014年4月17日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学模型实验》实验报告
姓名:王佳蕾学院:数学与信息科
学学院
地点:主楼402
学号:055专业:数学类时间:2017年4 月16日
实验名称:
商人和仆人安全渡河问题的matlab实现
实验目的:
1.熟悉matlab基础知识,初步了解matlab程序设计;
2.研究多步决策过程的程序设计方法;
3.(允许)状态集合、(允许)决策集合以及状态转移公式的matlab表示;实验任务:
只有一艘船,三个商人三个仆人过河,每一次船仅且能坐1-2个人,而且任何一边河岸上仆人比商人多的时候,仆人会杀人越货。
怎么在保证商人安全的情况下,六个人都到河对岸去,建模并matlab实现。
要求:代码运行流畅,结果正确,为关键语句加详细注释。
实验步骤:
1.模型构成
2.求决策
3.设计程序
4.得出结论(最佳解决方案)
实验内容:
(一)构造模型并求决策
设第k次渡河前此岸的商人数为xk,随从数为yk,k=1,2,...,xk,yk=0,1,2,3.将二维向量sk=(xk,yk)定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S,S 对此岸和彼岸都是安全的。
S={(x,y)|x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2}
设第k次渡船上的商人数为uk,随从数vk,将二维变量dk=(uk,vk)定义为决策,允许决策集合记为D,由小船的容量可知,
D={(u,v)|1<=u+v<=2,u,v=0,1,2}
k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,状态sk随决策变量dk的变化规律为sk+1=sk+(-1)^k*dk(状态转移律)
这样制定安全渡河方案归结为如下的多步决策模型:
求决策dk∈D(k=1,2,...,n),使状态sk∈S,按照转移律,由初始状态s1=(3,3)经有限步n到达状态sn+1=(0,0)。
(二)程序设计
(三)运行结果
、
结论体会:
安全渡河问题可以看成一个多步决策过程。
每一步,即船由此岸驶向彼岸或从彼岸驶回此岸,都要对船上的人员(商人随从各几人)作出决策,在保证安全的前提下(两岸的商人数都不比随从数少),在有限步内使人员全部过河。
用状态(变量)表示某一岸的人员状况,决策(变量)表示船上的人员状况,可以找出状态随决策变化的规律。
问题转化为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到渡河的目的。