水闸设计计算书

合集下载

水工建筑物课程设计水闸设计计算说明书

水工建筑物课程设计水闸设计计算说明书

《水工建筑物》课程设计水闸设计计算说明书姓名:专业:水利水电工程指导老师:云南农业大学水利学院2016.12目录一、基本资料........................................ 错误!未定义书签。

1.1设计依据.................................... 错误!未定义书签。

1.2设计要求.................................... 错误!未定义书签。

二、设计计算........................................ 错误!未定义书签。

2.1水闸形式及孔口尺寸的拟定.................... 错误!未定义书签。

............................................ 错误!未定义书签。

............................................ 错误!未定义书签。

2.2消能防冲设计................................ 错误!未定义书签。

............................................ 错误!未定义书签。

............................................ 错误!未定义书签。

三、防渗设计........................................ 错误!未定义书签。

3.1地下轮廓的设计.............................. 错误!未定义书签。

............................................ 错误!未定义书签。

............................................ 错误!未定义书签。

3.2渗流计算.................................... 错误!未定义书签。

水闸计算书

水闸计算书

过闸流量 单宽流量 动能系数 重力加速度 3 2 Q(m /s) q(m /s) a g 207.00 3.70 1.05 9.81 4.00 0.07 1.05 9.81 3.00 0.05 1.05 9.81 2.00 0.04 1.05 9.81 1.00 0.02 1.05 9.81 4.00 1.60 1.05 9.81 3.00 1.20 1.05 9.81 2.00 0.80 1.05 9.81 1.00 0.40 1.05 9.81 2.50 1.25 1.05 9.81 2.00 1.00 1.05 9.81 1.50 0.75 1.05 9.81 1.00 0.50 1.05 9.81 1.30 0.65 1.05 9.81 1.00 0.50 1.05 9.81 0.50 0.25 1.05 9.81
计算收缩水深 hc(m) 0.7115 0.0134 0.0099 0.0064 0.0032 0.2867 0.2107 0.1379 0.0678 0.2369 0.1867 0.1381 0.0908 0.1306 0.0994 0.0489
跃后水深 下游水深 h″c(m) h′s(m) 1.70 1.64 0.28 1.48 0.24 1.30 0.20 1.08 0.15 0.77 1.25 1.60 1.11 1.41 0.93 1.18 0.68 0.86 1.08 1.36 0.98 1.24 0.87 1.09 0.72 0.91 0.77 1.09 0.69 0.95 0.50 0.70
计算池深 d(m) 0.1840 -1.1702 -1.0282 -0.8554 -0.6093 -0.1998 -0.1706 -0.1444 -0.1085 -0.1545 -0.1433 -0.1239 -0.1064 -0.2265 -0.1837 -0.1449

水闸毕设计算书

水闸毕设计算书

目录第1章枢纽布置与闸址选择 (1)第2章水力计算 (2)2.1闸孔及堰型设计 (2)2.1.1 闸室结构选型 (2)2.1.2 堰型选择及堰顶高程的确定 (2)2.1.3 闸孔净宽试算 (2)2.1.4 泄流能力校核计算 (4)2.2 消能防冲计算 (5)2.2.1 消力池的设计 (5)2.2.2海曼的设计 (10)2.2.3防冲槽的设计 (11)第3章防渗排水设计 (12)3.1 地下轮廓设计 (12)3.1.1 底板 (12)3.1.2铺盖 (12)3.1.3侧向防渗 (12)3.1.4排水、止水 (13)3.1.5防渗长度验算 (13)3.2渗流计算 (13)3.2.1地下轮廓线的简化 (13)3.2.2确定地基的有效深度 (14)3.2.3渗流区域的分段和阻力系数的计算 (14)3.2.4 计算渗透压力 (16)3.2.5 闸底板水平段得平均渗透坡降和出口处的平均出逸坡降 (20)第4章闸室结构的布置与稳定计算 (22)4.1 闸室的结构的组成 (22)4.1.1 底板 (22)4.1.2 闸墩 (22)4.1.3工作桥 (24)4.1.4 交通桥 (25)4.1.5 检修便桥 (26)4.1.6 分缝和止水 (26)4.2闸室稳定计算 (26)4.2.1荷载 (27)4.2.2稳定计算 (32)第5章闸室结构设计 (35)5.1 边墙设计 (35)5.1.1 边墙断面拟定 (35)5.1.2 墙身截面强度验算 (35)5.1.3 边墙稳定分析 (36)5.2闸墩结构计算 (42)5.2.1、求形心的位置 (42)5.2.2 闸墩应力计算 (43)5.2.3 闸墩配筋计算 (49)5.3底板结构计算 (49)5.3.1选定计算情况 (49)5.3.2 闸基的地基反力计算 (49)5.3.3、不平衡剪力及剪力分配 (50)5.3.4 板条上荷载的计算 (52)5.3.5 边荷载计算 (53)5.3.6 弯矩计算 (54)5.3.7 配筋计算 (60)5.3.8 抗裂计算 (61)第6章两岸建筑物的设计 (62)6.1 水闸两岸连接布置要求 (62)6.2 两岸连接结构选型 (62)6.3翼墙结构布置 (62)第7章交通桥专项设计 (63)7.1 设计资料 (63)7.2简支梁桥主梁内力计算 (64)7.2.1 荷载横向分布计算 (64)7.2.2主梁内力计算 (67)7.2.3可变作用效应计算 (69)7.2.4主梁作用效应组合 (74)7.2.5 主梁配筋计算 (76)7.2.6 主梁裂缝宽度验算 (78)7.2.7变形验算 (78)7.3横梁的计算 (79)7.3.1作用在横隔梁上的计算荷载 (79)7.3.2 跨中横隔梁的作用效应影响线 (80)7.3.3 截面配筋计算 (82)7.4 行车道板的计算 (83)7.4.1恒载及内力计算 (83)7.4.2截面设计、配筋与强度验算 (84)7.4.3 连续桥面的计算 (85)7.5支座验算 (90)7.5.1选定支座的平面尺寸 (90)第1章枢纽布置与闸址选择水闸一般由闸室、上游连接段和下游连接段三部分组成,。

水闸设计计算书

水闸设计计算书

分水闸典型设计(哈拉苏9+088桩号处分水闸)(1)工程建设内容及建筑物现状此次可行性研究设计防渗改建的2条干渠和1条支渠,需要拆除重建的水闸主要有节制闸和分水闸。

库尔勒市博斯腾灌区是一老灌区,田、林、路、渠和居民点等已形成了一套完整的体系,灌排体系也已经较为合理,各干支渠上的节制闸、分水闸布置位置、形式及闸底板高程基本合理。

为保证各分水口分水流量、与下游渠道连接顺畅、减小占地等因素,所需改造的分水闸和节制闸仍保持原节制分水闸桩号、分水方向及分水角度不变。

(2)水闸设计根据节制、分水闸过流、分水流量大小,按宽顶堰流计算孔口尺寸。

节制分水闸均采用整体开敞式结构,节制闸与分水闸间采用圆弧形直挡墙连接。

节制闸上下游连接段均采用扭面与渠道连接,根据消能计算结果和闸后渠道的实际情况,小流量的节制闸后不设消能设施,但为了确保工程运行安全,在流量较大的闸后按常规在设置0.5m 深消力池。

分水闸后采用扭面与渠道连接,扭面及挡土墙为素混凝土结构和浆砌石结构,扭面扩散角小于12°。

各节制分水闸闸室均采用C25钢筋混凝土结构,闸室后侧设0.6m宽工作桥,闸门槽及启闭机排架均采用整体式金属结构。

经计算,其抗倾覆、抗滑动稳定以及基底应力等,经计算均能满足要求。

闸室基础为砂砾石,但是根据地质评价为冻胀土,因此在闸及上下游渐变段底部均换填30cm厚砂砾石,以减小地基沉降及防止段冬季建筑物基础冻胀变形,侧面亦采用砂砾石回填,减小冬季的侧向冻土压力。

(3)闸孔过流能力计算根据闸前水深和布置形式,采用宽顶堰流公式进行计算。

Q=σs·m·n·B·(2g)1/2·H03/2式中Q ——渠道的过水流量;σs ——淹没系数,σs =1.0; m ——流量系数,m=0.365; B ——过水断面宽度;H 0——计入行进流速的槽内水头。

(5)闸室稳定计算 a 、基地应力计算 1.完建情况(未放水)。

水闸计算书

水闸计算书
四、闸室 稳定计算 (1)闸 室基底应 力计算 依据“规 范”当结 构布置及 受力情况 对称时按 第29页 (7.3.41)计算 。
Pmax=∑ G/A+∑M/W
Pmin=∑ G/A-∑M/W
式中:
Pmax--闸室 基底应力 的最大 值;
Pmin--闸室 基底应力 的最小 值∑;G--作用 在∑闸M-室-作上用 在闸室上
324.5475
水平力P 向下游
18.7 18.7
力臂L(m)
3.5 0
3.5 1.9 3.5 1.79
0 1.8 3.76 19.75
弯矩(吨*米)
+
-
190.05018.62源自87.5913.44
33.473
0
161.1225
65.8752
222.11 348.0607
-125.9507
ΣM(吨*米) -125.9507
吨/m2< δmin=ΣG/A(1-6e/B)= 5.1373989 10吨/m2
δmax/δmin= 1.5167632 <2
满足稳定要求
a:闸室运行时(无车) 名称
闸房 闸墩及底板 启闭机及人群荷载
交通桥 闸门 垂直水水压力 浮的托力 扬压力 水平水压力
总计
3.闸室稳 定计算
重量W(吨)
+
-
54.3
366.54
A(m2)
B(m)
0
0
12.4
222.11 30.59 191.52
191.52
69.12
10.8
e=ΣMa/ΣG= 0.523 吨/m2<
δmax=ΣG/A(1+6e/B)= 7.8197751 10吨/m2

水闸毕业设计 计算书-YT

水闸毕业设计 计算书-YT

ε ——堰流侧收缩系数,对于多孔闸可按公式(1-2)计算求得; b0 ——闸孔单孔净宽,初定为 8m; N ——闸孔数;初定为 N=5; εz ——中闸孔侧收缩系数,可按公式(1-3)计算求得; dz ——中闸墩厚度,初定dz =1.5m; εb ——边闸孔侧收缩系数,可按公式(1-4)计算求得; bb ——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m); 经测量,闸址处河道宽度约为 52m,则 bb =
dm 2
2
Q校 A
= 255 .2 = 3.58 m/s。
913
v0 2 3.582 = 4.4 + = 5.1m 2g 2 × 9.81
m = φk 1 − k
2
令 dk = 0,可得 k=3 ,此时堰顶的收缩水深hc = kH0 = 3 H0 ,等于临界水深,流量系数 m 达到最大值 mmax = 1 × 3 ×
华南理工大学本科毕业设计.深岗水闸工程设计
第一章 水力计算
1.1 闸孔总净宽计算
1.1.1 计算公式
根据《水闸设计规范 SL265-2001》 ,水闸的闸孔总净宽 B0 可按以下公式计算: B0 = ε=
Q
3
(1-1) (1-2)
b0
0 +d z 4
ςε m 2g H 0 2
ε z N −1 +ε b N b0 b 0 +d z
52 −8×5 −1.5×4 2
=3m
ς ——堰流淹没系数,可按公式(1-5)计算求得;
1
第一章 水力计算
hs ——由堰顶算起的下游水深,本工程hs =1.85m;
1.1.2 参数取值
1、流量Q取值 设计情况下Q设=651m /s;校核情况下Q校=913 m /s; 2、 H0 及 Hs 取值 设计情况下: 选取闸址上游约 10m 处的河道断面,经初步测量其河床底宽约 58m,取边坡垂直,上 游水深为设计流量情况下的(2.2+2)=4.2m,则河道断面面积 ห้องสมุดไป่ตู้=58×4.2=243.6m2,则行进流速v0 =

水闸设计计算书

水闸设计计算书
根据勘探资料和闸室布置情况,闸基位于轻粉质壤土上,其地质参数建议值为:砼与地基摩擦系数f=0.30,C=8kPa, ,承载力标准值为100kPa;墙后回填土料选用中、轻粉质壤土 饱和容量取2t/m2,浮容量重取1.1t/m3。
二、水闸水力计算
2.1闸孔尺寸与孔数
计算闸孔净宽
—为闸室净宽(m);
—为设计过闸流量( );
水闸设计与施工
专 业:水利水电建筑工程
**********************************
班 级:水工1303班
姓 名:某某某
学 号:1******
组别:第某组
2015年11月
一、闸室布置1
二、水闸水力计算4
键入章标题(第 2 级)5
键入章标题(第 3 级)6
一、闸室布置
本工程主要为下游西三干沿线灌区补水,引用水源为黄河水,布置在西干渠跨北康沟下游,芦墓张村北附近,分进水段、闸室段和出口段。
f值表
地基类别
f值
软土
软弱
0.20-0.25
中等硬度
0.25-0.35
坚硬
0.35-0.45
壤土、粉质壤土
0.25-0.40
砂壤土、粉砂土
0.35-0.40
细砂、极细砂
0.40-0.45
中、粗砂
0.45-0.50
砾、卵石
0.50-0.55
抗滑稳定分析成果表
闸室抗滑稳定
基底压力
完建期
/
27.21
31.718
出口段唱长30M,前15为1;5斜坡段,用以连续闸室末端同消力池 ,下游消力池段长10m,“U”型槽结构,底板采用C25钢筋混凝土,顶高程为64.00m,厚0.8m,下设0.1m厚粗砂垫层,侧墙为梯形断面,顶宽0.5m,底宽0.6m;消力池后为5m过渡段,两岸为扭曲面,护底采用0.2m厚C20混凝土,扭曲面采M7.5浆砌石护砌,下游按引水渠。

某水闸设计计算书

某水闸设计计算书

某水闸设计计算书一、基本资料1.水位水闸计洪水位2.96m (P=1%)堤防设计洪水位2.88m (P=2%)历史最高洪水位2.60m内河最高控制水位1.30m内河设计运行水位-0.30m2 工程等级及标准联围为2级堤围,其主要建筑物为2级建筑物,次要建筑物为3级,临时性建筑物为4级。

3风浪计算要素计算风速根据《河道堤防、水闸及泵站水文水利计算》中“相应年最高潮位日的最大风速计算成果表”查得为V=36m/s(P=2%)。

吹程在1:500实测地形图上求得D=300m闸前平均水深H m=6.0m4地质资料根据××××××××××××院提供的《**水闸工程勘察报告》。

5地震设防烈度根据《×××省地震烈度区划图》, *属7度地震基本烈度地区,故×××水闸重建工程地震烈度为7度。

6规定的安全系数对于2级水闸,规范规定的安全系数见下表1.6-1。

表1.6-1二、基本尺寸的拟定及复核2.1抗渗计算2.1.1渗径复核如下图拟定的水闸底板尺寸:如下图拟定的水闸底板尺寸:L=0.5+0.7*2+6+0.5+0.5+1.3+0.5+0.76*2+16.4+0.5 +1.3+0.7*2+0.5+0.7*2+6+0.5+0.5=40.72m根据《水闸设计规范》SL265-2001第4.3.2条表4.3.2,×××水闸闸基为换砂基础,渗径系数取C=7则:设计洪水位下要求渗径长度:L=C△H=7×[2.96-(-0.30)]=22.82m∴L实〉L∴满足渗透稳定要求。

2.2闸室引堤顶高程计算闸侧堤顶高程按《堤防工程设计规范》(GB50286—98)中的有关规定进行计算。

其公式为:A e R Y ++=}])(7.0[13.0)(0018.0{])(7.0[0137.0245.027.022V gd th V gF th V gd th V H g = 5.02)V(9.13H g V T g = Ld th T g L ππ222= βcos 22gd F KV e = H R K K K R O P V p △=式中:Y —堤顶超高(m )。

水闸设计计算

水闸设计计算

水闸设计计算(总34页) -本页仅作为预览文档封面,使用时请删除本页-一、初步设计兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。

二、设计基本资料1. 概述兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。

该闸的主要作用有:防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。

灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。

引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。

河兴化镇闸址位置示意图(单位:m)2.规划数据兴化渠为人工渠道,其剖面尺寸如图所示。

渠底高程为,底宽,两岸边坡均为1:2。

该闸的主要设计组合有以下几方面:兴化渠剖面示意图(单位:m)孔口设计水位、流量根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游水位为,闸下游水位为;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保港,引水流量为100m3/s,此时相应的闸上游水位为,下游为。

闸室稳定计算水位组合(1)设计情况:上游水位,浪高,下游水位。

(2)校核情况:上游水位,浪高,下游水位。

消能防冲设计水位组合(1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位,下游水位为。

(2)下游水位流量关系下游水位流量关系见表3. 地质资料闸基土质分布情况根据钻探报告,闸基土质分布情况见表根据土工试验资料,闸基持力层为坚硬粉质粘土,其内摩擦角ϕ=190,凝聚力C=;天然孔隙比e=,天然容重γ=m3,比重G=,变形模量E=4104⨯KPa;建闸所用回填土为砂壤土,其内摩擦角ϕ=260,凝聚力C=0,天然容重γ=18KN/m3;混凝土的弹性模量E h=710.32⨯KPa。

水闸设计步骤计算书(多表)范本

水闸设计步骤计算书(多表)范本
力臂(m)
力矩(KNm)
设计情况
正向挡水
上游水重
下游水重
反向挡水
上游水重
下游水重
校核情况
正向挡水
上游水重
下游水重
(
1、浮托力的计算
表5-3:浮托力和弯矩计算表(以底板中点为矩心)
计算情况
算式
浮托力(KN)
力臂(m)
力矩(KNm)
设计情况
正向挡水
反向挡水
校核情况
正向挡水
2、渗透压力的计算
计算简图如图所示
止水以上
止水以下
下游
止水以上
止水以下
设计情况
反向挡水
上游
止水以上
止水以下
下游
止水以上
止水以下
校核情况
正向挡水
上游
止水以上
止水以下
下游
止水以上
止水以下
二、闸室结构荷载汇总
将各种荷载分完建、设计情况和校核情况分别进行汇总,如表所示
(
表5-6:设计情况正向挡水闸室结构荷载计算汇总表
荷载名称
垂直力(KN)
水平力(KN)
——作用在闸室上的全部竖向和水平向的荷载对于基础底面垂直水流方向的形心轴的力矩;
——闸室基底面的面积A=BL=;
——闸室基底面对于该底面垂直水流方向的形心轴的截面矩
现根据上式列表5-10计算基底压力如下:
表5-10基底压力计算表
计算参数
完建期
设计正向
设计反向
校核正向
(KN)
(kN•m)
(kPa)
(kPa)
(3)验算闸基及地基的稳定性,包括地基土的抗渗稳定性。
(4)根据稳定和经济合理的要求,对初拟的底下轮廓线进行修改。在修改底下轮廓线的形状和尺寸时,应结合总体布置和闸室的结构布置与设计进行综合考虑。

水闸水力计算书

水闸水力计算书

水闸水力计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本资料:1.国家规范:《水闸设计规范》(SL 265-2001),以下简称规范《溢洪道设计规范》(DL/T 5166-2002)2.参考书目:中国水利水电出版社《水力计算手册》(武汉水利电力学院编)中国水利水电出版社《水闸》(陈宝华、张世儒编)中国水利水电出版社《水工设计手册》(华东水利学院主编) 3.输入参数:闸坎型式: 无底坎的宽顶堰闸门型式: 平板闸门计算目标: 计算闸孔净宽闸孔数n = 1上游水位:530.730m下游水位:530.730m堰顶高程:529.000m设计流量Q = 6.500 m3/s闸门开启高度he = 531.000m闸前行近流速V = 1.500 m/s计算确定流量系数m计算确定收缩系数ε,胸墙底圆弧半径r = 0.200m上游河道一半水深处宽度bs=40.000m计算确定淹没系数σ三、计算过程:采用试算,拟定闸孔净宽bo = 3.000m计算水闸过流能力。

1.判断水流状态:Ho =H + V2/2/g =1.73+1.502/2/9.81 = 1.845 m因为:he/H=306.936>0.65,所以属于堰流2.判断是否高淹没度出流:因为:hs/Ho=0.938≥0.90,所以堰流为高淹没度出流淹没堰流综合流量系数计算公式为:μo=0.877+(hs/Ho-0.65)2μo=0.877+(1.730/1.845-0.65)2=0.960平底宽顶堰淹没堰流计入行近流速的流量计算公式为:3.流量计算:Q = μo×hs×n×bo×[2.0×g×(Ho-hs)]1/2Q =0.960×1.73×1×3.00×[2×9.81×(1.84-1.73)]1/2=7.472 m3/s 四、计算结果当闸孔净宽bo = 3.000m时,计算流量与设计流量大约相等,闸孔净宽bo = 3.000m即为所求。

水闸设计计算书

水闸设计计算书

水闸设计计算书水力计算拟定底板高程为31m,则闸门高度为35-31=4m,闸孔宽深比为1.6~1.8,单孔宽度取整数为7m,闸孔总宽度取m 210307=?。

根据规范,上游水位雍高为0.1~0.3m ,先假定一个上游水位雍高,用EXCEL 进行试算,算出一个流量,之后反复试算,直到计算出的流量等于校核流量。

最后底板高程为31m ,30个孔,每孔宽7m ,溢流前缘总净宽210m ,校核情况下上游水位38.1m 。

根据经验,混凝土闸墩厚1~1.6m ,取闸墩厚1m 。

所以总宽度,最后确定总净宽210m ,总宽度268m泄流能力计算水闸闸门全开敞时的泄流能力按堰流计算(1) 校核情况:,230gH m Nb Q σε= N N bz εεε+-=)1(778.0277000=+=+=z s d b b b b ,查表5-6得941.0=z ε 823.0121772000=++=++=b z s b d b b b b ,查表5-6得964.0=b ε 942.030964.0)130(941.0)1(=+-?=+-=NN bz εεε 91.066.770==h h s 80.0=σ 5000571966.76.19385.0942.080.07303>==Q满足泄流能力渗流计算铺盖的长度为20m,厚度为0.6m,齿墙的深度和宽度为0.8m,闸室段的长度为14.5m,厚度为2m,齿墙的深度为1m,宽度为1m,板桩的长度为6m,要钢筋混凝土m L 5.340= m S 9.65.54.10=+=)(2682)130(730)1(m d n nb L =?--?=--=559.65.3400===S L m L T e 25.175.00== (2)分段阻力系数456.0441.0)25.178.0(5.1441.0)(5.12/32/31=+?=+=T S ξ 058.025.171)(7.0212==+-=T S S L ξ 296.2)]25.178.01(4cot[ln 2)]1(4cot[ln 23=-?=-=ππππξT S 801.025.17)9.68.0(7.02.194=+?-=ξ 06.2)25.179.61(4cot[ln 25=-=ππξ 102.2)]4.125.175.51(4cot[ln 26=--=ππξ 596.04.125.17)15.5(7.01157=-+?--=ξ 287.2)]4.125.1711(4cot[ln 28=--=ππξ 058.025.1719==ξ 519.0441.0)25.174.2(5.12/310=+?=ξ 233.11519.0058.0287.2596.0102.206.2801.0296.2058.0456.0101 =+++++++++=∑=i i ξ(3)各分段水头损失162.0233.114456.010111=?=?=∑=i i H h ξξ 021.0233.114058.02=?=h 818.0233.114296.23=?=h 285.0233.114801.04=?=h 734.0233.11406.25=?=h 749.0233.114102.26=?=h212.0233.114596.07=?=h 814.0233.114287.28=?=h 021.0233.114058.09=?=h 185.0233.114519.010=?=h (40进口段修正后的水头损失值.162.0)059.025.174.1(]2)25.1785.15(12[121.1)059.0'](2)'(12[121.1'22<=+?+?-=++-=T S T T β取62.0'=β100.0162.062.0''0=?==h h o β出口段修正后的水头损失值.175.0)059.025.174.2(]2)25.1785.14(12[121.1)059.0'](2)'(12[121.1'22<=+?+?-=++-=T S T T β139.0185.075.0''0=?==h h o β修正后的水头损失减少值进口段 062.0162.0)62.01()'1(1=?-=-=?h h β出口段 046.0185.0)75.01()'1(10=?-=-=?h h β水力坡降呈急变形式的长度进口段00.325.17233.114062.0'101=?=??=∑=T H h L i ix ξ出口段23.225.17233.114046.0'101=?=??=∑=T H h L i ix ξ出口段渗流坡降值046.03139.0''0===S h J闸室稳定计算)(130)274.0207.1(101KN G ==)(14661027)4.05.14()437.0207.1(212KN G =??-?-?= )(1840102747.05.143KN G ==)(42531027)2215.0)5.11(15.14(4KN G =++?= )(102062427)2215.0)5.11(15.14(6KN G =++?= )(1696525328.75.147KNG ==)(19474472.013333.042.033.042.08KN H B H k k G c b c ===σ)(352927)25)21.113.010(225.01.13.1(9KN G =+?+???=KN G 2510=)(14701021214)5.21(11KN G =+= )(51181021215.2)5.109(12KN G =+= )(4084275.5102121KN P == )(2160274102122KN P == )(11314378550927)239.11(10212710239.11)35.012.1239.11(2123KN P =-=-++?=)(05.724.025.141m L =-= )(15.2)4.05.14(3125.142m L =--= 03=L04=L06=L07=L08=L)(75.45.225.149m L =-= )(6.565.125.1410m L =-= )(25.45.075.411m L =-=)(225.1025.712m L =-= )(3.15.035.51m T =-= )(83.05.0342m T =-= )(49.070.119.2)695.5325.5()35.012.1239.11(31239.115.53m T =-=?--+++-= ))((91705.71301shun m KN M ?=?=)(315215.214662m KN M ?=?=)(1676375.435299m KN M ?=?=(顺)])(1406.52510m KN M ?=?=(逆)\)(624825.4147011m KN M ?=?=(逆))(102362511812m KN M ?=?=(顺)水平力的力偶)(53093.140841m KN H ?=?=(顺))(179383.021602m KN H ?=?=(逆))(55449.011313m KN H ?=?=(顺)∑?=+-++--+--=)(2057655417935309102366284140167633152917m KN M )(3651551181470253529191696510206425318401466130KN G =+++++++-++=∑)/(11565.1427205765.14273651522max m KN W MA G P =?+?=+=∑∑)/(7265.1427205765.14273651522min m KN W M A G P =?-?=-=∑∑ 0.2][60.172115=<==ηη 演算闸室抗滑稳定 3.13.530553651544.0>=?==∑∑P G f K c 综合摩擦系数3.14.630553651528tan tan 00>=?=+=∑∑PAC G k c φ 抗浮稳定计算 1.16.8425336515>===∑∑U V K f初步拟定调度方式为:在正常运行情况,即上游水位35m ,开启4个孔,每孔开度1.0m ,等到上下游水位比较稳定后,再把这4孔全开。

水闸设计计算书

水闸设计计算书

水力计算拟定底板高程为31m,则闸门高度为35-31=4m,闸孔宽深比为1.6~1.8,单孔宽度取整数为7m,闸孔总宽度取m 210307=⨯。

根据规范,上游水位雍高为0.1~0.3m ,先假定一个上游水位雍高,用EXCEL 进行试算,算出一个流量,之后反复试算,直到计算出的流量等于校核流量。

最后底板高程为31m ,30个孔,每孔宽7m ,溢流前缘总净宽210m ,校核情况下上游水位38.1m 。

根据经验,混凝土闸墩厚1~1.6m ,取闸墩厚1m 。

所以总宽度,最后确定总净宽210m ,总宽度268m泄流能力计算水闸闸门全开敞时的泄流能力按堰流计算(1) 校核情况:,230gH m Nb Q σε= N N bz εεε+-=)1(778.0277000=+=+=z s d b b b b ,查表5-6得941.0=z ε 823.0121772000=++=++=b z s b d b b b b , 查表5-6得964.0=b ε 942.030964.0)130(941.0)1(=+-⨯=+-=NN bz εεε 91.066.770==h h s 80.0=σ 5000571966.76.19385.0942.080.07303>=⨯⨯⨯⨯⨯⨯=Q满足泄流能力渗流计算铺盖的长度为20m,厚度为0.6m,齿墙的深度和宽度为0.8m,闸室段的长度为14.5m,厚度为2m,齿墙的深度为1m,宽度为1m,板桩的长度为6m,要钢筋混凝土m L 5.340= m S 9.65.54.10=+=)(2682)130(730)1(m d n nb L =⨯--⨯=--=559.65.3400===S L m L T e 25.175.00== (2)分段阻力系数456.0441.0)25.178.0(5.1441.0)(5.12/32/31=+⨯=+=T S ξ 058.025.171)(7.0212==+-=T S S L ξ 296.2)]25.178.01(4cot[ln 2)]1(4cot[ln 23=-⨯=-=ππππξT S 801.025.17)9.68.0(7.02.194=+⨯-=ξ 06.2)25.179.61(4cot[ln 25=-=ππξ 102.2)]4.125.175.51(4cot[ln 26=--=ππξ 596.04.125.17)15.5(7.01157=-+⨯--=ξ 287.2)]4.125.1711(4cot[ln 28=--=ππξ 058.025.1719==ξ 519.0441.0)25.174.2(5.12/310=+⨯=ξ 233.11519.0058.0287.2596.0102.206.2801.0296.2058.0456.0101=+++++++++=∑=i i ξ(3)各分段水头损失162.0233.114456.010111=⨯=∆=∑=i i H h ξξ 021.0233.114058.02=⨯=h 818.0233.114296.23=⨯=h 285.0233.114801.04=⨯=h 734.0233.11406.25=⨯=h 749.0233.114102.26=⨯=h212.0233.114596.07=⨯=h 814.0233.114287.28=⨯=h 021.0233.114058.09=⨯=h 185.0233.114519.010=⨯=h (40进口段修正后的水头损失值.162.0)059.025.174.1(]2)25.1785.15(12[121.1)059.0'](2)'(12[121.1'22<=+⨯+⨯-=++-=T S T T β取62.0'=β100.0162.062.0''0=⨯==h h o β出口段修正后的水头损失值.175.0)059.025.174.2(]2)25.1785.14(12[121.1)059.0'](2)'(12[121.1'22<=+⨯+⨯-=++-=T S T T β139.0185.075.0''0=⨯==h h o β修正后的水头损失减少值进口段 062.0162.0)62.01()'1(1=⨯-=-=∆h h β出口段 046.0185.0)75.01()'1(10=⨯-=-=∆h h β水力坡降呈急变形式的长度进口段00.325.17233.114062.0'101=⨯=∆∆=∑=T H h L i ix ξ出口段23.225.17233.114046.0'101=⨯=∆∆=∑=T H h L i ix ξ出口段渗流坡降值046.03139.0''0===S h J闸室稳定计算)(130)274.0207.1(101KN G =⨯⨯⨯=)(14661027)4.05.14()437.0207.1(212KN G =⨯⨯-⨯-⨯= )(1840102747.05.143KN G =⨯⨯⨯=)(42531027)2215.0)5.11(15.14(4KN G =⨯⨯⨯⨯⨯++⨯= )(102062427)2215.0)5.11(15.14(6KN G =⨯⨯⨯⨯⨯++⨯= )(1696525328.75.147KN G =⨯⨯⨯⨯=)(19474472.013333.042.033.042.08KN H B H k k G c b c =⨯⨯⨯⨯⨯==σ)(352927)25)21.113.010(225.01.13.1(9KN G =⨯⨯⨯⨯+⨯+⨯⨯⨯=KN G 2510=)(14701021214)5.21(11KN G =⨯⨯⨯⨯+= )(51181021215.2)5.109(12KN G =⨯⨯⨯⨯+= )(4084275.5102121KN P =⨯⨯⨯= )(2160274102122KN P =⨯⨯⨯= )(11314378550927)239.11(10212710239.11)35.012.1239.11(2123KN P =-=⨯⨯⨯-⨯⨯⨯++⨯=)(05.724.025.141m L =-= )(15.2)4.05.14(3125.142m L =--= 03=L04=L06=L07=L08=L)(75.45.225.149m L =-= )(6.565.125.1410m L =-= )(25.45.075.411m L =-=)(225.1025.712m L =-= )(3.15.035.51m T =-= )(83.05.0342m T =-= )(49.070.119.2)695.5325.5()35.012.1239.11(31239.115.53m T =-=⨯--+++-= ))((91705.71301shun m KN M ⋅=⨯=)(315215.214662m KN M ⋅=⨯=)(1676375.435299m KN M ⋅=⨯=(顺)])(1406.52510m KN M ⋅=⨯=(逆)\)(624825.4147011m KN M ⋅=⨯=(逆))(102362511812m KN M ⋅=⨯=(顺)水平力的力偶)(53093.140841m KN H ⋅=⨯=(顺))(179383.021602m KN H ⋅=⨯=(逆))(55449.011313m KN H ⋅=⨯=(顺)∑⋅=+-++--+--=)(2057655417935309102366284140167633152917m KN M )(3651551181470253529191696510206425318401466130KN G =+++++++-++=∑)/(11565.1427205765.14273651522max m KN W MA G P =⨯+⨯=+=∑∑)/(7265.1427205765.14273651522min m KN W M A G P =⨯-⨯=-=∑∑ 0.2][60.172115=<==ηη 演算闸室抗滑稳定3.13.530553651544.0>=⨯==∑∑P Gf K c 综合摩擦系数3.14.630553651528tan tan 00>=⨯=+=∑∑PAC G k c φ 抗浮稳定计算 1.16.8425336515>===∑∑U V K f 初步拟定调度方式为:在正常运行情况,即上游水位35m ,开启4个孔,每孔开度1.0m ,等到上下游水位比较稳定后,再把这4孔全开。

水闸计算书和图纸

水闸计算书和图纸

洪水到来时关闸挡水,不让洪水涌入。根据水文资料,排水闸排涝标准按十年一遇 (P=10%)洪水,24 小时暴雨产生的洪水总量,24 小时排干计算。根据《xx 县城区防
1
洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表 1.1-1。 表 1.1-1 编 河流 号 名称 1 2 3 4 5 白 沙 河 西 林 河 支流名 排水闸名称 称 樟洞水 xx中学 各排水闸洪水成果表 桩 号 地面控 制水位 (m) 68.60 68.10 70.80 73.40 66.90 外江洪水位 (m) P=2% 69.07 68.44 72.45 74.16 68.44 内江洪水成果 (P=10%) 3 P=20% Q设(m /s) 67.98 67.50 70.26 72.82 66.65 97 87 22 43 43.4
2.主要计算公式及工况
2.1 闸孔净宽 B0 计算公式 根据《水闸设计规范 SL265-2001》 ,水闸的闸孔净宽 B0 可按公式(A.0.1-1)~ (A.0.1-6)计算:
B0 Q
m 2 g H
3 2
(A.0.1-1)
0
3
单孔闸 1 0.171 1


b0 b0 4 bs bs
hs' ——出池河床水深(m) 。
2
2.4 防渗计算 2.4.1 计算工况 西林河两个排水闸的计算工况为: ①建设期,上游无水, 下游施工洪水; ②下游常 年蓄水位 67.0m,上游无水,关闸清淤;③下游 P=2%洪水位,上游水位至孔洞顶。白沙 河三个排水闸的计算工况为:①建设期,上游无水,下游施工洪水;②下游 P=2%洪水 位,上游水位至孔洞顶。 2.4.2 计算公式 2.4.2.1 渗径长度计算 水闸渗径长度必须满足闸基防渗长度要求,因此按下式计算:

水闸计算书

水闸计算书

第一章工程选址和闸型的选择一、工程选址可考虑三个方案:①原闸址上游(第Ⅲ方案);②原闸址(第Ⅰ方案);③原闸址下游(第Ⅱ方案)。

方案比较:①方案Ⅲ:优点:闸址上移后减少×河两岸堤围的防洪长度。

缺点:增加海堤的防潮长度,减少澄海市区的淡水面积,特别是由于现有桥闸上游附近存在大量的取水口,水闸上移新建后势必影响到这些取水口及引水渠系的正常使用,需择址破堤重建。

另外,水闸上移新建后势必打乱原有城市的规划框架,导致大量拆迁费用的产生。

②方案Ⅰ:本方案拟将旧桥闸拆除,并在原址按设计标准重建。

工程施工布置可利用现有河中砂洲经加高后作为纵向围堰分二期二年施工。

③方案Ⅱ:本方案拟将工程移至原闸址下游约2.8km处新建,选择此处作为新闸址是因为澄海市城市规划中有一条城市干道延伸至此且新闸址地处市郊、河面相对开阔,河道水流较为平顺等有利条件。

但此时需在河中填筑一道纵向围堰和上、下游两道横向围堰。

经上面比较选原闸址(方案Ⅰ)为新建闸址位置。

二、桥闸选型(一)闸孔型式及闸底板高程开敞式及涵洞式两种基本闸型均可以采用,但若考虑运用和检修方便,则采用开敞式平底板较好,闸底板高程根据现有桥闸上下游河床的地形条件(闸上游30m处的河床高程▽-2.50m,闸下游60m处的河床高程▽-4.50m,考虑重建后桥闸的最大过流能力(尽可能减少设计情况下和校核情况下的过闸水头差),重建工程的闸底高程取▽-1.80m 。

(二)孔口轮廓尺寸的拟定从1:1000地形图上量得进水口宽度约360m ,河床土质为砂壤土,q=10~15(m 3/s·m)。

B 0=Q/q=4850/(10~15)=485~323m 经比较选B 0=360m以砂洲岛为界×闸分东西两闸,东闸16孔,西闸20孔(其中4孔为电站进水口不计水闸泄洪);水闸为宽顶堰,闸底标高▽-1.80m(珠基,下同),每孔净宽10m ,采用二孔一联结构,中墩厚1.2m ,缝墩厚0.9m 。

水闸毕业设计计算书

水闸毕业设计计算书

广东水利电力职业技术学院毕业设计计算书MD水闸改建工程初步设计专业:水利水电建筑工程(工程管理方向)班级: 08工管2姓名:***学号: *********指导教师:曾*1水力计算1.1 闸室的结构型式及孔口尺寸的确定(1)闸型选择:带胸墙式开敞式水闸 (2)堰型选择:宽顶堰(3)闸底板高程的确定:根据地质条件可知,选择平底板,底板高程与渠底同高。

取-1.0m (4)闸顶高程确定:闸顶高程不应少于设计洪水位与安全超高(按珠江三角洲经验取2m )之和:5.54+2=7.54m1.2 消能防冲设计由于本闸位于平原地区,河床的抗冲刷能力较低,所以采用底流式消能。

本水闸的最大引水流量Qmax=15m ³/s (1)消力池的池深流量按《水力学》闸孔出流公式计算s Q σμ=c V ='c h e ε="1ch =式中 e ——闸孔开度(m )e/H ——闸门相对开度H ——上游水深 (m) H 取3mε’——垂直收缩系数,根据e/H 值查《水力学》表8-1 h c ——收缩水深 (m)V c ——收缩断面流速 (m/s)ϕ ——闸孔流速系数 ϕ取0.97σs ——淹没系数 查《水闸设计规范》表A.0.3-2"c h——共轭水深 (m)μ ——闸孔流量系数,0.60.18eHμ=-,适用范围为0.1<e H <0.65;当e/H=0.1,μμ= Q ——流量 (m 3/s )h t ——下游水深 h t =1.8m b ——闸孔净宽 b=4.5m闸底坎为平顶坎时,0.1<e/H ≤0.65,为闸孔出流;e/H >0.65,为堰流。

下游水深小于收缩水深的共轭水深,即h t < h c ”,为自由出流,反之为淹没出流。

分别计算当开度e=0.3,e=0.5,e=0.78的流量 当e=0.78时,H=3m,97.0=ψ,b=4.5m由e/H=1/9.08=0.11<0.65,故为闸孔出流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分水闸典型设计(哈拉苏9+088桩号处分水闸)
(1)工程建设内容及建筑物现状
此次可行性研究设计防渗改建的2条干渠和1条支渠,需要拆除重建的水闸主要有节制闸和分水闸。

库尔勒市博斯腾灌区是一老灌区,田、林、路、渠和居民点等已形成了一套完整的体系,灌排体系也已经较为合理,各干支渠上的节制闸、分水闸布置位置、形式及闸底板高程基本合理。

为保证各分水口分水流量、与下游渠道连接顺畅、减小占地等因素,所需改造的分水闸和节制闸仍保持原节制分水闸桩号、分水方向及分水角度不变。

(2)水闸设计
根据节制、分水闸过流、分水流量大小,按宽顶堰流计算孔口尺寸。

节制分水闸均采用整体开敞式结构,节制闸与分水闸间采用圆弧形直挡墙连接。

节制闸上下游连接段均采用扭面与渠道连接,根据消能计算结果和闸后渠道的实际情况,小流量的节制闸后不设消能设施,但为了确保工程运行安全,在流量较大的闸后按常规在设置0.5m 深消力池。

分水闸后采用扭面与渠道连接,扭面及挡土墙为素混凝土结构和浆砌石结构,扭面扩散角小于12°。

各节制分水闸闸室均采用C25钢筋混凝土结构,闸室后侧设0.6m宽工作桥,闸门槽及启闭机排架均采用整体式金属结构。

经计算,其抗倾覆、抗滑动稳定以及基底应力等,经计算均能满足要求。

闸室基础为砂砾石,但是根据地质评价为冻胀土,因此在闸及上下游渐变段底部均换填30cm厚砂砾石,以减小地基沉降及防止段冬季建筑物基础冻胀变形,侧面亦采用砂砾石回填,减小冬季的侧向冻土压力。

(3)闸孔过流能力计算
根据闸前水深和布置形式,采用宽顶堰流公式进行计算。

Q=σs·m·n·B·(2g)1/2·H03/2
式中Q ——渠道的过水流量;
σs ——淹没系数,σs =1.0; m ——流量系数,m=0.365; B ——过水断面宽度;
H 0——计入行进流速的槽内水头。

(5)闸室稳定计算 a 、基地应力计算 1.完建情况(未放水)。

W
M A
G P
∑∑±=max
min
式中:max
min P —闸室基底应力的最大值或最小值(kPa );
∑G —作用在闸室上全部垂直于水平面的荷载(kN )
; ∑M —作用在闸室上的全部荷载对于水平面平行前墙墙面
方向形心轴的力矩之和(kN ·m ); A —底版底面的面积(m 2);
W —闸室基底面对于该地面垂直水流方向的形心轴的截面距(m 3)。

通过计算得:∑G=60.3kN
∑M =0.54kN ·m
A=3.8 m 2 W=1.27 m 3
W
M A
G P ∑∑±=
max
min
m ax P =16.3kN m in P =15.44kN
44
.153
.16==
MIN MAX P P η=1.06< []η=2.0 (满足要求)。

2.运行情况(已放水)。

W
M A
G P ∑∑±=
max
min
式中:max
min P —闸室基底应力的最大值或最小值(kPa );
∑G —作用在闸室上全部垂直于水平面的荷载(kN )
; ∑M —作用在闸室上的全部荷载对于水平面平行前墙墙面
方向形心轴的力矩之和(kN ·m ); A —底版底面的面积(m 2);
W —闸室基底面对于该地面垂直水流方向的形心轴的截面距(m 3)。

通过计算得:∑G=62.69kN
∑M =-0.6kN ·m
A=3.8 m 2 W=1.27m 3
W
M A
G P
∑∑±=max
min
m ax P =16.97kN m in P =16.03kN
03
.1697.16==
MIN MAX P P η=1.06< []η=2.0 (满足要求)。

3.闸门半开情况。

W
M A
G P ∑∑±=
max min
式中:max
min P —闸室基底应力的最大值或最小值(kPa );
∑G —作用在闸室上全部垂直于水平面的荷载(kN )
; ∑M —作用在闸室上的全部荷载对于水平面平行前墙墙面
方向形心轴的力矩之和(kN ·m ); A —底版底面的面积(m 2);
W —闸室基底面对于该地面垂直水流方向的形心轴的截面距(m 3)。

通过计算得:∑G=63.74kN
∑M =0.54kN ·m
A=3.8 m 2 W=1.27m 3
W
M A
G P ∑∑±=
max
min
m ax P =17.2kN m in P =16.34kN
34
.162
.17==
MIN MAX P P η=1.05 < []η=2.0 (满足要求)。

b 、抗滑稳定验算
K c =f ·ΣG/ΣH
式中:K c —沿闸室基底面的抗滑稳定安全系数;
f —闸室基底面与地基的摩擦系数,取为0.45; ΣG—作用在闸室上的全部竖向荷载(kN ); ΣH—作用在闸室上的全部水平荷载(kN );
经计算,在最不利荷载情况组合下K c 值大于允许值[K c ],满足要求。

通过计算得:∑∑=
H
G
f K c =
34
.269
.6245.0⨯=12.06。

C K =12.03〉1.25最小抗滑安全系数(满足要求)
(5)哈拉苏9+088桩号处分水闸底板配筋计算 a 、荷载计算
γbh g k =
式中:k g —荷载标准值KN/m ; b —宽度(m ); h —厚度(m );
γ—混凝土重力密度,取25KN/m 3;
通过计算得k g =12.75KN/m 。

b 、内力计算
X -G M =
式中:M —底板宽弯
G —边墩自重,取16.5KN ;
X —力矩,取0.95m ;
通过计算得单位板宽弯矩为15.68KN/m 。

c 、配筋计算
2
0bh f M
c d s γα=
式中:s α—截面抵抗拒系数;
d γ—机构系数,取1.2;
M —单位板宽弯矩,取15.68KN/m ;
c f —混凝土强度设计值12.5N/mm 2

b —宽度;取1.7m
0h —截面有效高度,取265mm ;
通过计算得截面抵抗拒系数为0.126。

s αξ211--=
式中:ξ—相对受压区计算高度;
通过计算得相对受压区计算高度为ξ=0.135<b ξ=0. 544。

y
c s f bh f A 0
ξ=
式中:s A —截面面积;
通过计算得截面面积为A =2452.32mm 2。

bh A s
=
ρ 式中:ρ—钢筋配筋率;
通过计算得截面面积为ρ=0.54%>min ρ=0.15%。

通过查表选用B14@100(A s =2464 mm 2 ) 分布钢筋选用A8@100。

(6)哈拉苏9+088桩号处分水闸闸墩配筋计算 a 、荷载计算
2002
1
H K E γ=
式中:0E —荷载标准值KN/m ;
0K —静止侧压力系数,取0.45; H —墙高(m );
γ—土的重度,取20.4KN/m 3;
通过计算得0E =5.55KN/m 。

b 、内力计算
H E M 3
10⨯=2
式中:M —闸墩弯矩
0E —荷载,取5.55KN/m ; 通过计算得单位板宽弯矩为2.24KN/m 。

c 、配筋计算
2
0bh f M
c d s γα=
式中:s α—截面抵抗拒系数;
d γ—机构系数,取1.2;
M —单位板宽弯矩,取2.24KN/m ;
c f —混凝土强度设计值12.5N/mm 2

b —宽度;
0h —截面有效高度,取265mm ;
通过计算得截面抵抗拒系数为0.028。

s αξ211--=
式中:ξ—相对受压区计算高度;
通过计算得相对受压区计算高度为ξ=0.028<b ξ=0.544。

y
c s f bh f A 0
ξ=
式中:s A —截面面积;
通过计算得截面面积为A =329mm 2。

bh A s
=
ρ 式中:ρ—钢筋配筋率;
通过计算得截面面积为ρ=0.11%<
ρ=0.15%。

min
因此配筋时按最小配筋率来配筋。

按0.15%的钢筋配筋率计算得截面面积437.25 mm2 。

通过查表选用B12@200(A s=452 mm2 )
分布钢筋选用A8@200。

相关文档
最新文档