模式识别习题
模式识别练习题
![模式识别练习题](https://img.taocdn.com/s3/m/5067dd3026fff705cd170a23.png)
模式识别练习(1)主题:1.“基于最小错误率的贝叶斯决策”模式识别练习2.“基于最小风险的贝叶斯决策”模式识别练习3.基于“主成分分析”的贝叶斯决策模式识别练习已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(2,2),(2.2,2.2),(3,3)}。
(1)利用“基于最小错误率的贝叶斯决策”判别测试集为C中的样本的归类;(2)利用“基于最小风险的贝叶斯决策”判别测试集为C中的样本的归类;(3)在进行“主成分分析”的基础上,采用90%的主成分完成前面的(1)、(2),比较结果的异同。
模式识别练习(2)主题:很多情况下,希望样本维数(特征数)越少越好,降维是解决问题的一个有效的方法。
主成分分析希望得到较少的特征数,而Fisher准则方法则将维数直接降到1维。
一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.005:5}。
分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法(自编函数文件或用书上的函数文件)计算出测试集C中线段(0,0)-(5,5)的临界点;要求:将计算结果自动写入数据文件中二、已知训练样本集为教材上的10类手写数字集。
分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法,统计出各大类的错误率和计算机cpu的计算时间,采用的测试集C依旧是10类手写数字集(虽然分类已知,但用不同的方法实际判别时可能有误判情况!)要求:使用书上的函数文件,并将计算结果自动写入数据文件中模式识别练习(3)一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.01:5}。
模式识别试卷及答案
![模式识别试卷及答案](https://img.taocdn.com/s3/m/1398af90f71fb7360b4c2e3f5727a5e9856a2794.png)
模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。
答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。
答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。
答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。
答案:线性变换5. 神经网络的反向传播算法用于______。
答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。
答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。
(2)模型选择:根据问题类型选择合适的模式识别算法。
(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。
模式识别 习题集
![模式识别 习题集](https://img.taocdn.com/s3/m/132e852058fb770bf78a5561.png)
模式识别习题Part 1CH11. Describe the structure of a pattern classification system and give detailed informationabout each module.CH22. Bayesian Classifier(a) What is the decision rule of the Bayesian classifier?(b) Which independency assumption is used for naive Bayes and how does this affectthe decision rule?(c) Show the optimality of the Bayesian classifier.3. Vessel diseases are a growing problem in the western world. Now, there is a softwarethat can classify a diseased person as actually diseased with 99% reliability. However, it may happen in 2% of the cases that a healthy person is mistakenly classified as diseased. A statistical analysis shows that the disease is apparent in one out of 100 patients. What is the probability that a patient is actually diseased if the system classifies a disease?4. 分别写出在以下两种情况1) P (x|w 1)=P (x|w 2) 2) P (w 1)=P (w 2)下的最小错误率贝叶斯决策规则。
模式识别作业题(1)
![模式识别作业题(1)](https://img.taocdn.com/s3/m/0cf52fed102de2bd960588c4.png)
m 2 mn ] 是奇异的。 mn n 2
1
2、参考参考书 P314“模式识别的概要表示”画出第二章的知识结构图。 答:略。 3、现有两类分类问题。如下图所示, (1,
1 1 3 ) 、 ( , ) 、 (1, 3 ) 、 (1,-tan10°)为 3 2 2 3 3 ,- * tan 10° ) 、 (2,0)为 W2 类。 5 5
W1 类,其中(1,-tan10°)已知为噪声点; (1,0) 、 ( 自选距离度量方法和分类器算法,判别(
6 ,0)属于哪一类? 5
答:度量方法:根据题意假设各模式是以原点为圆心的扇状分布,以两个向量之间夹角(都 是以原点为起点)的余弦作为其相似性测度,P22。 然后使用 K 近邻法,K 取 3,求已知 7 个点与(
2
答: (1)×,不一定,因为仅仅是对于训练样本分得好而已。 (2)×,平均样本法不需要。 (3)√,参考书 P30,将 r 的值代入式(2.26)即得。 (4)√,参考书 P34,三条线线性相关。 ( 5 ) √ ,就是说解区是 “ 凸 ” 的,参考书 P37 ,也可以证明,设 W1T X’=a, W2T X’=b, 则 a≤λW1+(1-λ)W2≤b(设 a≤b) 。 (6)√,参考书 P38。 (7)×,前一句是错的,参考书 P46。 (8)×,是在训练过程中发现的,参考书 P51。 (9)×,最简单的情况,两个点(0,0)∈w1,(2,0)∈w2,用势函数法求出来的判决界面是 x1=1。 (10)√,一个很简单的小证明, 设 X1=a+K1*e,X2= a-K1*e,X3=b+K2*e,X4= b-K2*e, Sw=某系数*e*e’,设 e=[m n],则 e *e’= [
方法三:参照“两维三类问题的线性分类器的第二种情况(有不确定区域) ”的算法,求 G12,G23,G13。 G12*x1>0, G12*x2<0, G12=(-1,-1,-1)’ G23*x2>0, G23*x3<0, G23=(-1,-1,1)’ G13*x1>0, G13*x3<0, G12=(-1,-1,1)’ 有两条线重合了。
模式识别例题
![模式识别例题](https://img.taocdn.com/s3/m/e172ea1210a6f524ccbf85a6.png)
1.感知器算法已知两类训练样本,(0,0),(0,1)属于w1,(1,0),(1,1)属于w2,试用感知器算法求解w*训练样本分量增广化以及符号规范化。
将训练样本增加一个分量1,且把来自w2的样本各分量乘以-1,得到训练模式集x1=(0,0,1), x2=(0,1,1), x3=(-1,0,-1), x4=(-1,-1,-1)运用训练算法,给权向量赋初值w(1)=(1,1,1)T,取增量c=1,置迭代步数k=1,下面是迭代过程K=1,x m=x1,w(k)T x m=1>0,w(2)=w(1)K=2, x m=x2,w(k)T x m=2>0,w(3)=w(2)K=3, x m=x3,w(k)T x m=-2<0,w(4)=w(3)+ x3=(0,1,0)TK=4, x m=x4,w(k)T x m=-1<0,w(5)=w(4)+ x4=(-1,0,-1)TK=5, x m=x1,w(k)T x m=-1<0,w(6)=w(5)+ x1=(-1,0,0)TK=6, x m=x2,w(k)T x m=0,w(7)=w(6)+ x2=(-1,1,1)TK=7, x m=x3,w(k)T x m=0,w(8)=w(7)+ x3=(-2,1,0)TK=8, x m=x4,w(k)T x m=1>0,w(9)=w(8)K=9,x m=x1,w(k)T x m=0,w(10)=w(9) + x1=(-2,1,1)TK=10, x m=x2,w(k)T x m=2>0,w(11)=w(10)K=11, x m=x3,w(k)T x m=1>0,w(12)=w(11)K=12, x m=x4,w(k)T x m=0,w(13)=w(12)+ x4=(-3,0,0)TK=13, x m=x1,w(k)T x m=0,w(14)=w(13)+ x1=(-3,0,1)TK=14, x m=x2,w(k)T x m=1>0,w(15)=w(14)K=15, x m=x3,w(k)T x m=2>0,w(16)=w(15)K=16, x m=x4,w(k)T x m=2>0,w(17)=w(16)K=17, x m=x1,w(k)T x m=1>0,w(18)=w(17)通过上面的结果可以看出,经过对x1, x2, x3, x4一轮迭代后,使用w(14)已经能够对所有训练样本正确分类,增广权矢量的值不再发生变化,所以算法收敛于w(14),w(14)就是所求的解向量,即w*=(-3,0,1)T。
模式识别习题集
![模式识别习题集](https://img.taocdn.com/s3/m/5d4d48374b73f242336c5f4a.png)
2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。 2.8 设,类 有
p 、 q 的重心分别为 x p 、 xq ,它们分别有样本 n p 、 n q 个。将和 q 合并为 l ,则 l
个样本。另一类
2 Dkl
nl n p nq
k 的重心为 x k 。试证明 k 与 l 的距离平方是
,JH 越(
),说明模式的
)(i=1,2,…,c)时,JH 取极大值。
1.20 Kn 近邻元法较之于 Parzen 窗法的优势在于 ( 上述两种算法的共同弱点主要是( )。 )。
1.21 已知有限状态自动机 Af=(,Q,,q0,F),={0,1};Q={q0,q1}; :(q0,0)= q1,(q0,1)= q1,(q1,0)=q0,(q1,1)=q0;q0=q0;F={q0}。现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用 Af 对上述字符串进行分类 的结果为( 1.22 句法模式识别中模式描述方法有: (1)符号串 (2)树 (3)图 (4)特征向量 )。 。
《模式识别》习题集
一、基本概念题 1.1 是: 1.2、模式分布为团状时,选用 1.3 欧式距离具有 。 马式距离具有 模 式 识 、 别 的 三 大 、 聚类算法较好。 。 核 心 问 。 题
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: (1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度 ;(2) 个技术途径。 ; 。
(1)
模式识别习题及答案
![模式识别习题及答案](https://img.taocdn.com/s3/m/0fb65650a31614791711cc7931b765ce05087a9b.png)
模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。
通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。
本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。
习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。
首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。
其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。
最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。
习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。
在图像分类中,我们需要将输入的图像分为不同的类别。
为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。
然后,利用特征提取算法,提取图像中的关键特征。
接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。
最后,评估分类结果的准确性和性能。
习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。
为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。
然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。
接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。
最后,评估识别结果的准确性和性能。
习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。
为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。
然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。
模式识别导论习题集
![模式识别导论习题集](https://img.taocdn.com/s3/m/947fd26003768e9951e79b89680203d8ce2f6ad4.png)
模式识别导论习题集模式识别导论习题集1、设⼀幅256×256⼤⼩的图像,如表⽰成向量,其维数是多少?如按⾏串接成⼀维,则第3⾏第4个象素在向量表⽰中的序号。
解:其维数为2;序号为256×2+4=5162、如标准数字1在5×7的⽅格中表⽰成如图所⽰的⿊⽩图像,⿊为1,⽩为0,现若有⼀数字1在5×7⽹格中向左错了⼀列。
试⽤分别计算要与标准模板之间的欧⽒距离、绝对值偏差、偏差的夹⾓表⽰,异⼰⽤“异或”计算两者差异。
解:把该图像的特征向量为5×7=35维,其中标准模版的特征向量为:x =[0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0]T待测样本的特征向量为:y =[0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0]T,绝对值偏差为351|()|14i i i x y =-=∑,夹⾓余弦为cos 0||||||||T x y x y θ==?,因此夹⾓为90度。
3、哈明距离常⽤来计算⼆进制之间的相似度,如011与010的哈明距离为1,010与100距离为3。
现⽤来计算7位LED 编码表⽰的个数字之间的相似度,试计算3与其它数字中的哪个数字的哈明距离最⼩。
解:是“9”,距离为14、对⼀个染⾊体分别⽤⼀下两种⽅法描述:(1)计算其⾯积、周长、⾯积/周长、⾯积与其外接矩形⾯积之⽐可以得到⼀些特征描述,如何利⽤这四个值?属于特征向量法,还是结构表⽰法?(2)按其轮廓线的形状分成⼏种类型,表⽰成a 、b 、c 等如图表⽰,如何利⽤这些量?属哪种描述⽅法? (3)设想其他结构描述⽅法。
解:(1)这是⼀种特征描述⽅法,其中⾯积周长可以体现染⾊体⼤⼩,⾯积周长⽐值越⼩,说明染⾊体越粗,⾯积占外接矩形的⽐例也体现了染⾊体的粗细。
(完整word版)模式识别题目及答案(word文档良心出品)
![(完整word版)模式识别题目及答案(word文档良心出品)](https://img.taocdn.com/s3/m/688dbddb9b89680203d82554.png)
一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
大学模式识别考试题及答案详解
![大学模式识别考试题及答案详解](https://img.taocdn.com/s3/m/1680202bf524ccbff0218420.png)
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
模式识别练习题
![模式识别练习题](https://img.taocdn.com/s3/m/053095e84bfe04a1b0717fd5360cba1aa8118cd0.png)
2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括: 模式采集、特征选择与提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
5、感知器算法1,H-K算法(2)。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼—皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况;最小最大判别准则主要用于先验概率未知的情况.7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。
一般在可分性判据对特征个数具有单调性和(C n m〉〉n )的条件下,可以使用分支定界法以减少计算量。
8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0 。
二、选择题1、影响聚类算法结果的主要因素有( B C D)。
A.已知类别的样本质量;B。
分类准则;C.特征选取;D。
模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是( C D)。
A.平移不变性;B。
旋转不变性;C尺度不变性;D。
考虑了模式的分布3、影响基本K-均值算法的主要因素有( D A B)。
A.样本输入顺序;B.模式相似性测度;C。
聚类准则;D。
初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的( B D).A. 先验概率;B. 后验概率;C。
类概率密度;D. 类概率密度与先验概率的乘积5、在统计模式分类问题中,当先验概率未知时,可以使用(B D)。
模式识别试题
![模式识别试题](https://img.taocdn.com/s3/m/615658e8ab00b52acfc789eb172ded630b1c9898.png)
一、试问“模式”与“模式类”的含义。
如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。
三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。
四、试述动态聚类与分级聚类这两种方法的原理与不同。
五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。
如果计算在给定O条件下出现S的概率,试问此概率是何种概率。
如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。
六、已知一组数据的协方差矩阵为,试问1.协方差矩阵中各元素的含义。
2.求该数组的两个主分量。
3.主分量分析或称K-L变换,它的最佳准则是什么?4.为什么说经主分量分析后,消除了各分量之间的相关性。
七、试说明以下问题求解是基于监督学习或是非监督学习:1. 求数据集的主分量非2. 汉字识别有3. 自组织特征映射非4. CT图像的分割非八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。
九、在一两维特征空间,两类决策域由两条直线H1和H2分界,其中而包含H1与H2的锐角部分为第一类,其余为第二类。
试求:1.用一双层感知器构造该分类器2.用凹函数的并构造该分类器十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及X1=3,其中两类的协方差矩阵,先验概率相等,并且有,。
试求:以及。
(九题图)模式识别试题二答案1、答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。
2、答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。
模式识别复习题
![模式识别复习题](https://img.taocdn.com/s3/m/97d580275fbfc77da369b119.png)
《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、。
1.2、模式分布为团状时,选用聚类算法较好。
1.3 欧式距离具有。
马式距离具有。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1.4 描述模式相似的测度有:。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1);(2);(3)。
其中最常用的是第个技术途径。
1.6 判别函数的正负和数值大小在分类中的意义是:,。
1.7 感知器算法。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
1.8 积累位势函数法的判别界面一般为。
(1)线性界面;(2)非线性界面。
1.9 基于距离的类别可分性判据有:。
(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在()情况下,可使用聂曼-皮尔逊判决准则。
1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。
1.12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。
①();②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。
1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。
当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。
1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。
1.15 信息熵可以作为一种可分性判据的原因是: 。
1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。
1.17 随机变量l(x )=p( x |ω1)/p( x |ω2),l( x )又称似然比,则E {l( x )|ω2}=( )。
模式识别习题及答案-精品资料
![模式识别习题及答案-精品资料](https://img.taocdn.com/s3/m/040dfead48d7c1c709a14531.png)
第一章绪论1 •什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的—信息__。
2. 模式识别的定义? 让计算机来判断事物。
3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。
第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。
利用贝叶斯公式 得到后验概率。
根据后验概率大小进行决策分析。
2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。
模式识别习题
![模式识别习题](https://img.taocdn.com/s3/m/a59cb9154431b90d6c85c78f.png)
5. 有一个二维空间的两类问题,每类均服从 有一个二维空间的两类问题, 正态分布,且有相同的协方差矩阵: 正态分布,且有相同的协方差矩阵: (0 0)T µ1 = 1.1 0.3
∑= 0.3 1.9 其均值向量分别是:µ = (3 3)T 其均值向量分别是: 2 根据贝叶斯分类器确定样本 (1.0 2.2)T 属于
3.设一维两类模式服从正态分布,其中: 设一维两类模式服从正态分布,其中: 设一维两类模式服从正态分布
µ1 = 0, σ 1 = 2, µ 2 = 2, σ 2 = 2
令两类先验概率 P(ω1 ) = P(ω2 ) 损失函数, 取0-1损失函数,试计算判决分界点,并 - 损失函数 试计算判决分界点, 绘出它们的概率密度函数;试确定样本-3,绘出它们的概率密度函数;试确定样本 2,1,3,5各属于那一类 各属于那一类
55 x1 + 68 x2 + 32 x3 + 16 x4 + 26 x5 + 10 = 0
试求出其权向量与样本向量点积的表达式 wT x = 0 中的 与x 中的w与
2.设在三维空间中的一个类别分类问题拟采 设在三维空间中的一个类别分类问题拟采 用二次曲面,如果要采用线性方程求解, 用二次曲面,如果要采用线性方程求解, 试问其广义样本向量与广义权向量的表达 式。
第四章
1.给定如下 个6维样本: 给定如下5个 维样本 维样本: 给定如下
x1 : (0 1 3 1 3 4 ) x3 : (1 0 0 0 1 1) x5 : (0 0 1 0 1
T T
x4 : (2 1 0 2 2 1)
x2 : (3 3 3 1 2 1)
T T
)T 0
试用最大最小距离聚类算法进行聚类分析。 试用最大最小距离聚类算法进行聚类分析。
模式识别习题集
![模式识别习题集](https://img.taocdn.com/s3/m/f28cfcae1b37f111f18583d049649b6648d709a9.png)
模式识别习题Part 2CH41.线性分类器的分界面是超平面,线性分类器设计步骤是什么?2.Fisher线性判别函数是研究这类判别函数中最有影响的方法之一,请简述它的准则.3.感知器的准则函数是什么?它通过什么方法得到最优解?4.(1)指出从x到超平面g(x)=(w T x+w0=0)的距离r=|g(x)|是在||w|| g(x q)=0的约束条件下,使||x−x q||2达到极小解;w(2)指出在超平面上的投影是x p=x−g(x)||w||2(《模式识别》第二版,边肇祺,pp.117 4.1) 5.设有一维空间二次判别函数g(x)=5+7x+9x2(1)试映射成广义齐次线性判别函数;(2)总结把高次函数映射成齐次线性函数的方法。
(《模式识别》第二版,边肇祺,pp.117 4.2) 6.(1)通过映射把一维二次判别函数g(x)=a1+a2x+a3x2映射成三维广义线性判别函数;(2)若x在一维空间具有分布密度p(x),说明三维空间中的分布退化成只在一条曲线上有值,且曲线上值无穷大。
(《模式识别》第二版,边肇祺,pp.117 4.3)7.对于二维线性判别函数g(x)=x1+2x2−2(1)将判别函数写成g(x)=w T x+w0的形式,并画出g(x)=0的几何图形;(2)映射成广义齐次线性函数g(x)=a T y;(3)指出上述X空间实际是Y空间的一个子空间,且a T y=0对于X子空间的划分和原空间中w T+w0=0对原X空间的划分相同,并在图上表示出来。
8.指出在Fisher线性判别中,w的比例因子对Fisher判别结果无影响。
9.证明在正态等方差条件下,Fisher线性判别等价于贝叶斯判别。
10.考虑准则函数J(a)=∑(a T y−b)2y∈Y(a)其中Y(a)是使a T y≤b的样本集合。
设y1是Y(a)中的唯一样本,则J(a)的梯度为∇J(a)=2(a k T y1−b)y1,二阶偏导数矩阵D=2y1y1T。
模式识别练习题
![模式识别练习题](https://img.taocdn.com/s3/m/34be190c777f5acfa1c7aa00b52acfc789eb9fbb.png)
模式识别练习题模式识别练习题模式识别是一种认知能力,是人类大脑的重要功能之一。
通过模式识别,我们能够从复杂的信息中抽取出有用的模式,并进行分类、归纳和推理。
模式识别在日常生活中无处不在,无论是辨认人脸、理解语言还是解读图像,都离不开模式识别的帮助。
在这里,我将给大家提供一些模式识别练习题,帮助大家锻炼和提高自己的模式识别能力。
这些题目涵盖了不同的领域,包括数字、形状和图案等,旨在让大家在娱乐中提升自己的认知水平。
1. 数字序列请观察以下数字序列:2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...请问下一个数字是多少?答案:2048解析:观察数字序列,可以发现每个数字都是前一个数字的2倍。
因此,下一个数字是1024的2倍,即2048。
2. 形状序列请观察以下形状序列:▲, □, ○, △, ▢, ◇, ...请问下一个形状是什么?答案:□解析:观察形状序列,可以发现每个形状都是按照一定的规律交替出现。
▲和○是封闭的形状,□和▢是开放的形状,△和◇是封闭的形状。
因此,下一个形状应该是开放的形状,即□。
3. 图案序列请观察以下图案序列:A, AB, ABA, ABAC, ABACA, ...请问下一个图案是什么?答案:ABACABAC解析:观察图案序列,可以发现每个图案都是在前一个图案的基础上添加一个新的元素。
第一个图案是A,第二个图案是在A的基础上添加B,第三个图案是在ABA的基础上添加C,依此类推。
因此,下一个图案是在ABACABAC的基础上添加ABAC,即ABACABAC。
通过这些练习题,我们可以锻炼自己的观察力和逻辑思维能力。
模式识别不仅仅是一种认知能力,也是一种解决问题的思维方式。
通过不断地练习和思考,我们可以提高自己的模式识别能力,更好地应对各种复杂的情境和挑战。
除了以上的练习题,我们还可以通过观察自然界、阅读文学作品和解决日常问题等方式来锻炼模式识别能力。
模式识别练习题(简答和计算)汇总
![模式识别练习题(简答和计算)汇总](https://img.taocdn.com/s3/m/31050ae714791711cd79170d.png)
1、试说明Maha la nobis 距离平方的定义,到某点的Mahala nobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。
答:Mah alano bis 距离的平方定义为:∑---=12)()(),(u x u x u x r T其中x ,u 为两个数据,1-∑是一个正定对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Ma hala nobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mah ala no bis 距离就是通常的欧氏距离。
2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。
答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
ﻫ 非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
ﻫ 就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
ﻫ 使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
3、已知一组数据的协方差矩阵为⎪⎪⎭⎫ ⎝⎛12/12/11,试问(1) 协方差矩阵中各元素的含义。
(2) 求该数组的两个主分量。
(3) 主分量分析或称K-L 变换,它的最佳准则是什么? (4) 为什么说经主分量分析后,消除了各分量之间的相关性。
答:协方差矩阵为⎪⎪⎭⎫⎝⎛12/12/11,则(1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。
(2) 主分量,通过求协方差矩阵的特征值,用⎪⎪⎪⎪⎭⎫ ⎝⎛----121211λλ=0得4/1)1(2=-λ,则 ⎩⎨⎧=2/32/1λ,相应地:2/3=λ,对应特征向量为⎪⎪⎭⎫ ⎝⎛11,21=λ,对应⎪⎪⎭⎫ ⎝⎛-11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.朴素贝叶斯方法的条件独立假设是(P(x| 3 i) =P(x1, x2,…,xn | co i)第一章绪论1 •什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的2•模式识别的定义? 让计算机来判断事物。
3•模式识别系统主要由哪些部分组成?数据获取一预处理一特征提取与选择一分类器设计/分类决策。
第二章贝叶斯决策理论P ( W 2 ) / P ( W 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。
利用贝叶斯公式 得到后验概率。
根据后验概率大小进行决策分析。
2. 最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ),>类条件概率分布P ( X | W i ), i 1 , 2 利用贝叶斯公式得到后验概率 P (W i 1 x)1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的4- I-J 形工战< dx +) — max 爪'(vr I A *), MJ A * 匚 w.如SI 卫(A *叫)厂)= 如果lg=上心lw) py %)心li M/ JC ) = —1IL | /( A *)J = — hi JC | 讥.j + 111 | i r 2 )>尸(“空)I MJ4 .贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5. 贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。
6. 利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 1P(W i |x)P (x | W i ) P(W i )2P(x | W j ) P (w j )j 11 , 2.信息__。
如果 I (x)P (X | W i ) P (W i )P(X | W j )P(W j )max />(A' |t),则时 P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2=P (x1| 3 i ) P (x2| 3 i )…P (xn| 3 i )) 8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P (x| 3 i ) =P (x1, x2,…,xn | 3 i ) = P (x1| 3 i ) P (x2| 3 i )…P (xn| 3i )后验概率: P(3 i|x) = P( 3 i) P(x1| 3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。
9•计算属性Marital Status 的类条件概率分布给表格计算,婚姻状况几个类别和分类几个就求出多少个类条件概率。
10,朴素贝叶斯分类器的优缺点?答:分类器容易实现。
面对孤立的噪声点,朴素贝叶斯分类器是健壮的。
因为在从数据中估计条件概率时。
这些 点被平均。
面对无关属性,该分类器是健壮的。
相关属性可能降低分类器的性能。
因为对这些属性,条件独立的假设已不成立。
11.我们将划分决策域的边界称为(决策面),在数学上用可以表示成 (决策面方程)12•用于表达决策规则的函数称为(判别函数)13•判别函数与决策面方程是密切相关的,且它们都由相应的决策规则所确定 14.写出多元正态概率下的最小错误率贝叶斯决策的判别函数,即2(x山)i (X 山)d In 2 215•多元正态概率下的最小错误率贝叶斯决策的决策面方程为 16•多元正态概率下的最小错误率贝叶斯决策,当类条件概率分布的协方差矩阵为2 时,每类的协方差矩阵相等,且类内各特征间(相互独立),并具有相等的方差。
17•多元正态概率下的最小错误率贝叶斯决策,如果先验概率相等,并 i2且i=1,2,…c ,那么分类问题转化为只要计算待测样本 x 到各类均值的(欧式距离),然后把x 归于具有(最小距离平方)的类。
这种分类器称为(最小距离分类器)。
18.I 己知样車类条件概率密度.ZX 划径)心儿二、 j =-l Q 其中砂=© J 〉*# 宀=#貝吗)=0.7” 刊马)= > V 如果用最小锚i 吴率贝叶斯决策2丿来行分类器设计,决策而将 ________________ 不通过 ______ C 通过*不通过》刈 和从连线的中点。
决策向宀向虽 19吗-小______________ 正仝 ____ (.1疋交*不止交)O I W .多元正态概率下的最小错误率贝叶斯决策,类条件概率密度各类的协方差矩阵不相等时,决策面是(超二次曲面)均值:mean (x )XI方差:var (x ) m 1n (xIx)A 2g i (x) ln( p(x | |)P( |))g i (x) g j (x) 0In P( I ),判别函数是(二次型)证明:多元正态概率下的最小错误率贝叶斯决策,对于&二土人r = L2 …”*c的特殊情况.最终的决策而方理为超平而.证明:多元正态槪率下的最小错误率贝叶斯决策,对于r 二Y j 二1 2 c 的特殊情况,最终的决策而方程为:艸辽"仙十)多尤止态槪率卜'的虽小错溟率贝叶斯抉策号对丁二=trV, z = L 2 ________ cI的特殊情况*证明先验概率相等时*形成的分类器是最小即离分类器。
多元正态槪率卜的毘小错误率贝叶斯决策,对于Y 二二7 —…疋的特殊惰况*证明判别雷融是线杵的“2.6砸筑题甩朋朋险轴瞅策删可舫为呼岡)J兀-仏)卩的r r J W'7?(叭=叫 | x)—人| x) + A2P((t?2| x)2—少z | x) = A21P (叫| x) + A22P(ti)2| x)i用Bayes公式展开,最小凤险贝叶斯决策决策得到:如果P(丫叫)、血][FWj)贝1] , X € f旳0(耳1叫)(4 -亀)P(©)'如果"(工的)丿(兀-亦戸㈣)则丁x € ro. P(卞1叫)〔広2】-占]円®)第三章概率密度函数的估计i•类条件概率密度估计的两种主要方法(参数估计)和(非参数估计)2•类条件概率密度估计的非参数估计有两种主要的方法 们的基本原理都是基于样本对分布的(未知)原则。
4. 假设正常细胞和癌细胞的样本的类条件概率服从多元正态分布,使用最大似然估计方法,对概率密度的参数估计的结果为。
证明:使用最大似然估计方法,对一元正态概率密度的参数估计的结果如下:X kk 15•已知5个样本和2个属性构成的数据集中, w1类有3个样本,w2类有两个样本。
如果使 用贝叶斯方法设计分类器,需要获得各类样本的条件概率分布, 现假设样本服从多元正态分 布p (x| i ) N (山,J i 1,2 则只需获得分布的参数均值向量和协方差矩阵即可,那么采用最大似然估计获得的 w1类的第四章 线性判别函数1•已知两类问题的样本集中,有两个样本。
X 1 (1, 3,2)T 属于类,X 2(1,2, 3/ 属于类,对它们进行增广后,这两个样本的增广样本分别为[y1 =(1,1,-3,2)T,y2 =(-1,-1,-2,3)T ]2广义线性判别函数主要是利用(映射)原理解决(普通函数不能解决的高次判别函数)问题,利用广义线性判别函数设计分类器可能导致(维数灾难)。
3•线性分类器设计步骤?主要步骤:1•收集训练数据集 D={x1,x2,…,xN}2•按需要确定一个准则函数 J (D,w,wO )或J (D,a ),其值反映分类器的性能,其极值解对应于“最好”决策。
3.用最优化技术求准则函数 J 的极值解w* , w*或a*。
T T 4•最终,得到线性判别函数,完成分类器设计g (x ) (w*) x W o ,g (x ) (a*) y5. 线性判别函数g (x )的几何表示是:点 x 到决策面H 的(距离的一种代数度量)。
6. 增广样本向量使特征空间增加了(一)维,但样本在新的空间中保持了样本间的(欧氏距离)不变,对于分类效果也与原决策面相同。
在新的空间中决策面 H 通过坐标(原点)10.利用Lagrange 乘子法使Fisher 线性判别的准则函数极大化,最终可以得到的判别函数(Parzen 窗法)和(KN 近邻法)。
它3•如果有N 个样本,可以计算样本邻域的体积V ,然后获得V 中的样本数(X kk 1?)2类条件概率密度均值向量为(2,3转置)2 0 2 ,以及协方差矩阵为(0 2 2 )。
2247・Fisher 准则的基本原理为: 找到一个最合适的投影轴, 使_(类间)在该轴上投影之间的距离尽可能远,而(类内)的投影尽可能紧凑,从而使分类效果为最佳。
8.Fisher 准则函数的定义为J F (w)9Fisher 方法中,样本类内离散度矩阵S i(x mj (x mJ T , ix D i烬w T S b w S比w S w wSi 与总类内离散度矩阵 Sw 分别为1,2 S w S 1 S 2* A权向量w S w (m 1 m 2)11•叙述Fisher算法的基本原理。
Fisher准则的基本原理:找到一个最合适的投影轴,使两类样本在该轴上投影之间的距离尽可能远,而每一类样本的投影尽可能紧凑,从而使分类效果为最佳。
12Fisher公式的推导疋函数:L(w, 4) = —- c)Ak 一广一=Ew - = 0zw = S; S,w = S; <m1 - m Km -m2) wW* = —S v l[m l-m2')^S v~}(in}_ni;)」”丄T13. 已知两类问题的样本集中,有两个样本°X[属于W1类,x2(1,2, 3)T属于w2类,对它们进行增广规范化后,这两个样本的规范化增广样本分别为y1=(1,1,-3,2)转置和y2=(1,-1,-2,3)转置。
14. 叙述感知准则的梯度下降算法的基本过程。
答:1.初值:任意给定一向量初始值a(1)2. 迭代:第k+1次迭代时的权向量a(k+1)等于第k次的权向量a(k)加上被错分类的所有样本之和与pk的乘积3. 终止:对所有样本正确分类(y Y k16线性判别函数g(x)的几何表示是:点 x 到决策面H 的(距离的代数度量)17•感知机方法主要有两种,批量样本修正法与单样本修正法。