计算机专业外文翻译

合集下载

外文翻译--计算机

外文翻译--计算机

外文原文computerThe modern world of high technology could not have come about except for the development of the computer. Different types and sizes of computers find uses throughout society in the storage and handling of data, from secret governmental files to banking transactions to private household accounts. Computers have opened up a new era in manufacturing through the techniques of automation, and they have enhanced modern communication systems. They are essential tools in almost every field of research and applied technology, from constructing models of the universe to producing tomorrow’s weather reports, and technique use has in itself opened up new areas of conjecture. Database services and computer networks make available a great variety of information sources. The same advanced techniques also make the invasions of privacy and restricted information sources possible, and computer crime has become one of the many risks that society must face if it is to enjoy the benefits of modern technology.A computer is an electronic device that can receive a set of instructions, or program, and then carry out this program by performing calculations on numerical data or by compiling and correlating other forms of information. The type of computers are mainly inclusive of Microcomputer, Minicomputer, Mainframe Computer and Supercomputer, etc. Microminiaturization , the effort to compress more circuit elements into smaller and smaller chip space is becoming the major trend in computer development. Besides, researchers are trying to develop more powerful and more advanced computers.Any customers all pass the operate system to use the calculator, not direct carry on the operation to the hardware of the calculators. The operate system is a bridge that communicates the customer and calculator. Every general-purpose computer must have an operating system to run other programs. Operating systems perform basic tasks and provide a software platform. The choice of operating systems determines to a great extent of the applications. Therefore OS is very important.The operate system is in the charge of Computer resource control program to execute system software. Say in a specific way,the OS is the most basic in the calculator software system, also constituting the part most importantly, it is responsible for the management and controls the calculator system in all hardware resources and the software resources, can make of various resources matched with mutually, moderating to work with one accord, full develop its function, exaltation the efficiency of the system, still take the interface function of the customer and the calculator system at the same time, use the calculator to provide the convenience for the customer. The operate system is a huge management control procedure, including 5 management functions mostly: Progress and processing the machine manage, the homework manage, saving management, equipments management, document management. Divide the line from the function, the tiny machine operate system can is divided into the single mission operate system, single many mission operate systems of customer and many mission operate systems of multi-user of single customer. At present there are several kinds of OS on the computer which are DOS, OS/2, UNIX, XENIX, LINUX, Window2000, Netware etc.In order for a computer to perform the required task, it must be given instructions in a language that it understands. However, the computer’s own binary based language, or machine language, is difficult for humans to use. Therefore, people devised an assembly language to shorten and simplify the process. In order to make a computer more friendly to use, programmers invented high level languages, such as COBOL, FORTRAN, ASSEMBLER, PASCAL, C++, etc, which made the computers easier to use. For the time being, HTML and XML are very useful languages as well.The database is often used to describe a collection of related data that is organized into an integrated, sophisticated structure that provides different people with varied access to the same data. A database management system is an extremely complex set of software programs that controls the organization, storage and retrieval of data in a database. A successful DBMS is often characterized with the four principal features: (1)Data Security and Integrity; (2)Interactive query; (3)Interactive data Entry and Updating; (4)Data Independence. The intelligent databases are becoming more popular in that they canprovide more validation. The researches on new types of database systems are underway.计算机倘若不是伴随着计算机的发展,现代世界的高端技术不可能出现。

【计算机专业文献翻译】工程工作站

【计算机专业文献翻译】工程工作站

附件1:外文资料翻译译文工程工作站就原始性能而言,工程工作站大体上介于PC机和大的小型机之间;尽管随着PC 机和工作站两者功能的不断增强,这三者之间上的差别越来越难以分清了。

但是,工程工作站不论同PC机,或是同传统的分时共享技术(或称小型机技术)相比确实有几个优点。

跟PC机相比,工作站通常具有更多的功能强的CPU,而且能够支持更多的主存,尽管PC机在功能上同低档工作站有重叠现象。

同PC机不同的是,工作站能够提供多用户,多任务操作系统,这已成为它的一种标准特点。

OS/2和UNIX可用于PC机,尤其是以Intel80386为基础的PC机。

然而,PC机用得最多的操作系统仍是MS—DOS。

多任务系统同单任务系统相比有几个优点。

首先,用户可同时运行多道程序,因此对于应用程序是透明的。

虽然PC机的台式附件和常驻RAM程序可给用户提供某种原始的多任务功能,足以运行后台打印假脱机程序以及诸如此类的程序。

但是,他们对应用程序可能是不透明的,而且不能提供像过程间通信和支持多个并行用户这样的重要特点。

对于当今的工程应用来说,也许更为重要的是PC机上缺少大容量的物理内存和虚拟内存。

对于大型应用程序而言,虚拟存储器是很重要的,因为数据组太长,这种大型应用程序简直不能全部在物理存储器内运行。

要是没有虚拟内存的话,像编辑大型文件之类的简单任务都会慢的令人头疼,甚至不可能完成。

加上,许多应用程序更加复杂,因为它们必须缓冲数据或采用覆盖方式将应用程序的不同部分分页从物理内存中调进调出。

最后,大多数工作站的用户接口要比大多数PC机的用户接口高级一个明显的例外情形是Macintosh苹果机上的用户接口。

计算机的用户接口。

计算机的用户接口和连接它的可编程接口决定了应用程序接口的高级程度。

强有力的开发手段可让程序员创建直观的用户接口。

虽然工作站比PC机功能强,但跟现代小型机例如数字设备公司(DEC)VAX—8000系列的小型机相比,情况通常就不是那样了。

计算机专业外文翻译(中英文)---HTTP和Servlet的基础知识

计算机专业外文翻译(中英文)---HTTP和Servlet的基础知识

附录A 译文HTTP和Servlet的基础知识让我们从定义Web应用程序这一章开始。

我们都看到过一般的客户端应用软件,但怎么样才是一个真正的Web应用程序?然而,它可以被定义为一个用于用户接入的运行在服务器上的程序,通过一个简单,一般用途的客户。

今天,最常见的客户端是一种运行在pc机上的网页浏览器或工作站系统,但其他类型的用户正在迅速加入,如无线PDA ,手机,和其他专门设备。

最崇高目标是从你面前的任何类型的设备上获得你所要的信息和服务。

这意味着同样的简单客户端程序必须能够与许多不同的服务器应用通话,以及应用程序必须能够适用于许多不同类型的客户。

为了满足这一需要,必须制定详细的客户端和服务器相互通信的协义。

这正是超文本传输协议( HTTP )的目的。

通信模型所确定的HTTP形式的基础,所有的Web应用程序设计。

基本了解HTTP的关键应用,适合发展中国家的限制范围内的协议,无论哪个服务器端技术的使用。

在本章中,我们看一下最重要的细节的HTTP您需要了解作为一个Web 应用程序开发。

另外一个项目:这本书是用JSP作为服务器端技术。

JSP技术是基于Java Servlet技术。

这两种技术有着大量的术语和概念,所以知道一点servlets将帮助你,即使你开发纯JSP的应用。

要真正理解和使用的全部的JSP ,你需要知道一点servlets 。

因此,我们期待在servlet的基本入在最后一章的这一节。

2.1 HTTP请求/响应模型所有扩展HTTP和基于HTTP协议是基于一个非常简单的通信模式。

其工作原理如下:客户端,通常是一个Web浏览器,发出了一个请求资源的服务器,服务器发回的响应相应的资源(或响应的错误信息,如果它不能处理请求出于某种原因)。

A资源是一些事情的数据,如一个简单的HTML文件逐字返回到浏览器或程序,动态生成的响应。

这种简单的模式意味着三个重要的事实你需要了解:HTTP是一种无状态协议。

计算机科学与技术专业外文翻译--数据库

计算机科学与技术专业外文翻译--数据库

外文原文:Database1.1Database conceptThe database concept has evolved since the 1960s to ease increasing difficulties in designing, building, and maintaining complex information systems (typically with many concurrent end-users, and with a large amount of diverse data). It has evolved together with database management systems which enable the effective handling of databases. Though the terms database and DBMS define different entities, they are inseparable: a database's properties are determined by its supporting DBMS and vice-versa. The Oxford English dictionary cites[citation needed] a 1962 technical report as the first to use the term "data-base." With the progress in technology in the areas of processors, computer memory, computer storage and computer networks, the sizes, capabilities, and performance of databases and their respective DBMSs have grown in orders of magnitudes. For decades it has been unlikely that a complex information system can be built effectively without a proper database supported by a DBMS. The utilization of databases is now spread to such a wide degree that virtually every technology and product relies on databases and DBMSs for its development and commercialization, or even may have such embedded in it. Also, organizations and companies, from small to large, heavily depend on databases for their operations.No widely accepted exact definition exists for DBMS. However, a system needs to provide considerable functionality to qualify as a DBMS. Accordingly its supported data collection needs to meet respective usability requirements (broadly defined by the requirements below) to qualify as a database. Thus, a database and its supporting DBMS are defined here by a set of general requirements listed below. Virtually all existing mature DBMS products meet these requirements to a great extent, while less mature either meet them or converge to meet them.1.2Evolution of database and DBMS technologyThe introduction of the term database coincided with the availability of direct-access storage (disks and drums) from the mid-1960s onwards. The term represented a contrast with the tape-based systems of the past, allowing shared interactive use rather than daily batch processing.In the earliest database systems, efficiency was perhaps the primary concern, but it was already recognized that there were other important objectives. One of the key aims was to make the data independent of the logic of application programs, so that the same data could be made available to different applications.The first generation of database systems were navigational,[2] applications typically accessed data by following pointers from one record to another. The two main data models at this time were the hierarchical model, epitomized by IBM's IMS system, and the Codasyl model (Network model), implemented in a number ofproducts such as IDMS.The Relational model, first proposed in 1970 by Edgar F. Codd, departed from this tradition by insisting that applications should search for data by content, rather than by following links. This was considered necessary to allow the content of the database to evolve without constant rewriting of applications. Relational systems placed heavy demands on processing resources, and it was not until the mid 1980s that computing hardware became powerful enough to allow them to be widely deployed. By the early 1990s, however, relational systems were dominant for all large-scale data processing applications, and they remain dominant today (2012) except in niche areas. The dominant database language is the standard SQL for the Relational model, which has influenced database languages also for other data models.Because the relational model emphasizes search rather than navigation, it does not make relationships between different entities explicit in the form of pointers, but represents them rather using primary keys and foreign keys. While this is a good basis for a query language, it is less well suited as a modeling language. For this reason a different model, the Entity-relationship model which emerged shortly later (1976), gained popularity for database design.In the period since the 1970s database technology has kept pace with the increasing resources becoming available from the computing platform: notably the rapid increase in the capacity and speed (and reduction in price) of disk storage, and the increasing capacity of main memory. This has enabled ever larger databases and higher throughputs to be achieved.The rigidity of the relational model, in which all data is held in tables with a fixed structure of rows and columns, has increasingly been seen as a limitation when handling information that is richer or more varied in structure than the traditional 'ledger-book' data of corporate information systems: for example, document databases, engineering databases, multimedia databases, or databases used in the molecular sciences. Various attempts have been made to address this problem, many of them gathering under banners such as post-relational or NoSQL. Two developments of note are the Object database and the XML database. The vendors of relational databases have fought off competition from these newer models by extending the capabilities of their own products to support a wider variety of data types.1.3General-purpose DBMSA DBMS has evolved into a complex software system and its development typically requires thousands of person-years of development effort.[citation needed] Some general-purpose DBMSs, like Oracle, Microsoft SQL Server, and IBM DB2, have been undergoing upgrades for thirty years or more. General-purpose DBMSs aim to satisfy as many applications as possible, which typically makes them even more complex than special-purpose databases. However, the fact that they can be used "off the shelf", as well as their amortized cost over many applications and instances, makes them an attractive alternative (Vsone-time development) whenever they meet an application's requirements.Though attractive in many cases, a general-purpose DBMS is not always the optimal solution: When certain applications are pervasive with many operating instances, each with many users, a general-purpose DBMS may introduce unnecessary overhead and too large "footprint" (too large amount of unnecessary, unutilized software code). Such applications usually justify dedicated development.Typical examples are email systems, though they need to possess certain DBMS properties: email systems are built in a way that optimizes email messages handling and managing, and do not need significant portions of a general-purpose DBMS functionality.1.4Database machines and appliancesIn the 1970s and 1980s attempts were made to build database systems with integrated hardware and software. The underlying philosophy was that such integration would provide higher performance at lower cost. Examples were IBM System/38, the early offering of Teradata, and the Britton Lee, Inc. database machine. Another approach to hardware support for database management was ICL's CAFS accelerator, a hardware disk controller with programmable search capabilities. In the long term these efforts were generally unsuccessful because specialized database machines could not keep pace with the rapid development and progress of general-purpose computers. Thus most database systems nowadays are software systems running on general-purpose hardware, using general-purpose computer data storage. However this idea is still pursued for certain applications by some companies like Netezza and Oracle (Exadata).1.5Database researchDatabase research has been an active and diverse area, with many specializations, carried out since the early days of dealing with the database concept in the 1960s. It has strong ties with database technology and DBMS products. Database research has taken place at research and development groups of companies (e.g., notably at IBM Research, who contributed technologies and ideas virtually to any DBMS existing today), research institutes, and Academia. Research has been done both through Theory and Prototypes. The interaction between research and database related product development has been very productive to the database area, and many related key concepts and technologies emerged from it. Notable are the Relational and the Entity-relationship models, the Atomic transaction concept and related Concurrency control techniques, Query languages and Query optimization methods, RAID, and more. Research has provided deep insight to virtually all aspects of databases, though not always has been pragmatic, effective (and cannot and should not always be: research is exploratory in nature, and not always leads to accepted or useful ideas). Ultimately market forces and real needs determine the selection of problem solutions and related technologies, also among those proposed by research. However, occasionally, not the best and most elegant solution wins (e.g., SQL). Along their history DBMSs and respective databases, to a great extent, have been the outcome of such research, while real product requirements and challenges triggered database research directions and sub-areas.The database research area has several notable dedicated academic journals (e.g., ACM Transactions on Database Systems-TODS, Data and Knowledge Engineering-DKE, and more) and annual conferences (e.g., ACM SIGMOD, ACM PODS, VLDB, IEEE ICDE, and more), as well as an active and quite heterogeneous (subject-wise) research community all over the world.1.6Database architectureDatabase architecture (to be distinguished from DBMS architecture; see below) may be viewed, to some extent, as an extension of Data modeling. It is used to conveniently answer requirements of different end-users from a same database, as well as for other benefits. For example, a financial department of a company needs the payment details of all employees as part of the company's expenses, but not other many details about employees, that are the interest of the human resources department. Thus different departments need different views of the company's database, that both include the employees' payments, possibly in a different level of detail (and presented in different visual forms). To meet such requirement effectively database architecture consists of three levels: external, conceptual and internal. Clearly separating the three levels was a major feature of the relational database model implementations that dominate 21st century databases.[13]The external level defines how each end-user type understands the organization of its respective relevant data in the database, i.e., the different needed end-user views.A single database can have any number of views at the external level.The conceptual level unifies the various external views into a coherent whole, global view.[13] It provides the common-denominator of all the external views. It comprises all the end-user needed generic data, i.e., all the data from which any view may be derived/computed. It is provided in the simplest possible way of such generic data, and comprises the back-bone of the database. It is out of the scope of the various database end-users, and serves database application developers and defined by database administrators that build the database.The Internal level (or Physical level) is as a matter of fact part of the database implementation inside a DBMS (see Implementation section below). It is concerned with cost, performance, scalability and other operational matters. It deals with storage layout of the conceptual level, provides supporting storage-structures like indexes, to enhance performance, and occasionally stores data of individual views (materialized views), computed from generic data, if performance justification exists for such redundancy. It balances all the external views' performance requirements, possibly conflicting, in attempt to optimize the overall database usage by all its end-uses according to the database goals and priorities.All the three levels are maintained and updated according to changing needs by database administrators who often also participate in the database design.The above three-level database architecture also relates to and being motivated by the concept of data independence which has been described for long time as a desired database property and was one of the major initial driving forces of the Relational model. In the context of the above architecture it means that changes made at a certain level do not affect definitions and software developed with higher level interfaces, and are being incorporated at the higher level automatically. For example, changes in the internal level do not affect application programs written using conceptual level interfaces, which saves substantial change work that would be needed otherwise.In summary, the conceptual is a level of indirection between internal and external. On one hand it provides a common view of the database, independent of different external view structures, and on the other hand it is uncomplicated by details of how the data is stored or managed (internal level). In principle every level, and even every external view, can be presented by a different data model. In practice usually a given DBMS uses the same data model for both the external and the conceptual levels (e.g., relational model). The internal level, which is hidden inside the DBMS and depends on its implementation (see Implementation section below), requires a different levelof detail and uses its own data structure types, typically different in nature from the structures of the external and conceptual levels which are exposed to DBMS users (e.g., the data models above): While the external and conceptual levels are focused on and serve DBMS users, the concern of the internal level is effective implementation details.中文译文:数据库1.1 数据库的概念数据库的概念已经演变自1960年以来,以缓解日益困难,在设计,建设,维护复杂的信息系统(通常与许多并发的最终用户,并用大量不同的数据)。

计算机外文翻译---JSP应用框架

计算机外文翻译---JSP应用框架

外文翻译原文及译文JSP application frameworksWhat are application frameworks:A framework is a reusable, semi-complete application that can be specialized toproduce custom applications [Johnson]. Like people, software applications are more alike than they are different. They run on the same computers, expect input from the same devices, output to the same displays, and save data to the same hard disks. Developers working on conventional desktop applications are accustomed to toolkits and development environments that leverage the sameness between applications. Application frameworks build on this common ground to provide developers with a reusable structure that can serve as the foundation for their own products.A framework provides developers with a set of backbone components that have the following characteristics:1.They are known to work well in other applications.2. They are ready to use with the next project.3. They can also be used by other teams in the organization.Frameworks are the classic build-versus-buy proposition. If you build it, you will understand it when you are done—but how long will it be before you can roll your own? If you buy it, you will have to climb the learning curve—and how long is that going to take? There is no right answer here, but most observers would agree that frameworks such as Struts provide a significant return on investment compared to starting from scratch, especially for larger projects.Other types of frameworks:The idea of a framework applies not only to applications but to application componentsas well. Throughout this article, we introduce other types of frameworks that you can use with Struts. These include the Lucene search engine, the Scaffold toolkit, the Struts validator, and the Tiles tag library. Like application frameworks, these tools providecomponent.Some frameworks have been linked to a proprietary development environment. This is not the case with Struts or any of the other frameworks shown in this book. You can use any development environment with Struts: Visual Age for Java, JBuilder, Eclipse, Emacs, and Textpad are all popular choices among Struts developers. If you can use it with Java, you can use it with Struts.Enabling technologies:Applications developed with Struts are based on a number of enabling technologies.These components are not specific to Struts and underlie every Java web application. A reason that developers use frameworks like Struts is to hide the nasty details behind acronyms like HTTP, CGI, and JSP. As a Struts developer, you don’t need to be an alphabet soup guru, but a working knowledge of these base technologies can help you devise creative solutions to tricky problems.Hypertext Transfer Protocol (HTTP):When mediating talks between nations, diplomats often follow a formal protocol.Diplomatic protocols are designed to avoid misunderstandings and to keep negotiations from breaking down. In a similar vein, when computers need to talk, they also follow a formal protocol. The protocol defines how data is transmitted and how to decode it once it arrives. Web applications use the Hypertext Transfer Protocol (HTTP) to move data between the browser running on your computer and the application running on the server.Many server applications communicate using protocols other than HTTP. Some of these maintain an ongoing connection between the computers. The application server knows exactly who is connected at all times and can tell when a connection is dropped. Because they know the state of each connection and the identity of each person using it, these are known as stateful protocols.By contrast, HTTP is known as a stateless protocol. An HTTP server will accept any request from any client and will always provide some type of response, even if the response is just to say no. Without the overhead of negotiating and retaining a connection, stateless protocols can handle a large volume of requests. This is one reason why theInternet has been able to scale to millions of computers.Another reason HTTP has become the universal standard is its simplicity. An HTTP request looks like an ordinary text document. This has made it easy for applications to make HTTP requests. You can even send an HTTP request by hand using a standard utility such as Telnet. When the HTTP response comes back, it is also in plain text that developers can read.The first line in the HTTP request contains the method, followed by the locationof the requested resource and the version of HTTP. Zero or more HTTP request headers follow the initial line. The HTTP headers provide additional information to the server. This can include the browser type and version, acceptable document types, and the browser’s cookies, just to name a few. Of the s even request methods, GET and POST are by far the most popular.Once the server has received and serviced the request, it will issue an HTTP response. The first line in the response is called the status line and carries the HTTP protocol version, a numeric status, and a brief description of the status. Following the status line, the server will return a set of HTTP response headers that work in a way similar to the request headers.As we mentioned, HTTP does not preserve state information between requests.The server logs the request, sends the response, and goes blissfully on to the next request. While simple and efficient, a stateless protocol is problematic for dynamic applications that need to keep track of their users. (Ignorance is not always bliss.Cookies and URL rewriting are two common ways to keep track of users between requests. A cookie is a special packet of information on the user’s computer. URL rewriting stores a special reference in the page address that a Java server can use to track users. Neither approach is seamless, and using either means extra work when developing a web application. On its own, a standard HTTP web server does not traffic in dynamic content. It mainly uses the request to locate a file and then returns that file in the response. The file is typically formatted using Hypertext Markup Language (HTML) [W3C, HTML] that the web browser can format and display. The HTML page often includes hypertext links to other web pages and may display any number of other goodies, such as images andvideos. The user clicks a link to make another request, and the process begins a new.Standard web servers handle static content and images quite well but need a helping hand to provide users with a customized, dynamic response.DEFINITION:Static content on the Web comes directly from text or data files, like HTML or JPEG files. These files might be changed from time to time, but they are not altered automatically when requested by a web browser. Dynamic content, on the other hand, is generated on the fly, typically in response to an individualized request from a browser.Common Gateway Interface (CGI):The first widely used standard for producing dynamic content was the Common Gateway Interface (CGI). CGI uses standard operating system features, such as environment variables and standard input and output, to create a bridge, or gateway, between the web server and other applications on the host machine. The other applications can look at the request sent to them by the web server and create a customized response.When a web server receives a request that’s intended for a CGI program, it runs that program and provides the program with information from the incoming request. The CGI program runs and sends its output back to the server. The web server then relays the response to the browser.CGI defines a set of conventions regarding what information it will pass as environment variables and how it expects standard input and output to be used. Like HTTP, CGI is flexible and easy to implement, and a great number of CGI-aware programs have been written.The main drawback to CGI is that it must run a new copy of the CGI-aware program for each request. This is a relatively expensive process that can bog down high-volume sites where thousands of requests are serviced per minute. Another drawback is that CGI programs tend to be platform dependent. A CGI program written for one operating system may not run on another.Java servlets:Sun’s Java Servlet platform directly addresses the two main drawbacks of CGIconventional CGI programs. Second, the write-once, run-anywhere nature of Java means that servlets are portable between operating systems that have a Java Virtual Machine (JVM).A servlet looks and feels like a miniature web server. It receives a request and renders a response. But, unlike conventional web servers, the servlet application programming interface (API) is specifically designed to help Java developers create dynamic applications.The servlet itself is simply a Java class that has been compiled into byte code, like any other Java object. The servlet has access to a rich API of HTTP-specific services, but it is still just another Java object running in an application and can leverage all your other Java assets.To give conventional web servers access to servlets, the servlets are plugged into containers. The servlet container is attached to the web server. Each servlet can declare what URL patterns it would like to handle. When a request matching a registered pattern arrives, the web server passes the request to the container, and the container invokes the servlet.But unlike CGI programs, a new servlet is not created for each request. Once the container instantiates the servlet, it will just create a new thread for each request. Java threads are much less expensive than the server processes used by CGI programs. Once the servlet has been created, using it for additional requests incurs very little overhead. Servlet developers can use the init() method to hold references to expensive resources, such as database connections or EJB Home Interfaces, so that they can be shared between requests. Acquiring resources like these can take several seconds—which is longer than many surfers are willing to wait.The other edge of the sword is that, since servlets are multithreaded, servlet developers must take special care to be sure their servlets are thread-safe. To learn more about servlet programming, we recommend Java Servlets by Example, by Alan R. Williamson [Williamson]. The definitive source for Servlet information is the Java Servlet Specification [Sun, JST].JavaServer Pages:While Java servlets are a big step up from CGI programs, they are not a panacea. To generate the response, developers are still stuck with using println statements to render the HTML. Code that looks like:out.println("<P>One line of HTML.</P>");out.println("<P>Another line of HTML.</P>");is all too common in servlets that generate the HTTP response. There are libraries that can help you generate HTML, but as applications grow more complex, Java developers end up being cast into the role of HTML page designers.Meanwhile, given the choice, most project managers prefer to divide development teams into specialized groups. They like HTML designers to be working on the presentation while Java engineers sweat the business logic. Using servlets alone encourages mixing markup with business logic, making it difficult for team members to specialize.To solve this problem, Sun turned to the idea of using server pages to combine scripting and templating technologies into a single component. To build Java Server Pages, developers start by creating HTML pages in the same old way, using the same old HTML syntax. To bring dynamic content into the page, the developer can also place JSP scripting elements on the page. Scripting elements are tags that encapsulate logic that is recognized by the JSP. You can easily pick out scripting elements on JSP pages by looking for code that begins with <% and ends with %>.To be seen as a JSP page, the file just needs to be saved with an extension of .jsp.When a client requests the JSP page, the container translates the page into a source code file for a Java servlet and compiles the source into a Java class file—just as you would do if you were writing a servlet from scratch. At runtime, the container can also check the last modified date of the JSP file against the class file. If the JSP file has changed since it was last compiled, the container will retranslate and rebuild the page all over again.Project managers can now assign the presentation layer to HTML developers, who then pass on their work to Java developers to complete the business-logic portion. The important thing to remember is that a JSP page is really just a servlet. Anything you can do with a servlet, you can do with a JSP.JavaBeans:JavaBeans are Java classes which conform to a set of design patterns that make them easier to use with development tools and other components.DEFINITION A JavaBean is a reusable software component written in Java. To qualify as a JavaBean, the class must be concrete and public, and have a noargument constructor. JavaBeans expose internal fields as properties by providing public methods that follow a consistent design pattern. Knowing that the property names follow this pattern, other Java classes are able to use introspection to discover and manipulate JavaBean properties.The JavaBean design patterns provide access to the bean’s internal stat e through two flavors of methods: accessors are used to read a JavaBean’s state; mutators are used to change a JavaBean’s state.Mutators are always prefixed with lowercase token set followed by the property name. The first character in the property name must be uppercase. The return value is always void—mutators only change property values; they do not retrieve them. The mutator for a simple property takes only one parameter in its signature, which can be of any type. Mutators are often nicknamed setters after their prefix. The mutator method signature for a weight property of the type Double would be:public void setWeight(Double weight)A similar design pattern is used to create the accessor method signature. Accessor methods are always prefixed with the lowercase token get, followed by the property name. The first character in the property name must be uppercase. The return value will match the method parameter in the corresponding mutator. Accessors for simple properties cannot accept parameters in their method signature. Not surprisingly, accessors are often called getters.The accessor method signature for our weight property is:public Double getWeight()If the accessor returns a logical value, there is a variant pattern. Instead of using the lowercase token get, a logical property can use the prefix is, followed by the property name.be a logical value—either boolean or Boolean. Logical accessors cannot accept parameters in their method signature.The boolean accessor method signature for an on property would bepublic boolean isOn()The canonical method signatures play an important role when working with Java- Beans. Other components are able to use the Java Reflec tion API to discover a JavaBean’s properties by looking for methods prefixed by set, is, or get. If a component finds such a signature on a JavaBean, it knows that the method can be used to access or change the bean’s properties.Sun introduced JavaBeans to work with GUI components, but they are now used with every aspect of Java development, including web applications. When Sun engineers developed the JSP tag extension classes, they designed them to work with JavaBeans. The dynamic data for a page can be passed as a JavaBean, and the JSP tag can then use the bean’s properties to customize the output.For more on JavaBeans, we highly recommend The Awesome Power of JavaBeans, by Lawrence H. Rodrigues [Rodrigues]. The definitive source for JavaBean information is the JavaBean Specification [Sun, JBS].Model 2:The 0.92 release of the Servlet/JSP Specification described Model 2 as an architecture that uses servlets and JSP pages together in the same application. The term Model 2 disappeared from later releases, but it remains in popular use among Java web developers.Under Model 2, servlets handle the data access and navigational flow, while JSP pages handle the presentation. Model 2 lets Java engineers and HTML developers each work on their own part of the application. A change in one part of a Model 2 application does not mandate a change to another part of the application. HTML developers can often change the look and feel of an application without changing how the back-office servlets work.The Struts framework is based on the Model 2 architecture. It provides a controller servlet to handle the navigational flow and special classes to help with the data access. Awith JSP pages.Summary:In this article, we introduced Struts as an application framework. We examined the technology behind HTTP, the Common Gateway Interface, Java servlets, JSPs, and JavaBeans. We also looked at the Model 2 application architecture to see how it is used to combine servlets and JSPs in the same application.Now that you have had a taste of what it is like to develop a web application with Struts, in chapter 2 we dig deeper into the theory and practice behind the Struts architecture.JSP 应用框架什么是应用框架:框架(framework)是可重用的,半成品的应用程序,可以用来产生专门的定制程序。

计算机专业外文翻译+原文-数据库管理系统介绍

计算机专业外文翻译+原文-数据库管理系统介绍

外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse”through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed itemsfrom the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: topmanagement is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E.F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a record would contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performanceadvantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model is relatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model.Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible data formats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computeris seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simplesends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at the location where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have been posted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access todata. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information. However, the following is a list of the more common itemsincluded in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。

计算机科学与技术 外文翻译 英文文献 中英对照

计算机科学与技术 外文翻译 英文文献 中英对照

附件1:外文资料翻译译文大容量存储器由于计算机主存储器的易失性和容量的限制, 大多数的计算机都有附加的称为大容量存储系统的存储设备, 包括有磁盘、CD 和磁带。

相对于主存储器,大的容量储存系统的优点是易失性小,容量大,低成本, 并且在许多情况下, 为了归档的需要可以把储存介质从计算机上移开。

术语联机和脱机通常分别用于描述连接于和没有连接于计算机的设备。

联机意味着,设备或信息已经与计算机连接,计算机不需要人的干预,脱机意味着设备或信息与机器相连前需要人的干预,或许需要将这个设备接通电源,或许包含有该信息的介质需要插到某机械装置里。

大量储存器系统的主要缺点是他们典型地需要机械的运动因此需要较多的时间,因为主存储器的所有工作都由电子器件实现。

1. 磁盘今天,我们使用得最多的一种大量存储器是磁盘,在那里有薄的可以旋转的盘片,盘片上有磁介质以储存数据。

盘片的上面和(或)下面安装有读/写磁头,当盘片旋转时,每个磁头都遍历一圈,它被叫作磁道,围绕着磁盘的上下两个表面。

通过重新定位的读/写磁头,不同的同心圆磁道可以被访问。

通常,一个磁盘存储系统由若干个安装在同一根轴上的盘片组成,盘片之间有足够的距离,使得磁头可以在盘片之间滑动。

在一个磁盘中,所有的磁头是一起移动的。

因此,当磁头移动到新的位置时,新的一组磁道可以存取了。

每一组磁道称为一个柱面。

因为一个磁道能包含的信息可能比我们一次操作所需要得多,所以每个磁道划分成若干个弧区,称为扇区,记录在每个扇区上的信息是连续的二进制位串。

传统的磁盘上每个磁道分为同样数目的扇区,而每个扇区也包含同样数目的二进制位。

(所以,盘片中心的储存的二进制位的密度要比靠近盘片边缘的大)。

因此,一个磁盘存储器系统有许多个别的磁区, 每个扇区都可以作为独立的二进制位串存取,盘片表面上的磁道数目和每个磁道上的扇区数目对于不同的磁盘系统可能都不相同。

磁区大小一般是不超过几个KB; 512 个字节或1024 个字节。

计算机专业毕业设计外文翻译--JSP内置对象

计算机专业毕业设计外文翻译--JSP内置对象

附录1 外文参考文献(译文)JSP内置对象有些对象不用声明就可以在JSP页面的Java程序片和表达式部分使用,这就是JSP 的内置对象。

JSP的内置对象有:request、response、session、application、out.response和request对象是JSP内置对象中较重要的两个,这两个对象提供了对服务器和浏览器通信方法的控制。

直接讨论这两个对象前,要先对HTTP协议—Word Wide Wed底层协议做简单介绍。

Word Wide Wed是怎样运行的呢?在浏览器上键入一个正确的网址后,若一切顺利,网页就出现了。

使用浏览器从网站获取HTML页面时,实际在使用超文本传输协议。

HTTP规定了信息在Internet上的传输方法,特别是规定吧浏览器与服务器的交互方法。

从网站获取页面时,浏览器在网站上打开了一个对网络服务器的连接,并发出请求。

服务器收到请求后回应,所以HTTP协议的核心就是“请求和响应”。

一个典型的请求通常包含许多头,称作请求的HTTP头。

头提供了关于信息体的附加信息及请求的来源。

其中有些头是标准的,有些和特定的浏览器有关。

一个请求还可能包含信息体,例如,信息体可包含HTML表单的内容。

在HTML表单上单击Submit 键时,该表单使用ACTION=”POST”或ACTION=”GET”方法,输入表单的内容都被发送到服务器上。

该表单内容就由POST方法或GET方法在请求的信息体中发送。

服务器发送请求时,返回HTTP响应。

响应也有某种结构,每个响应都由状态行开始,可以包含几个头及可能的信息体,称为响应的HTTP头和响应信息体,这些头和信息体由服务器发送给客户的浏览器,信息体就是客户请求的网页的运行结果,对于JSP 页面,就是网页的静态信息。

用户可能已经熟悉状态行,状态行说明了正在使用的协议、状态代码及文本信息。

例如,若服务器请求出错,则状态行返回错误及对错误描述,比如HTTP/1.1 404 Object Not Found。

计算机 自动化 外文翻译 外文文献 英文文献 原文

计算机 自动化 外文翻译 外文文献 英文文献 原文

The Application of Visualization Technology in ElectricPower Automation SystemWang Chuanqi, Zou QuanxiElectric Power Automation System Department of Yantai Dongfang Electronics Information IndustryCo., Ltd.Abstract: Isoline chart is widely used chart. The authors have improved the existing isoline formation method, proposed a simple and practical isoline formation method, studied how to fill the isoline chart, brought about a feasible method of filling the isoline chart and discussed the application of isoline chart in electric power automation system.Key words: Visualization; Isoline; Electric power automation systemIn the electric power system industry, the dispatching of electric network becomes increasingly important along with the expansion of electric power system and the increasing demands of people towards electric power. At present, electric network dispatching automation system is relatively advanced and relieves the boring and heavy work for operation staff. However, there is a large amount or even oceans of information. Especially when there is any fault, a large amount of alarm information and fault information will flood in the dispatching center. Faced with massive data, operation staff shall rely on some simple and effective tool to quickly locate the interested part in order to grasp the operation state of the system as soon as possible and to predict, identify and remove fault.Meanwhile, the operation of electric power system needs engineers and analysts in the system to analyze a lot of data. The main challenge that a system with thousands of buses poses for electric power automation system is that it needs to supply a lot of data to users in a proper way and make users master and estimate the state of the system instinctively and quickly. This is the case especially in electric network analyzing software. For example, the displaying way of data is more important in analyzing the relations between the actual trend, planned trend of electric network and the transmission capacity of the system. The application of new computer technology and visualization technology in the electric power automation system can greatly satisfy new development and new demands of electric power automation system.The word “Visualization” originates from English “Visual” and itsoriginal meaning is visual and vivid. In fact, the transformation of any abstract things and processes into graphs and images can be regarded as visualization. But as a subject term, the word “Visualization” officially appeared in a seminar held by National Science Foundation (shortened as NSF) of the USA in February 1987. The official report published after the seminar defined visualization, its covered fields and its recent and long-term research direction, which symbolized that “Visualization” became mature as a subject at the international level.The basic implication of visualization is to apply the principles and methods of computer graphics and general graphics to transforming large amounts of data produced by scientific and engineering computation into graphs and images and displaying them in a visual way. It refers to multi research fields such as computer graphics, image processing, computer vision, computer-aided design (CAD) and graphical user interface (GUI), etc. and has become an important direction for the current research of computer graphics.There are a lot of methods to realize visualization and each method has its unique features and applies to different occasions. Isoline and isosurface is an important method in visualization and can be applied to many occasions. The realization of isoline (isosurface) and its application in the electric power automation system will be explained below in detail.1、 Isoline (Isosurface)Isoline is defined with all such points (x i, y i), in which F(x i, y i)=F i (F i is a set value), and these points connected in certain order form the isoline of F(x,y) whose value is F i…Common isolines such as contour line and isotherm, etc.are based on the measurement of certain height and temperature.Regular isoline drawing usually adopts grid method and the steps are as follows:gridingdiscrete data;converting grid points into numerical value;calculating isoline points; tracing isoline; smoothing and marking isoline; displaying isoline or filling the isoline chart. Recently, some people have brought about the method of introducing triangle grid to solve the problems of quadrilateral grid. What the two methods have in common is to use grid and isoline points on the grid for traveling tracing, which results in the following defects in the drawing process:(1) The two methods use the grid structure, first find out isoline pointson each side of certain quadrilateral grid or triangle grid, and then continue to find out isoline points from all the grids, during which a lot of judgment are involved, increasing the difficulty of program realization. When grid nodes become isoline points, they shall be treated as singular nodes, which not only reduces the graph accuracy but also increases the complexity of drawing.(2) The two methods produce drawn graphs with inadequate accuracy and intersection may appear during traveling tracing. The above methods deal with off-grid points using certain curve-fitting method. That is, the methods make two approximations and produce larger tolerance.(3) The methods are not universal and they can only deal with data of grid structure. If certain data is transformed into the grid structure, interpolation is needed in the process, which will definitely reduce the accuracy of graphs.To solve the problems, we adopt the method of raster graph in drawing isoline when realizing the system function, and it is referred to as non-grid method here. This method needs no grid structures and has the following advantages compared to regular methods:(1) Simple programming and easily realized, with no singular nodes involved and no traveling tracing of isoline. All these advantages greatly reduce the complexity of program design.(2)Higher accuracy. It needs one approximation while regular methods need two or more.(3) More universal and with no limits of grid1.1 Isoline Formation Method of Raster GraphThe drawing of raster graph has the following features: the area of drawing isoline is limited and is composed of non-continuous points. In fact, raster graph is limited by computer screen and what people can see is just a chart formed by thousands of or over ten thousand discrete picture elements. For example, a straight line has limited length on computers and is displayed with lots of discrete points. Due to the limitations of human eyes, it seemscontinuous. Based on the above features, this paper proposes isoline formation method of raster graph. The basic idea of this method is: as computer graphs are composed of discrete points, one just needs to find out all the picture element points on the same isoline, which will definitely form thisisoline.Take the isoline of rectangular mountain area for example to discuss detailed calculation method. Data required in calculation is the coordinates and altitude of each measuring point, i.e., (x i ,y i ,z i ), among which z i represents the altitude of No.i measuring point and there are M measuring points in total. Meanwhile, the height of isoline which is to be drawn is provided. For example, starting from h 0 , an isoline is drawn with every height difference of ∆h0 and total m isolines are drawn. Besides, the size of the screen area to be displayed is known and here (StartX,StartY) represents the top left corner of this area while (EndX ,EndY)represents the low right corner of this area. The calculation method for drawing its isoline is as follows:(1) Find out the value of x i and y i of the top left corner and low right corner points in the drawing area, which are represented by X max ,X min ,Y max ,Y min ;(2)Transform the coordinate (x i ,y i ) into screen coordinate (SX i ,SY i ) and the required transformation formula is as follows:sx i =x i -X min /X max -X min (EndX-StartX)sy i =y i -Y min /Y max -Y min (EndY-StartY)Fig. 1 Height computation sketch(3) i =startX,j=StartY; Suppose i =startX,j=StartY;(4) Use the method of calculating height (such as distance weighting method and least square method, etc.) to calculate out the height h 1, h 2, h 3 of points (i,j), (i+1,j) and (i,j+1), i.e., the height of the three points P 1, P 2 and P 3 in Fig. 1;(5) Check the value of h 1, h 2, h 3 and determine whether there is any isoline crossing according to the following methods:①k=1,h=h 0;①k=1,h=h 0;②Judge whether (P 1-h)*(P 2-h)≤0 is justified. If justified, continue the next step; otherwise, perform ⑤;③Judge whether |P1-h|=|P2-h| is justified. If justified, it indicates that there is an isoline crossing P1, P2, dot the two points and jumpto (6); otherwise, continue next step;④Judge whether |P1-h|<|P2-h|is justified. If justified, it indicates that there is an isoline crossing P1, dot this point; otherwise, dot P2;⑤Judge whether (P1-h)*(P3-h)≤0 is justified. If justified, continue next step; otherwise, perform ⑧.⑥Judge whether|P1-h|=|P3-h|is justified. If justified, dot the twopoints P1\,P3 and jump to (6);otherwise, jump to ⑤;⑦Judge whether|P1-h|<|P3-h|is justified. If justified, dot P1; otherwise, dot P3;⑧Suppose k:=k+1 and judge whether k<m+1 I is justified. If unjustified, continue next step; otherwise, suppose h:=h+∆h0 and return to ②.(6) Suppose j:j+1 and judge whether j<EndY is justified. If unjustified,continue next step; otherwise, return to (4);(7) Suppose i:=i+1 and judge whether i<EndX is justified. If unjustified,continue next step; otherwise, return to (4);(8) The end.In specific program design, in order to avoid repeated calculation, an array can be used to keep all the value of P2 in Column i+1 and another variable is used to keep the value of P3.From the above calculation method, it can be seen th at this method doesn’tinvolve the traveling of isoline, the judgment of grid singular nodes and theconnection of isoline, etc., which greatly simplifies the programming and iseasily realized, producing no intersection lines in the drawn chart.1.2 Griding and Determining NodesTime consumption of a calculation method is of great concern. Whencalculating the height of (i,j), all the contributing points to the height ofthis point need to be found out. If one searches through the whole array, it is very time consuming. Therefore, the following regularized grid method is introduced to accelerate the speed.First, two concepts, i.e., influence domain and influence point set, are provided and defined as follows: Definition 1: influence domain O(P) of node P refers to the largest area in which this nodes has some influence on other nodes. In this paper, it can refer to the closed disc with radius as r (predetermined) or the square with side length as a (predetermined).Definition 2: influence point set S(P)of node P refers to the collection of all the nodes which can influence node P. In this paper, it refers to the point set with the number of elements as n (predetermined), i.e., the number of all the known contributing nodes to the height of node (i,j) can only be n and these nodes are generally n nodes closet to node P.According to the above definition, in order to calculate out the height of any node (i,j), one just needs to find out all the nodes influencing the height of this node and then uses the interpolation method according totwo-dimensional surface fitting. Here, we will explain in detail how to calculate out the height of node (i,j) with Definition 1, i.e., the method of influence domain, and make similar calculation with Definition 2.Grid structure is used to determine other nodes in the influence domainof node (i,j). Irregular area is covered with regular grid, in which the grids have the same size and the side of grid is parallel with X axis and Y axis. The grid is described as follows:(x min,x max,NCX)(y min,y max,NCY)In the formula, x min, y max and x max, y max are respectively the minimum and maximum coordinates of x, y direction of the area; NCX is the number of grids in X direction; NCY is the number of grids in Y direction.Determining which grid a node belongs to is performed in the following two steps. Suppose the coordinate of this node is (x,y). First, respectively calculate its grid No. in x direction and y direction, and the formula is as follows:IX=NCX*(x-x min)/(xmax-x min)+1;IY=NCY(y-y min)/(y max-y min)+1。

计算机专业毕业设计论文外文文献中英文翻译——java对象

计算机专业毕业设计论文外文文献中英文翻译——java对象

1 . Introduction To Objects1.1The progress of abstractionAll programming languages provide abstractions. It can be argued that the complexity of the problems you’re able to solve is directly related to the kind and quality of abstraction。

By “kind” I mean,“What is it that you are abstracting?” Assembly language is a small abstraction of the underlying machine. Many so—called “imperative” languages that followed (such as FORTRAN,BASIC, and C) were abstractions of assembly language。

These languages are big improvements over assembly language,but their primary abstraction still requires you to think in terms of the structure of the computer rather than the structure of the problem you are trying to solve。

The programmer must establish the association between the machine model (in the “solution space,” which is the place where you’re modeling that problem, such as a computer) and the model of the problem that is actually being solved (in the “problem space,” which is the place where the problem exists). The effort required to perform this mapping, and the fact that it is extrinsic to the programming language,produces programs that are difficult to write and expensive to maintain,and as a side effect created the entire “programming methods” industry.The alter native to modeling the machine is to model the problem you’re trying to solve。

计算机外文翻译(完整)

计算机外文翻译(完整)

计算机外⽂翻译(完整)毕业设计(论⽂)外⽂资料翻译专业:计算机科学与技术姓名:王成明学号:06120186外⽂出处:The History of the Internet附件: 1.外⽂原⽂ 2.外⽂资料翻译译⽂;附件1:外⽂原⽂The History of the InternetThe Beginning - ARPAnetThe Internet started as a project by the US government. The object of the project was to create a means of communications between long distance points, in the event of a nation wide emergency or, more specifically, nuclear war. The project was called ARPAnet, and it is what the Internet started as. Funded specifically for military communication, the engineers responsible for ARPANet had no idea of the possibilities of an "Internet."By definition, an 'Internet' is four or more computers connected by a network.ARPAnet achieved its network by using a protocol called TCP/IP. The basics around this protocol was that if information sent over a network failed to get through on one route, it would find another route to work with, as well as establishing a means for one computer to "talk" to another computer, regardless of whether it was a PC or a Macintosh.By the 80's ARPAnet, just years away from becoming the more well known Internet, had 200 computers. The Defense Department, satisfied with ARPAnets results, decided to fully adopt it into service, and connected many military computers and resources into the network. ARPAnet then had 562 computers on its network. By the year 1984, it had over 1000 computers on its network.In 1986 ARPAnet (supposedly) shut down, but only the organization shut down, and the existing networks still existed between the more than 1000 computers. It shut down due to a failied link up with NSF, who wanted to connect its 5 countywide super computers into ARPAnet.With the funding of NSF, new high speed lines were successfully installed at line speeds of 56k (a normal modem nowadays) through telephone lines in 1988. By that time, there were 28,174 computers on the (by then decided) Internet. In 1989 there were 80,000 computers on it. By 1989, there were290,000.Another network was built to support the incredible number of people joining. It was constructed in 1992.Today - The InternetToday, the Internet has become one of the most important technological advancements in the history of humanity. Everyone wants to get 'on line' to experience the wealth of information of the Internet. Millions of people now use the Internet, and it's predicted that by the year 2003 every single person on the planet will have Internet access. The Internet has truly become a way of life in our time and era, and is evolving so quickly its hard to determine where it will go next, as computer and network technology improve every day.HOW IT WORKS:It's a standard thing. People using the Internet. Shopping, playing games,conversing in virtual Internet environments.The Internet is not a 'thing' itself. The Internet cannot just "crash." It functions the same way as the telephone system, only there is no Internet company that runs the Internet.The Internet is a collection of millioins of computers that are all connected to each other, or have the means to connect to each other. The Internet is just like an office network, only it has millions of computers connected to it.The main thing about how the Internet works is communication. How does a computer in Houston know how to access data on a computer in Tokyo to view a webpage?Internet communication, communication among computers connected to the Internet, is based on a language. This language is called TCP/IP. TCP/IP establishes a language for a computer to access and transmit data over the Internet system.But TCP/IP assumes that there is a physical connecetion between onecomputer and another. This is not usually the case. There would have to be a network wire that went to every computer connected to the Internet, but that would make the Internet impossible to access.The physical connection that is requireed is established by way of modems,phonelines, and other modem cable connections (like cable modems or DSL). Modems on computers read and transmit data over established lines,which could be phonelines or data lines. The actual hard core connections are established among computers called routers.A router is a computer that serves as a traffic controller for information.To explain this better, let's look at how a standard computer might viewa webpage.1. The user's computer dials into an Internet Service Provider (ISP). The ISP might in turn be connected to another ISP, or a straight connection into the Internet backbone.2. The user launches a web browser like Netscape or Internet Explorer and types in an internet location to go to.3. Here's where the tricky part comes in. First, the computer sends data about it's data request to a router. A router is a very high speed powerful computer running special software. The collection of routers in the world make what is called a "backbone," on which all the data on the Internet is transferred. The backbone presently operates at a speed of several gigabytes per-second. Such a speed compared to a normal modem is like comparing the heat of the sun to the heat of an ice-cube.Routers handle data that is going back and forth. A router puts small chunks of data into packages called packets, which function similarly to envelopes. So, when the request for the webpage goes through, it uses TCP/IP protocols to tell the router what to do with the data, where it's going, and overall where the user wants to go.4. The router sends these packets to other routers, eventually leadingto the target computer. It's like whisper down the lane (only the information remains intact).5. When the information reaches the target web server, the webserver then begins to send the web page back. A webserver is the computer where the webpage is stored that is running a program that handles requests for the webpage and sends the webpage to whoever wants to see it.6. The webpage is put in packets, sent through routers, and arrive at the users computer where the user can view the webpage once it is assembled.The packets which contain the data also contain special information that lets routers and other computers know how to reassemble the data in the right order.With millions of web pages, and millions of users, using the Internet is not always easy for a beginning user, especially for someone who is not entirely comfortale with using computers. Below you can find tips tricks and help on how to use main services of the Internet.Before you access webpages, you must have a web browser to actually be able to view the webpages. Most Internet Access Providers provide you with a web browser in the software they usually give to customers; you. The fact that you are viewing this page means that you have a web browser. The top two use browsers are Netscape Communicator and Microsoft Internet Explorer. Netscape can be found at /doc/bedc387343323968011c9268.html and MSIE can be found at /doc/bedc387343323968011c9268.html /ie.The fact that you're reading this right now means that you have a web browser.Next you must be familiar with actually using webpages. A webpage is a collection of hyperlinks, images, text, forms, menus, and multimedia. To "navigate" a webpage, simply click the links it provides or follow it's own instructions (like if it has a form you need to use, it will probably instruct you how to use it). Basically, everything about a webpage is made to be self-explanetory. That is the nature of a webpage, to be easily navigatable."Oh no! a 404 error! 'Cannot find web page?'" is a common remark made by new web-users.Sometimes websites have errors. But an error on a website is not the user's fault, of course.A 404 error means that the page you tried to go to does not exist. This could be because the site is still being constructed and the page hasn't been created yet, or because the site author made a typo in the page. There's nothing much to do about a 404 error except for e-mailing the site administrator (of the page you wanted to go to) an telling him/her about the error.A Javascript error is the result of a programming error in the Javascript code of a website. Not all websites utilize Javascript, but many do. Javascript is different from Java, and most browsers now support Javascript. If you are using an old version of a web browser (Netscape 3.0 for example), you might get Javascript errors because sites utilize Javascript versions that your browser does not support. So, you can try getting a newer version of your web browser.E-mail stands for Electronic Mail, and that's what it is. E-mail enables people to send letters, and even files and pictures to each other.To use e-mail, you must have an e-mail client, which is just like a personal post office, since it retrieves and stores e-mail. Secondly, you must have an e-mail account. Most Internet Service Providers provide free e-mail account(s) for free. Some services offer free e-mail, like Hotmail, and Geocities.After configuring your e-mail client with your POP3 and SMTP server address (your e-mail provider will give you that information), you are ready to receive mail.An attachment is a file sent in a letter. If someone sends you an attachment and you don't know who it is, don't run the file, ever. It could be a virus or some other kind of nasty programs. You can't get a virus justby reading e-mail, you'll have to physically execute some form of program for a virus to strike.A signature is a feature of many e-mail programs. A signature is added to the end of every e-mail you send out. You can put a text graphic, your business information, anything you want.Imagine that a computer on the Internet is an island in the sea. The sea is filled with millions of islands. This is the Internet. Imagine an island communicates with other island by sending ships to other islands and receiving ships. The island has ports to accept and send out ships.A computer on the Internet has access nodes called ports. A port is just a symbolic object that allows the computer to operate on a network (or the Internet). This method is similar to the island/ocean symbolism above.Telnet refers to accessing ports on a server directly with a text connection. Almost every kind of Internet function, like accessing web pages,"chatting," and e-mailing is done over a Telnet connection.Telnetting requires a Telnet client. A telnet program comes with the Windows system, so Windows users can access telnet by typing in "telnet" (without the "'s) in the run dialog. Linux has it built into the command line; telnet. A popular telnet program for Macintosh is NCSA telnet.Any server software (web page daemon, chat daemon) can be accessed via telnet, although they are not usually meant to be accessed in such a manner. For instance, it is possible to connect directly to a mail server and check your mail by interfacing with the e-mail server software, but it's easier to use an e-mail client (of course).There are millions of WebPages that come from all over the world, yet how will you know what the address of a page you want is?Search engines save the day. A search engine is a very large website that allows you to search it's own database of websites. For instance, if you wanted to find a website on dogs, you'd search for "dog" or "dogs" or "dog information." Here are a few search-engines.1. Altavista (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed2. Yahoo (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed Collection3. Excite (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed4. Lycos (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed5. Metasearch (/doc/bedc387343323968011c9268.html ) - Multiple searchA web spider is a program used by search engines that goes from page to page, following any link it can possibly find. This means that a search engine can literally map out as much of the Internet as it's own time and speed allows for.An indexed collection uses hand-added links. For instance, on Yahoo's site. You can click on Computers & the Internet. Then you can click on Hardware. Then you can click on Modems, etc., and along the way through sections, there are sites available which relate to what section you're in.Metasearch searches many search engines at the same time, finding the top choices from about 10 search engines, making searching a lot more effective.Once you are able to use search engines, you can effectively find the pages you want.With the arrival of networking and multi user systems, security has always been on the mind of system developers and system operators. Since the dawn of AT&T and its phone network, hackers have been known by many, hackers who find ways all the time of breaking into systems. It used to not be that big of a problem, since networking was limited to big corporate companies or government computers who could afford the necessary computer security.The biggest problem now-a-days is personal information. Why should you be careful while making purchases via a website? Let's look at how the internet works, quickly.The user is transferring credit card information to a webpage. Looks safe, right? Not necessarily. As the user submits the information, it is being streamed through a series of computers that make up the Internet backbone.The information is in little chunks, in packages called packets. Here's the problem: While the information is being transferred through this big backbone, what is preventing a "hacker" from intercepting this data stream at one of the backbone points?Big-brother is not watching you if you access a web site, but users should be aware of potential threats while transmitting private information. There are methods of enforcing security, like password protection, an most importantly, encryption.Encryption means scrambling data into a code that can only be unscrambled on the "other end." Browser's like Netscape Communicator and Internet Explorer feature encryption support for making on-line transfers. Some encryptions work better than others. The most advanced encryption system is called DES (Data Encryption Standard), and it was adopted by the US Defense Department because it was deemed so difficult to 'crack' that they considered it a security risk if it would fall into another countries hands.A DES uses a single key of information to unlock an entire document. The problem is, there are 75 trillion possible keys to use, so it is a highly difficult system to break. One document was cracked and decoded, but it was a combined effort of14,000 computers networked over the Internet that took a while to do it, so most hackers don't have that many resources available.附件2:外⽂资料翻译译⽂Internet的历史起源——ARPAnetInternet是被美国政府作为⼀项⼯程进⾏开发的。

计算机专业-外文翻译

计算机专业-外文翻译

中文翻译:1 什么是 FlashFlash 是一种创作工具,设计人员和开发人员可使用它来创建演示文稿、应用程序和其它允许用户交互的内容。

Flash 可以包含简单的动画、视频内容、复杂演示文稿和应用程序以及介于它们之间的任何内容。

通常,使用 Flash 创作的各个内容单元称为应用程序,即使它们可能只是很简单的动画。

您可以通过添加图片、声音、视频和特殊效果,构建包含丰富媒体的 Flash 应用程序。

Flash 特别适用于创建通过 Internet 提供的内容,因为它的文件非常小。

Flash 是通过广泛使用矢量图形做到这一点的。

与位图图形相比,矢量图形需要的内存和存储空间小很多,因为它们是以数学公式而不是大型数据集来表示的。

位图图形之所以更大,是因为图像中的每个像素都需要一组单独的数据来表示。

要在 Flash 中构建应用程序,可以使用 Flash 绘图工具创建图形,并将其它媒体元素导入 Flash 文档。

接下来,定义如何以及何时使用各个元素来创建设想中的应用程序。

在 Flash 中创作内容时,需要在 Flash 文档文件中工作。

Flash 文档的文件扩展名为 .fla (FLA)。

Flash 文档有四个主要部分:舞台是在回放过程中显示图形、视频、按钮等内容的位置。

时间轴用来通知 Flash 显示图形和其它项目元素的时间,也可以使用时间轴指定舞台上各图形的分层顺序。

位于较高图层中的图形显示在较低图层中的图形的上方。

库面板是 Flash 显示 Flash 文档中的媒体元素列表的位置。

ActionScript代码可用来向文档中的媒体元素添加交互式内容。

例如,可以添加代码以便用户在单击某按钮时显示一幅新图像,还可以使用 ActionScript 向应用程序添加逻辑。

逻辑使应用程序能够根据用户的操作和其它情况采取不同的工作方式。

Flash 包括两个版本的 ActionScript,可满足创作者的不同具体需要。

有关编写 ActionScript 的详细信息,请参阅"帮助"面板中的"学习 Flash 中的 ActionScript 2.0"。

计算机专业外文翻译 9

计算机专业外文翻译 9

译文Apache Struts 2“Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready Java web applications. The framework is designed to streamline the full development cycle, from building, to deploying, to maintaining applications over time” -The Apache Software Foundation.4.1简介Struts是Apache的一个应用于Java Web的网络编程的开源框架。

Struts框架的创造者和发起者是McClanahan。

后来在2002年,Struts框架由Apache软件基金会收购和接管。

Struts 提供给程序员一个易于组织基于JSP和Servlet的HTML格式和Java代码的框架。

Struts1几乎能与所有标准的Java技术和Jakarta配置包协同工作。

然而,随着需求的不断增长,Struts1在网络应用程序暴露出来许多问题,所以为了满足需求,导致Strut2推出,Strut2能更好地为开发者提供服务,如 Ajax、高效开发和可扩展性。

4.1.1 Struts 2的起源自从2000年Apache Struts的发起,Struts框架取得了非常大的成功,被大多数标准所接纳,得到了很大的发展,如果不是这样,哪里会有今天java web程序的成绩。

它的历史,告诉我们Struts是怎样组织JSP和/ Servlets,而提供了固定的框架。

Struts融入server-generated HTML与Javascript,客户端验证,也使得开发比较容易和维护。

随着时间推进的和客户对web 需求扩大,网站应用程序取得硕果累累,Struts1太老了,开始在越来越多的网站前端开发者视野中淡去。

【计算机专业文献翻译】信息系统的管理

【计算机专业文献翻译】信息系统的管理
基本上每一台计算机都能连接到网络中,一台计算机要么是客户端,要么就是服务器。服务器更具强大和区别性,因为它存储了网络中其他机器需要使用的数据。个人计算机的客户端在需要数据的时候随时都可以访问服务器。网络中既是服务器又是客户端的计算机称作点对点网络。
传播媒体必须经过仔细选择,平衡每个媒体的优点和缺点,这个选择决定网络的速度。改变一个已经安装好的网络媒体通常非常昂贵。最实用的传播媒体是电缆,光纤,广播,光,红外线。
本科生毕业设计(论文)外文资料译文
(2009届)
论文题目
基于Javamail的邮件收发系统
学生姓名
学号
专业
计算机科学与技术
班级
指导教师
职称
讲师、副教授
填表日期
2008年 12月 10 日
信息科学与工程学院教务科制
外文资料翻译(译文不少于2000汉字)
1.所译外文资料:信息系统的管理Managing Information Systems
数据共享是网络的重要应用之一。网络可以共享交易数据,搜索和查询数据,信息,公告板,日历,团队和个人信息数据,备份等。在交易的时候,连接一个公司的电脑的中央数据库包括现有库存信息和出售的数据信息。如果数据被储存在一个中央数据库中,搜查结果便可从中获取。电子邮件的发送已经成为同事之间最常用的信息共享的方式之一。
自从信号在空中传输后,广播,光以及红外线作为传播媒体已经不需要电缆。
传输能力,即一个传播媒体一次性传输的数据量,在不同的媒体中,材料不同,安装时付出的劳动不同,传输的能力有很大的区别。传播媒体有时候被合并,代替远地域之间的高速传播媒体,速度虽慢,但是成本低,在一幢大楼中进行信息传播。
连接设备包括网络连接卡NICS,或者在计算机和网络间进行传输和信号传递的局域网LAN卡。其他常用的设备连接不同的网络,特别是当一个网络使用不用的传输媒体的时候。使用一个对很多用户都开放的系统很重要,比如windows/NT,Office2000,Novell,UNIX.

计算机类外文文献翻译---Java核心技术

计算机类外文文献翻译---Java核心技术

本科毕业论文外文文献及译文文献、资料题目:Core Java™ V olume II–AdvancedFeatures文献、资料来源:著作文献、资料发表(出版)日期:2008.12.1院(部):计算机科学与技术学院专业:网络工程班级:姓名:学号:指导教师:翻译日期:外文文献:Core Java™ Volume II–Advanced Features When Java technology first appeared on the scene, the excitement was not about a well-crafted programming language but about the possibility of safely executing applets that are delivered over the Internet (see V olume I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was and is a major concern of both the designers and the users of Java technology. This means that unlike other languages and systems, where security was implemented as an afterthought or a reaction to break-ins, security mechanisms are an integral part of Java technology.Three mechanisms help ensure safety:•Language design features (bounds checking on arrays, no unchecked type conversions, no pointer arithmetic, and so on).•An access control mechanism that controls what the code can do (such as file access, network access, and so on).•Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code. Then, the users of the code can determine exactly who created the code and whether the code has been altered after it was signed.Below, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code signing and user authentication.As we said earlier, applets were what started the craze over the Java platform. In practice, people discovered that although they could write animated applets like the famous "nervous text" applet, applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For example, because applets under JDK 1.0 were so closely supervised, they couldn't do much good on a corporate intranet, even though relatively little risk attaches to executing an applet from your company's secure intranet. It quickly became clear to Sun that for applets to become truly useful, it was important for users to be able to assign different levels of security, depending on where the applet originated. If an applet comes from a trusted supplier and it has not been tampered with, the user of that applet can then decide whether to give the applet more privileges.To give more trust to an applet, we need to know two things:•Where did the applet come from?•Was the code corrupted in transit?In the past 50 years, mathematicians and computer scientists have developed sophisticated algorithms for ensuring the integrity of data and for electronic signatures. The java.security package contains implementations of many of these algorithms. Fortunately, you don't need to understand the underlying mathematics to use the algorithms in the java.security package. In the next sections, we show you how message digests can detect changes in data files and how digital signatures can prove the identity of the signer.A message digest is a digital fingerprint of a block of data. For example, the so-called SHA1 (secure hash algorithm #1) condenses any data block, no matter how long, into a sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two messages have the same SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1 fingerprints, so there must be some messages with the same fingerprint. But 2160is so large that the probability of duplication occurring is negligible. How negligible? According to James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt Publishing 1996), the chance that you will die from being struck by lightning is about one in 30,000. Now, think of nine other people, for example, your nine least favorite managers or professors. The chance that you and all of them will die from lightning strikes is higher than that of a forged message having the same SHA1 fingerprint as the original. (Of course, more than ten people, none of whom you are likely to know, will die from lightning strikes. However, we are talking about the far slimmer chance that your particular choice of people will be wiped out.)A message digest has two essential properties:•If one bit or several bits of the data are changed, then the message digest also changes.• A forger who is in possession of a given message cannot construct a fake message that has the same message digest as the original.The second property is again a matter of probabilities, of course. Consider the following message by the billionaire father:"Upon my death, my property shall be divided equally among my children; however, my son George shall receive nothing."That message has an SHA1 fingerprint of2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7EThe distrustful father has deposited the message with one attorney and the fingerprint with another. Now, suppose George can bribe the lawyer holding the message. He wants to change the message so that Bill gets nothing. Of course, that changes the fingerprint to a completely different bit pattern:2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92Can George find some other wording that matches the fingerprint? If he had been the proud owner of a billion computers from the time the Earth was formed, each computing a million messages a second, he would not yet have found a message he could substitute.A number of algorithms have been designed to compute these message digests. The two best-known are SHA1, the secure hash algorithm developed by the National Institute of Standards and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms scramble the bits of a message in ingenious ways. For details about these algorithms, see, for example, Cryptography and Network Security, 4th ed., by William Stallings (Prentice Hall 2005). Note that recently, subtle regularities have been discovered in both algorithms. At this point, most cryptographers recommend avoiding MD5 and using SHA1 until a stronger alternative becomes available. (See /rsalabs/node.asp?id=2834 for more information.) The Java programming language implements both SHA1 and MD5. The MessageDigest class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has a static method, called getInstance, that returns an object of a class that extends the MessageDigest class. This means the MessageDigest class serves double duty:•As a factory class•As the superclass for all message digest algorithmsFor example, here is how you obtain an object that can compute SHA fingerprints:MessageDigest alg = MessageDigest.getInstance("SHA-1");(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)After you have obtained a MessageDigest object, you feed it all the bytes in the message by repeatedly calling the update method. For example, the following code passes all bytes in a file to the alg object just created to do the fingerprinting:InputStream in = . . .int ch;while ((ch = in.read()) != -1)alg.update((byte) ch);Alternatively, if you have the bytes in an array, you can update the entire array at once:byte[] bytes = . . .;alg.update(bytes);When you are done, call the digest method. This method pads the input—as required by the fingerprinting algorithm—does the computation, and returns the digest as an array of bytes.byte[] hash = alg.digest();The program in Listing 9-15 computes a message digest, using either SHA or MD5. You can load the data to be digested from a file, or you can type a message in the text area.Message SigningIn the last section, you saw how to compute a message digest, a fingerprint for the original message. If the message is altered, then the fingerprint of the altered message will not match the fingerprint of the original. If the message and its fingerprint are delivered separately, then the recipient can check whether the message has been tampered with. However, if both the message and the fingerprint were intercepted, it is an easy matter to modify the message and then recompute the fingerprint. After all, the message digest algorithms are publicly known, and they don't require secret keys. In that case, the recipient of the forged message and the recomputed fingerprint would never know that the message has been altered. Digital signatures solve this problem.To help you understand how digital signatures work, we explain a few concepts from the field called public key cryptography. Public key cryptography is based on the notion of a public key and private key. The idea is that you tell everyone in the world your public key. However, only you hold the private key, and it is important that you safeguard it and don't release it to anyone else. The keys are matched by mathematical relationships, but the exact nature of these relationships is not important for us. (If you are interested, you can look it up in The Handbook of Applied Cryptography at http://www.cacr.math.uwaterloo.ca/hac/.)The keys are quite long and complex. For example, here is a matching pair of public andprivate Digital Signature Algorithm (DSA) keys.Public key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd7 3da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4y:c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161 a760480fadd040b927281ddb22cb9bc4df596d7de4d1b977d50Private key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73 da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70aIt is believed to be practically impossible to compute one key from the other. That is, even though everyone knows your public key, they can't compute your private key in your lifetime, no matter how many computing resources they have available.It might seem difficult to believe that nobody can compute the private key from the public keys, but nobody has ever found an algorithm to do this for the encryption algorithms that are in common use today. If the keys are sufficiently long, brute force—simply trying all possible keys—would require more computers than can be built from all the atoms in the solar system, crunching away for thousands of years. Of course, it is possible that someone could come up withalgorithms for computing keys that are much more clever than brute force. For example, the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman) depends on the difficulty of factoring large numbers. For the last 20 years, many of the best mathematicians have tried to come up with good factoring algorithms, but so far with no success. For that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits or more are currently completely safe from any attack. DSA is believed to be similarly secure.Figure 9-12 illustrates how the process works in practice.Suppose Alice wants to send Bob a message, and Bob wants to know this message came from Alice and not an impostor. Alice writes the message and then signs the message digest with her private key. Bob gets a copy of her public key. Bob then applies the public key to verify the signature. If the verification passes, then Bob can be assured of two facts:•The original message has not been altered.•The message was signed by Alice, the holder of the private key that matches the public key that Bob used for verification.You can see why security for private keys is all-important. If someone steals Alice's private key or if a government can require her to turn it over, then she is in trouble. The thief or a government agent can impersonate her by sending messages, money transfer instructions, and so on, that others will believe came from Alice.The X.509 Certificate FormatTo take advantage of public key cryptography, the public keys must be distributed. One of the most common distribution formats is called X.509. Certificates in the X.509 format are widely used by VeriSign, Microsoft, Netscape, and many other companies, for signing e-mail messages, authenticating program code, and certifying many other kinds of data. The X.509 standard is part of the X.500 series of recommendations for a directory service by the international telephone standards body, the CCITT.The precise structure of X.509 certificates is described in a formal notation, called "abstract syntax notation #1" or ASN.1. Figure 9-13 shows the ASN.1 definition of version 3 of the X.509 format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a variation, called distinguished encoding rules (DER) describe precisely how to save this structure in abinary file. That is, BER and DER describe how to encode integers, character strings, bit strings, and constructs such as SEQUENCE, CHOICE, and OPTIONAL.中文译文:Java核心技术卷Ⅱ高级特性当Java技术刚刚问世时,令人激动的并不是因为它是一个设计完美的编程语言,而是因为它能够安全地运行通过因特网传播的各种applet。

Java编程语言外文翻译、英汉互译、中英对照

Java编程语言外文翻译、英汉互译、中英对照

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

外文翻译原文及译文学院计算机学院专业计算机科学与技术班级学号姓名指导教师负责教师Java(programming language)Java is a general-purpose, concurrent, class-based, object-oriented computer program- -ming language that is specifically designed to have as few implementation dependencies as possible. It is intended to let application developers "write once, run anywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to run on another. Java applications are typically compiled to byte code (class file) that can run on any Java virtual machine(JVM) regardless of computer architecture. Java is, as of 2012, one of the most popular programming languages in use, particularly for client-server web applications, with a reported 10 million users. Java was originally developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' Java platform. The language derives much of its syntax from C and C++, but it has fewer low-level facilities than either of them.The original and reference implementation Java compilers, virtual machines, and class libraries were developed by Sun from 1991 and first released in 1995. As of May 2007, in compliance with the specifications of the Java Community Process, Sun relicensed most of its Java technologies under the GNU General Public License. Others have also developed alternative implementations of these Sun technologies, such as the GNU Compiler for Java and GNU Classpath.Java is a set of several computer software products and specifications from Sun Microsystems (which has since merged with Oracle Corporation), that together provide a system for developing application software and deploying it in across-platform computing environment. Java is used in a wide variety of computing platforms from embedded devices and mobile phones on the low end, to enterprise servers and supercomputers on the high end. While less common, Java appletsare sometimes used to provide improved and secure functions while browsing the World Wide Web on desktop computers.Writing in the Java programming language is the primary way to produce code that will be deployed as Java bytecode. There are, however, byte code compilers available forother languages such as Ada, JavaScript, Python, and Ruby. Several new languages have been designed to run natively on the Java Virtual Machine (JVM), such as Scala, Clojure and Groovy.Java syntax borrows heavily from C and C++, but object-oriented features are modeled after Smalltalk and Objective-C. Java eliminates certain low-level constructs such as pointers and has a very simple memory model where every object is allocated on the heap and all variables of object types are references. Memory management is handled through integrated automatic garbage collection performed by the JVM.An edition of the Java platform is the name for a bundle of related programs from Sun that allow for developing and running programs written in the Java programming language. The platform is not specific to any one processor or operating system, but rather an execution engine (called a virtual machine) and a compiler with a set of libraries that are implemented for various hardware and operating systems so that Java programs can run identically on all of them. The Java platform consists of several programs, each of which provides a portion of its overall capabilities. For example, the Java compiler, which converts Java source code into Java byte code (an intermediate language for the JVM), is provided as part of the Java Development Kit (JDK). The Java Runtime Environment(JRE), complementing the JVM with a just-in-time (JIT) compiler, converts intermediate byte code into native machine code on the fly. An extensive set of libraries are also part of the Java platform.The essential components in the platform are the Java language compiler, the libraries, and the runtime environment in which Java intermediate byte code "executes" according to the rules laid out in the virtual machine specification.In most modern operating systems (OSs), a large body of reusable code is provided to simplify the programmer's job. This code is typically provided as a set of dynamically loadable libraries that applications can call at runtime. Because the Java platform is not dependent on any specific operating system, applications cannot rely on any of the pre-existing OS libraries. Instead, the Java platform provides a comprehensive set of its own standard class libraries containing much of the same reusable functions commonly found in modern operating systems. Most of the system library is also written in Java. For instance, Swing library paints the user interface and handles the events itself, eliminatingmany subtle differences between how different platforms handle even similar components.The Java class libraries serve three purposes within the Java platform. First, like other standard code libraries, the Java libraries provide the programmer a well-known set of functions to perform common tasks, such as maintaining lists of items or performing complex string parsing. Second, the class libraries provide an abstract interface to tasks that would normally depend heavily on the hardware and operating system. Tasks such as network access and file access are often heavily intertwined with the distinctive implementations of each platform. The and java.io libraries implement an abstraction layer in native OS code, then provide a standard interface for the Java applications to perform those tasks. Finally, when some underlying platform does not support all of the features a Java application expects, the class libraries work to gracefully handle the absent components, either by emulation to provide a substitute, or at least by providing a consistent way to check for the presence of a specific feature.The success of Java and its write once, run anywhere concept has led to other similar efforts, notably the .NET Framework, appearing since 2002, which incorporates many of the successful aspects of Java. .NET in its complete form (Microsoft's implementation) is currently only fully available on Windows platforms, whereas Java is fully available on many platforms. .NET was built from the ground-up to support multiple programming languages, while the Java platform was initially built to support only the Java language, although many other languages have been made for JVM since..NET includes a Java-like language called Visual J# (formerly named J++) that is incompatible with the Java specification, and the associated class library mostly dates to the old JDK 1.1 version of the language. For these reasons, it is more a transitional language to switch from Java to the .NET platform, than a first class .NET language. Visual J# was discontinued with the release of Microsoft Visual Studio 2008. The existing version shipping with Visual Studio 2005will be supported until 2015 as per the product life-cycle strategy.In June and July 1994, after three days of brainstorming with John Gage, the Director of Science for Sun, Gosling, Joy, Naughton, Wayne Rosing, and Eric Schmidt, the team re-targeted the platform for the World Wide Web. They felt that with the advent of graphical web browsers like Mosaic, the Internet was on its way to evolving into the samehighly interactive medium that they had envisioned for cable TV. As a prototype, Naughton wrote a small browser, Web Runner (named after the movie Blade Runner), later renamed Hot Java.That year, the language was renamed Java after a trademark search revealed that Oak was used by Oak Technology. Although Java 1.0a was available for download in 1994, the first public release of Java was 1.0a2 with the Hot Java browser on May 23, 1995, announced by Gage at the Sun World conference. His announcement was accompanied by a surprise announcement by Marc Andreessen, Executive Vice President of Netscape Communications Corporation, that Netscape browsers would be including Java support. On January 9, 1996, the Java Soft group was formed by Sun Microsystems to develop the technology.Java编程语言Java是一种通用的,并发的,基于类的并且是面向对象的计算机编程语言,它是为实现尽可能地减少执行的依赖关系而特别设计的。

计算机专业英语翻译

计算机专业英语翻译

计算机专业英语翻译随着全球化和数字化时代的到来,计算机技术已经成为我们日常生活中不可或缺的一部分。

为了更好地掌握和运用计算机技术,计算机专业英语翻译变得越来越重要。

本文将探讨计算机专业英语翻译的重要性、技能要求和未来发展趋势。

一、计算机专业英语翻译的重要性计算机专业英语翻译是指将英语或其他语言中的计算机专业技术、理论、应用等信息翻译成中文,帮助人们更好地理解和应用这些技术。

随着全球化的推进,许多计算机技术和应用软件都是英文的,因此,计算机专业英语翻译对于掌握和应用这些技术和软件至关重要。

二、技能要求作为计算机专业英语翻译人员,需要具备以下技能:1、语言技能:需要精通英语和中文两种语言,能够准确地进行翻译和表达。

2、技术知识:需要具备计算机技术的基础知识和相关经验,以便更好地理解原文的含义和语境。

3、专业素养:需要具备高度的责任感和专业素养,保证翻译的准确性和质量。

4、跨文化沟通能力:需要了解不同文化背景下的表达方式和习惯,以便更好地传达原文的含义。

三、未来发展趋势随着和机器翻译技术的发展,计算机专业英语翻译将面临更多的挑战和机遇。

未来,计算机专业英语翻译将更加智能化、自动化和个性化。

随着全球化和数字化时代的深入发展,计算机专业英语翻译的需求也将不断增加。

因此,计算机专业英语翻译人员需要不断提高自己的技能和素质,以适应未来的发展需求。

计算机专业英语翻译是连接技术与语言的桥梁,对于推动全球化和数字化时代的发展至关重要。

作为计算机专业英语翻译人员,需要不断提高自己的技能和素质,以提供更高质量的翻译服务。

计算机专业外文翻译随着全球化和科技的发展,计算机科学领域的知识和技能日益重要。

这不仅限于国内,而是全球的趋势。

为了更好地与世界接轨,我们需要从全球视角来提升我们的计算机科学水平。

因此,外文翻译,尤其是计算机专业的外文翻译显得尤为重要。

一、计算机专业外文翻译的重要性1、知识传递:计算机科学是一个快速发展的领域,每天都有新的研究、新的技术和新的应用出现。

计算机专业外文文献翻译

计算机专业外文文献翻译

毕业设计(论文)外文文献翻译(本科学生用)题目:Plc based control system for the music fountain 学生姓名:_ ___学号:060108011117 学部(系): 信息学部专业年级: _06自动化(1)班_指导教师: ___职称或学位:助教__20 年月日外文文献翻译(译成中文1000字左右):【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出版社(或刊物名称)、出版时间(或刊号)、页码。

提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】英文节选原文:Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, and now these are 16-and 32-bit microcontrollers. Unspoken rule is that you’ll find mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, Siemens in European controllers, and Motorola microcontrollers in American ones. CPU also takes care of communication, interconnectedness among other parts of PLC controllers, program execution, memory operation, overseeing input and setting up of an output. PLC controllers have complex routines for memory checkup in order to ensure that PLC memory was not damaged (memory checkup is done for safety reasons).Generally speaking, CPU unit makes a great number of check-ups of the PLC controller itself so eventual errors would be discovered early. You can simply look at any PLC controller and see that there are several indicators in the form. of light diodes for error signalization.System memory (today mostly implemented in FLASH technology) is used by a PLC for a process control system. Aside form. this operating system it also contains a user program translated forma ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed. PLC controllers were used earlier instead of PLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development.User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. The real status of an input is stored either as “1”or as “0”in a specific memory bit/ each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in used program. For example, time value, or counter value would be stored in this part of the memory.PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. Today’s transmission computers are ideal for reprogramming a PLC controller in factory itself. This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs). Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system input/outputs (I/O lines),program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away. Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions.Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 VAC. On some PLC controllers you’ll find electrical supply as a separate module. Those are usually bigger PLC controllers, while small and medium series already contain the supply module. User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current. This electrical supply is usually not used to start external input or output. User has to provide separate supplies in starting PLC controller inputs because then you can ensure so called “pure” supply for the PLC controller. With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.中文翻译:从结构上分,PLC分为固定式和组合式(模块式)两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业外文翻译题目JSP Technology Conspectusand Specialties系(院)计算机系专业计算机科学与技术班级学生姓名学号指导教师职称讲师二〇一三年五月十六日JSP Technology Conspectus and Specialties The JSP (Java Server Pages) technology is used by the Sun micro-system issued by the company to develop dynamic Web application technology. With its easy, cross-platform, in many dynamic Web application programming languages, in a short span of a few years, has formed a complete set of standards, and widely used in electronic commerce, etc. In China, the JSP now also got more extensive attention; get a good development, more and more dynamic website to JSP technology. The related technologies of JSP are briefly introduced.The JSP a simple technology can quickly and with the method of generating Web pages. Use the JSP technology Web page can be easily display dynamic content. The JSP technology are designed to make the construction based on Web applications easier and efficient, and these applications and various Web server, application server, the browser and development tools work together.The JSP technology isn't the only dynamic web technology, also not the first one, in the JSP technology existed before the emergence of several excellent dynamic web technologies, such as CGI, ASP, etc. With the introduction of these technologies under dynamic web technology, the development and the JSP. TechnicalJSP the development background and development history In web brief history, from a world wide web that most of the network information static on stock transactions evolution to acquisition of an operation and infrastructure. In a variety of applications, may be used for based on Web client, look no restrictions.Based on the browser client applications than traditional based on client/server applications has several advantages. These benefits include almost no limit client access and extremely simplified application deployment and management (to update an application, management personnel only need to change the program on a server, not thousands of installation in client applications). So, the software industry is rapidly to build on the client browser multilayer application.The rapid growth of exquisite based Web application requirements development oftechnical improvements. Static HTML to show relatively static content is right choice, the new challenge is to create the interaction based on Web applications, in these procedures, the content of a Web page is based on the user's request or the state of the system, and are not predefined characters.For the problem of an early solution is to use a CGI - BIN interface. Developers write to interface with the relevant procedures and separate based on Web applications, the latter through the Web server to invoke the former. This plan has serious problem -- each new extensible CGI requirements in a new process on the server. If multiple concurrent users access to this procedure, these processes will use the Web server of all available resources, and the performance of the system will be reduced to extremely low.Some Web server providers have to provide for their server by plugins "and" the API to simplify the Web application development. These solutions are associated with certain Web server, cannot solve the span multiple suppliers solutions. For example, Microsoft's Active Server mix (ASP) technology in the Web page to create dynamic content more easily, but also can work in Microsoft on Personal Web Server and IIS.There are other solutions, but cannot make an ordinary page designers can easily master. For example, such as the Servlet Java technologies can use Java language interaction application server code easier. Developers to write such Servlet to receive signals from the Web browser to generate an HTTP request, a dynamic response (may be inquires the database to finish the request), then send contain HTML or XML documents to the response of the browser.Note: one is based on a Java Servlet Java technical operation in the server program (with different, the latter operating in the Applet browser end). In this book the Servlet chapter 4.Using this method, the entire page must have made in Java Servlet. If developers or Web managers want to adjust page, you'll have to edit and recompile the Servlet Java, even in logic has been able to run. Using this method, the dynamic content with the application of the page still need to develop skills.Obviously, what is needed is a industry to create dynamic content within the scope ofthe pages of the solution. This program will solve the current scheme are limited. As follows:can on any Web server or applications.will application page displays and separation.can rapidly developing and testing.simplify the interactive development based on Web application process.The JSP technology is designed to meet such requirements. The JSP specification is a Web server, application server, trading system and develops extensive cooperation between the tool suppliers. From this standard to develop the existing integration and balance of Java programming environment (for example, Java Servlet and Java Beans) support techniques and tools. The result is a kind of new and developing method based on Web applications, using component-based application logic page designers with powerful functions.Overall Semantics of a JSP PageA JSP page implementation class defines a JSP Service () method mapping from the request to the response object. Some details of this transformation are specific to the scripting language used (see Chapter JSP.9, “Scripting”). Most details are not language specific and are described in this chapter.The content of a JSP page is devoted largely to describing the data that is written into the output stream of the response. (The JSP container usually sends this data back to the client.) The description is based on a JSP Writer object that is exposed through the implicit object out (see Section JSP.1.8.3, “Implicit Objects”). Its value varies: Initially, out is a new JSP Writer object. This object may be different from the stream object returned from response, get Writer (), and may be considered to be interposed on the latter in order to implement buffering (see Section JSP.1.10.1, “The page Directive”). This is the initial out object. JSP page authors are prohibited from writing directly to either the Print Writer or Output Stream associated with the Servlet Response.The JSP container should not invoke response.get Writer () until the time when the first portion of the content is to be sent to the client. This enables a number of uses of JSP,including using JSP as a language to “glue” actions that deliver binary content, or reliably forwarding to a Servlet, or change dynamically the content type of the response before generating content. See Chapter JSP.4, “Internationalization Issues”.Within the body of some actions, out may be temporarily re-assigned to a different (nested) instance of a JSP Writer object. Whether this is the case depends on the details of the action’s semantics. Typically the content of these temporary stre ams is appended to the stream previously referred to by out, and out is subsequently re-assigned to refer to the previous (nesting) stream. Such nested streams are always buffered, and require explicit flushing to a nesting stream or their contents will be discarded.If the initial out JSP Writer object is buffered, then depending upon the value of the auto-Flush attribute of the page directive, the content of that buffer will either be automatically flushed out to the Servlet Response output stream to obviate overflow, or an exception shall be thrown to signal buffer overflow. If the initial out JSP Writer is unbuffered, then content written to it will be passed directly through to the Servlet Response output stream.A JSP page can also describe what should happen when some specific events occur. In JSP 2.1, the only events that can be described are the initialization and the destruction of the page. These events are described using “well-known method names” in declaration elements..JavaScript is used for the first kind is browser, the dynamic general purpose of client scripting language. Netscape first proposed in 1995, but its JavaScript Live Script called. Then quickly Netscape Live Script renamed JavaScript, Java developers with them from the same issued a statement. A statement Java and JavaScript will complement each other, but they are different, so the technology of the many dismissed the misunderstanding of the two technologies.JavaScript to create user interface control provides a scripting language. In fact, in the browser into the JavaScript code logic. It can support such effect: when the cursor on the Web page of a mobile user input validation or transform image.Microsoft also writes out their JavaScript version and the JSP script called.Microsoft and Netscape support JavaScript and JSP script around core characteristics and European Manufacturers is made by (ECMA) standards organization, the control standard of scripting language. ECMA its scripting language ECMAScript named.Servlets and JSP often include fragments of information that are common to an organization, such as logos, copyrights, trademarks, or navigation bars. The web application uses the include mechanisms to import the information wherever it is needed, since it is easier to change content in one place then to maintain it in every piece of code where it is used. Some of this information is static and either never or rarely changes, such as an organization's logo. In other cases, the information is more dynamic and changes often and unpredictably, such as a textual greeting that must be localized for each user. In both cases, you want to ensure that the servlet or JSP can evolve independently of its included content, and that the implementation of the servlet or JSP properly updates its included content as necessary.You want to include a resource that does not change very much (such as a page fragment that represents a header or footer) in a JSP. Use the include directive in the including JSP page, and give the included JSP segment a JSP extension.You want to include content in a JSP each time it receives a request, rather than when the JSP is converted to a servlet. Use the JSP: include standard action.You want to include a file dynamically in a JSP, based on a value derived from a configuration file. Use the JSP: include standard action. Provide the value in an external properties file or as a configuration parameter in the deployment descriptor.You want to include a fragment of an XML file inside of a JSP document, or include a JSP page in XML syntax. Use the JSP: include standard action for the includes that you want to occur with each request of the JSP. Use the JSP: directive.include element if the includes action should occur during the translation phase.You want to include a JSP segment from outside the including file's context. Use the c: importThe operation principle and the advantages of JSP tags In this section of the operating principle of simple introduction JSP and strengths.For the first time in a JSP documents requested by the engine, JSP Servlet is transformed into a document JSP. This engine is itself a Servlet. The operating process of the JSP shown below:(1) The JSP engine put the JSP files converting a Java source files (Servlet), if you find the files have any grammar mistake JSP, conversion process will interrupt, and to the server and client output error messages.(2) If converted, with the engine JSP Java source file compiler into a corresponding scale-up files.(3) To create a Servlet (JSP page), the transformation of the Servlet JSP Init () method was executed, JSP Init () method in the life cycle of Servlet executed only once.(4) JSP Service () method invocation to the client requests. For each request, JSP engine to create a new thread for processing the request. If you have multiple clients and request the JSP files, JSP engine will create multiple threads. Each client requests a thread. To execute multi-thread can greatly reduce the requirement of system resources, improving the concurrency value and response time. But also should notice the multi-thread programming, due to the limited Servlet always in response to memory, so is very fast.(5) If the file has been modified. The JSP, server will be set according to the document to decide whether to recompile, if need to recompile, will replace the Servlet compile the memory and continue the process.(6) Although the JSP efficiency is high, but at first when the need to convert and compile and some slight delay. In addition, if at any time due to reasons of system resources, JSP engine will in some way of uncertain Servlet will remove from memory. When this happens JSP Destroy () method was first call.(7) And then Servlet examples were marked with "add" garbage collection. But in JSP Init () some initialization work, if establish connection with database, or to establish a network connection, from a configuration file take some parameters, such as, in JSP Destroy () release of the corresponding resources.Based on a Java language has many other techniques JSP page dynamiccharacteristics, technical have embodied in the following aspects:One. Simplicity and effectivenessThe JSP dynamic web pages with the compilation of the static HTML pages of writing are very similar. Just in the original HTML page add JSP tags, or some of the proprietary scripting (this is not necessary). So, a familiar with HTML page write design personnel may be easily performed JSP page development. And the developers can not only, and write script by JSP tags used exclusively others have written parts to realize dynamic pages. So, an unfamiliar with the web developers scripting language, can use the JSP make beautiful dynamic pages. And this in other dynamic web development is impossible.Tow. The independence of the programThe JSP are part of the family of the API Java, it has the general characteristics of the cross-platform Java program. In other words, is to have the procedure, namely the independence of the platform, 6 Write bid anywhere! .Three. Procedures compatibilityThe dynamic content can various JSP form, so it can show for all kinds of customers, namely from using HTML/DHTML browser to use various handheld wireless equipment WML (for example, mobile phones and PDA), personal digital equipment to use XML applications, all can use B2B JSP dynamic pages.Four. Program reusabilityIn the JSP page can not directly, but embedded scripting dynamic interaction will be cited as a component part. So, once such a component to write, it can be repeated several procedures, the program of the reusability. Now, a lot of standard Java Beans library is a good example.JSP technology strength(1) Time to prepare, run everywhere. At this point Java better than PHP, in addition to systems, the code not to make any changes.(2) The multi-platform support. Basically on all platforms of any development environment, in any environment for deployment in any environment in the expansion. Compared ASP / PHP limitations are obvious.(3) A strong scalability. From only a small Jar documents can run Servlet JSP, to the multiple servers clustering and load balancing, to multiple Application for transaction processing, information processing, a server to numerous servers, Java shows a tremendous Vitality.(4) Diversification and powerful development tools support. This is similar to the ASP, Java already has many very good development tools, and many can be free, and many of them have been able to run on a variety of platforms under.JSP technology vulnerable:(1) And the same ASP, Java is the advantage of some of its fatal problem. It is precisely because in order to cross-platform functionality, in order to extreme stretching capacity, greatly increasing the complexity of the product.(2) Java's speed is class to complete the permanent memory, so in some cases by the use of memory compared to the number of users is indeed a "minimum cost performance.”On the other hand, it also needs disk space to store a series of. Java documents and. Class, as well as the corresponding versions of documents.Know servlets for four reasons:1. JSP pages get translated into servlets. You can't understand how JSP works without understanding servlets.2. JSP consists of static HTML, special-purpose JSP tags, and Java code. What kind of Java code? Servlet code! You can't write that code if you don't understand servlet programming.3. Some tasks are better accomplished by servlets than by JSP. JSP is good at generating pages that consist of large sections of fairly well structured HTML or other character data. Servlets are better for generating binary data, building pages with highly variable structure, and performing tasks (such as redirection) that involve little or no output.4. Some tasks are better accomplished by a combination of servlets and JSP than by either servlets or JSP alone.Versus JavaScriptJavaScript, which is completely distinct from the Java programming language, is normally used to dynamically generate HTML on the client, building parts of the Web page as the browser loads the document. This is a useful capability and does not normally overlap with the capabilities of JSP (which runs only on the server). JSP pages still include SCRIPT tags for JavaScript, just as normal HTML pages do. In fact, JSP can even be used to dynamically generate the JavaScript that will be sent to the client. So, JavaScript is not a competing technology; it is a complementary one.JSP is by no means perfect. Many people have pointed out features that could be improved. This is a good thing, and one of the advantages of JSP is that the specification is controlled by a community that draws from many different companies. So, the technology can incorporate improvements in successive releases.However, some groups have developed alternative Java-based technologies to try to address these deficiencies. This, in our judgment, is a mistake. Using a third-party tool like Apache Struts that augments JSP and servlet technology is a good idea when that tool adds sufficient benefit to compensate for the additional complexity. But using a nonstandard tool that tries to replace JSP is a bad idea. When choosing a technology, you need to weigh many factors: standardization, portability, integration, industry support, and technical features. The arguments for JSP alternatives have focused almost exclusively on the technical features part. But portability, standardization, and integration are also very important. For example, the servlet and JSP specifications define a standard directory structure for Web applications and provide standard files (.war files) for deploying Web applications. All JSP-compatible servers must support these standards. Filters can be set up to apply to any number of servlets or JSP pages, but not to nonstandard resources. The same goes for Web application security settings.JSP six built-in objects:Request, response, out, session, application, configure, page context, page, exception.ONE. Request for:The object of the package of information submitted by users, by calling the object corresponding way to access the information package, namely the use of the target users can access the information.TWO. Response object:The customer's request dynamic response to the client sent the data.THREE. Session object1. What is the session: session object is built-in objects JSP, it in the first JSP pages loaded automatically create, complete the conversation of management.From a customer to open a browser and connect to the server, to close the browser, leaving the end of this server, known as a conversation. When a customer visits a server, the server may be a few pages link between repeatedly, repeatedly refresh a page, the server should be through some kind of way to know this is the same client, which requires session object.2. Session object ID: When a customer's first visit to a server on the JSP pages, JSP engines produce a session object, and assigned a String type of ID number, JSP engine at the same time, the ID number sent to the client, stored in Cookie, this session objects, and customers on the establishment of a one-to-one relationship. When a customer to connect to the server of the other pages, customers no longer allocated to the new session object, until, close your browser, the client-server object to cancel the session, and the conversation, and customer relationship disappeared. When a customer re-open the browser to connect to the server, the server for the customer to create a new session object.FORE. Application target1. What is the application?Servers have launched after the application object, when a customer to visit the site between the various pages here, this application objects are the same, until the server isdown. But with the session difference is that all customers of the application objects are the same, that is, all customers share this built-in application objects.2. Application objects commonly used methods:(1) Public void set Attribute (String key, Object obj): Object specified parameters will be the object obj added to the application object, and to add the subject of the designation of a keyword index.(2) Public Object get Attribute (String key): access to application objects containing keywords for.FIVE. Out targetsOut as a target output flow, used to client output data. Out targets for the output data. SIX. Cookie1.What is Cookie: Cookie is stored in Web server on the user's hard drive section of the text. Cookie allows a Web site on the user's computer to store information on and then get back to it.For example, a Web site may be generated for each visitor a unique ID, and then to Cookie in the form of documents stored in each user's machine.If you use IE browser to visit Web, you will see all stored on your hard drive on the Cookie. They are most often stored in places: c: \ windows \ cookies (in Window2000 is in the C: \ Documents and Settings \ your user name \ Cookies) ;Cookie is "keyword key = value" to preserve the format of the record.2. Targets the creation of a Cookie, Cookie object called the constructor can create a Cookie. Cookie object constructor has two string parameters: Cookie name and value. Cookie c = ne w Cookie (“username", "john");3. If the JSP in the package good Cookie object to send to the client, the use of the response add Cookie () method. Format: response.add Cookie (c)4.Save to read the client's Cookie, the use of the object request get Cookies () method will be implemented in all client came to an array of Cookie objects in the form of order, to meet the need to remove the Cookie object, it is necessary to compare an array cycle Each target keywords.JSP技术简介及特点JSP(Java Server Pages)技术是由Sun公司发布的用于开发动态Web应用的一项技术。

相关文档
最新文档