时间序列分析方法第章谱分析

合集下载

时间序列分析第一章 时间序列 ppt课件

时间序列分析第一章 时间序列 ppt课件
当 0 时,称为零均值白噪声; 当 0,2 1称为标准白噪声。
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t

SPSS时间序列:频谱分析

SPSS时间序列:频谱分析

SPSS时间序列:频谱分析⼀、频谱分析(分析-预测-频谱分析)“频谱图”过程⽤于标识时间序列中的周期⾏为。

它不需要分析⼀个时间点与下⼀个时间点之间的变异,只要按不同频率的周期性成分分析整体序列的变异。

平滑序列在低频率具有更强的周期性成分;⽽随机变异(“⽩噪声”)将成分强度分布到所有频率。

不能使⽤该过程分析包含缺失数据的序列。

1、⽰例。

建造新住房的⽐率是⼀个国家/地区经济的重要晴⾬表。

有关住房的数据开始时通常会表现出⼀个较强的季节性成分。

但在估计当前数字时,分析⼈员需要注意数据中是否呈现了较长的周期。

2、统计量。

正弦和余弦变换、周期图值和每个频率或周期成分的谱密度估计。

在选择双变量分析时:交叉周期图的实部和虚部、余谱密度、正交谱、增益、平⽅⼀致和每个频率或周期成分的相位谱。

3、图。

对于单变量和双变量分析:周期图和频谱密度。

对于双变量分析:平⽅⼀致性、正交谱、交叉振幅、余谱密度、相位谱和增益。

4、数据。

变量应为数值型。

5、假设。

变量不应包含任何内嵌的缺失数据。

要分析的时间序列应该是平稳的,任何⾮零均值应该从序列中删除。

平稳. 要⽤ARIMA 模型进⾏拟合的时间序列所必须满⾜的条件。

纯的MA 序列是平稳的,但AR 和ARMA 序列可能不是。

平稳序列的均值和⽅差不随时间改变。

⼆、频谱图(分析-预测-频谱分析)1、选择其中⼀个“频谱窗⼝”选项来选择如何平滑周期图,以便获得谱密度估计值。

可⽤的平滑选项有“Tukey-Hamming”、“Tukey”、“Parzen”、“Bartlett”、“Daniell(单元)”和“⽆”。

1.1、Tukey-Hamming. 权重为Wk = .54Dp(2 pi fk) + .23Dp (2 pi fk + pi/p) + .23Dp (2pi fk - pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。

1.2、Tukey. 权重为Wk = 0.5Dp(2 pi fk) + 0.25Dp (2 pi fk + pi/p) + 0.25Dp(2 pi fk -pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。

金融时间序列分析第4章谱分析方法

金融时间序列分析第4章谱分析方法

第 4 章谱分析方法§1 绪论一.时间序列模型:通过分析自相关就获得描述与预测时间序列可能够用模型的第一印象。

如 y t - f y t- 1 = a t 这里 y t 与 y t- 1相关性较大,而与 y t- 2 相关较弱,为什么?二.分析时间序列的两种方法频谱法,时间序列法-Box Jenkins 方法三.时间序列模型的五个特征(最重要的)描述趋势有多种方法1.趋势y t = a + dt+ m t t = 1,2, , n 确定性趋势y t - y t- 1 = d+ m t - m t- 1 随机趋势2.季节性: y t- y t-1= a1D1,t+a2D2,t+...+a s D s,t+ m t t = 1,2, ............... , nD s,t 是季节哑变量,定义为T= 1,2, .. , ND s,t=1,t=(T- 1)S+s, S = 1,2,..., SD s,t = 0 其它3.异常观测值异常观测值:在时间序列中,可能有一个或几个点,会对时间序列的建模与预测起到重要的作用。

这样的数据点称为奇异观测值。

4.条件异方差异常观测值倾向于成群出现,这个现象称为波动性集聚( vilatility clustering ) 条件异方差22(y t- y t-1) =a+r(y t-1- y t-2) +m t t= 3,4,..., n5.非线性:状态依赖——机制转换特征§2 谱分析一.时间序列分析的方法1 时序分析方法:也就是时序建模方法,ARMA 等,也就是原序列的时间顺序不变。

2 频谱建模方法:单变量频谱建模技术就是时间序列看作是有不同频率的正弦和余弦波组成。

其基本思想是:把时间序列看作是互不相关的周期(频率)分量的叠加,通过研究和比较各分量的周期变化,以充分揭示时间序列的频域结构,掌握其主要波动特征。

做法:对某个时间序列剔除趋势和季节因素后的循环项(平稳)进行谱估计,根据估计出的普密度函数,找出序列中的主要频率分量,从而把 握该序列的周期波动特征。

周期分解法和时间序列普分析

周期分解法和时间序列普分析
时间序列分析
周期分解方法和时间序列谱分析
目录
1
时间序列分析简介 周期分解方法 时间序列谱分析
2
3
01
时间序列分析简介
时间序列分析简介
依时间顺序排列起来的一系列观测值。
注:观测值之间不独立。它考虑的不是变量间的因果关系,而是重点
考察变量在时间方面的发展变化规律,并为之建立数学模型。
时间序列分析简介
序列是由数个正弦波成份叠加而成,当 序列的确来自一些周期函数集合时,该 方法特别有用。
时间序列分析简介
长期趋势:指一种长期的变化趋势。它采取一种
全局的视角,不考虑序列局部的波动。如:中国的GDP 呈现一种上升的长期趋
季节变化(Season):冷饮的销售情况 循环变化(Cyclic):经济危机,指一整序列SAS-1
(观察周期分解后的效果)
4
趋势-循环波动序列STC-1
(观察周期分解后的效果)
注:1.周期调整序列:该序列加上季节指数
可以还原为原始序列。 2.趋势—循环波动序列:对周期调整序 列进行平滑处理。
03
时间序列谱分析
(seasonalDecomposition过程)
时间序列谱分析
操作过程
1
定义日期和时间
(数据——定义日期和时间)
2
序列图——初步预测
(分析—时间序列预测—序列图)
操作过程
3
观察序列图
(波动幅度无明显变化——加法模型)
4
周期分解
(分析—时间序列预测—季节性分解)
操作过程
操作过程
周 期 分 解 后
5
观察自相关和偏相关图
(判断有无相关性) 分析—时间序列预测—自相关性

第一章 时间序列分析简介知识讲解

第一章 时间序列分析简介知识讲解
3
1.3 时间序列分析方法
描述性时序分析 统计时序分析
频域分析方法 时域分析方法
5
描述性时序分析案例
德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
6
统计时序分析--频域分析方法
原理
假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动
发展过程
早期借助富里埃分析从频率角度揭示时间序列的规律 后来借助傅里叶变换,用正弦、余弦项之和来逼近某个函数 20世纪60年代,引入最大熵谱估计理论,克服了传统谱分析
多变量场合 C.Granger ,1987年,提出了协整(co-integration)理论,并因此 与Engle一起获得2003年的诺贝尔经济学奖。
非线性场合 汤家豪等,1980年,门限自回归模型
11
1.4 时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP,R语言,EViews 和SAS
《应用时间序列分析》
参考书目
应用计量经济学:时间序列分析[Applied Econometric Time Series],沃尔特·恩 德斯[Walter Enders],高等教育出版社 (译本)。
时间序列分析[Time Series Analysis],汉 密尔顿[James D. Hamilton],中国社会 科学出版社(译本) 。
8
基础阶段
G.U.Yule
1927年,AR模型
G.T.Walker
1931年,MA模型,ARMA模型
9
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》

时间序列分析方法第章谱分析完整版

时间序列分析方法第章谱分析完整版

时间序列分析方法第章谱分析HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。

这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。

在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。

如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。

我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。

对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。

§ 母体谱我们首先介绍母体谱,然后讨论它的性质。

6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。

将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。

利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。

时间序列分析方法 第0章 谱分析

时间序列分析方法 第0章 谱分析

第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。

这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。

在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。

如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。

我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。

对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。

§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。

6.1.1 母体谱及性质假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。

将上述函数除以π2,并将复数z 表示成为指数虚数形式)exp (ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。

利用De Moivre 定理,我们可以将j i e ω-表示成为:因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到:假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。

第一章 时间序列分析简介

第一章 时间序列分析简介
第一章 时间序列分析简介
本章内容
引言 时间序列的定义 时间序列分析方法简介 时间序列分析软件
1.1 引言
最早的时间序列分析可以追溯到7000年前的古 最早的时间序列分析可以追溯到7000年前的古 7000 埃及。 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来, 古埃及人把尼罗河涨落的情况逐天记录下来 双星 天狼星:夜空里最亮的恒星,是大犬座中的一颗双星。 天狼星:夜空里最亮的恒星, 逐天记录下来,就构 。 恒星 大犬座中的一颗双星 中的一颗 成所谓的时间序列 时间序列。 成所谓的时间序列。 太阳亮 倍的蓝白星 双星中的亮子星是一颗比太阳 倍的蓝白星, 双星中的亮子星是一颗比太阳亮23倍的蓝白星,体积略大 尼罗河:尼罗河位于非洲东北部,流经布隆迪 卢旺达、 布隆迪、 尼罗河:尼罗河位于非洲东北部,流经布隆迪、卢旺达、 于太阳。 于太阳。 对这个时间序列长期的观察, 对这个时间序列长期的观察,发现尼罗河的涨落非 坦桑尼亚、乌干达、苏丹和埃及等国,跨越世界上面积最 坦桑尼亚、乌干达、苏丹和埃及等国, 等国 在中国古代,看作恶星,象征侵扰, 在中国古代,看作恶星,象征侵扰,所以文人们写出 常有规律。 常有规律。 大的撒哈拉沙漠,最后注入地中海。全长6650公里,为世 公里, 大的撒哈拉沙漠,最后注入地中海。全长 公里 会挽雕弓如满月,西北望,阿拉伯语意为“ 。 “会挽雕弓如满月,西北望 ,使古埃及农业迅速发展 掌握了尼罗河泛滥的规律,使古埃及农业迅速发展, 界上最长的河流。(尼罗河—阿拉伯语意为 大河) 。(尼罗河 射天狼”的词句。 掌握了尼罗河泛滥的规律 射天狼”的词句 界上最长的河流。(尼罗河 ,阿拉伯语意为“大河) , 而古埃及却崇拜天狼星, 而古埃及却崇拜天狼星,因为它与尼罗河的泛滥有着密 从而创建了埃及灿烂的史前文明。 从而创建了埃及灿烂的史前文明。 切的联系。 切的联系。

时间序列分析法概述

时间序列分析法概述

时间序列分析法概述时间序列分析(Time Series Analysis)是一种对时间序列数据进行统计分析和预测的方法。

时间序列数据是以时间顺序排列的、按一定时间间隔收集到的一系列数据观测值。

时间序列分析通过对过去的数据进行分析,揭示出数据内部的规律和变化趋势,从而对未来的数据进行预测和模拟。

时间序列分析方法广泛应用于经济学、金融学、工程学、气象学等领域,可以用于分析和预测股票价格、销售数据、气温变化等各种现象。

时间序列分析方法包括描述性统计分析、平稳性检验、自相关与偏相关分析、谱分析、移动平均模型和自回归模型等。

描述性统计分析是时间序列分析的起点,其目的是对时间序列数据的基本特征进行描述和总结。

描述性统计分析通常包括计算数据的均值、方差、极值等指标,以及绘制数据的线图、直方图等图形。

通过对描述性统计分析的结果进行观察和比较,可以初步了解数据的分布和趋势。

平稳性检验是时间序列分析的基础,其目的是判断时间序列数据是否具有平稳性。

平稳性是指时间序列数据的统计特性在不同时间段内是相似的,即均值和方差不随时间的变化而变化。

常用的平稳性检验方法有ADF检验和KPSS检验。

如果时间序列数据不具有平稳性,需要进行平稳化处理,以满足时间序列分析的前提条件。

自相关与偏相关分析是时间序列分析中的重要内容,其目的是研究时间序列数据之间的相关性和连接性。

自相关是指时间序列数据与其在不同时间点上的滞后值之间的相关性,反映了时间序列数据的时间间隔相关性。

偏相关是在控制其他变量的影响下,研究两个时间序列数据之间的相关性。

通过自相关与偏相关分析,可以揭示时间序列数据内部的规律和关系。

谱分析是时间序列分析的重要方法之一,其目的是研究时间序列数据的频率特征和功率谱密度。

谱分析基于傅里叶变换,将时间序列数据转换到频域分析。

谱分析可以揭示时间序列数据的周期性和趋势性,为进一步的数据分析和预测提供依据。

移动平均模型是一种常用的时间序列预测方法,它基于过去若干个时间点的数据,预测未来一个时间点的数据。

时间序列分析

时间序列分析

时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时
间序列的最优预测、控制与滤波等内容。

经典的统计分析都假定数据序列具有独立性,而时
间序列分析则侧重研究数据序列的互相依赖关系。

例如,记录了某地区第一个月,第二个
月,……,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。

随着计算机的相关软件的开发,数学知识不再是空谈理论,时间序列分析主要是建立
在数理统计等知识之上,应用相关数理知识在相关方面的应用等。

20世纪70年代以来,应用最广泛的时间序列模型是平稳自回归-滑动平均模型(简称ARMA 模型)。

G.U.尤尔在1925~1930年间就提出了平稳自回归的概念。

1943年,Η.Β.曼和Α.瓦尔德发表了关于这种模型的统计方法及其渐近性质的一些理论结果。

一般ARMA模型的统计分析研究,则是20世纪60年代后才发展起来的。

特别是关于p,q值的估计及其渐近理论,出现得更晚些。

除ARMA模型之外,还有其他的模型分析的研究,其中以线性模型的研究较为成熟,而且都与ARMA模型分析有密切关系。

时间序列分析中的最优预测、控制与滤波等方面的内容见平稳过程条。

多维时间序列分析的研究有所进展,并应用到工业生产自动化及经济分析中。

此外非线性模型统计分析及非参数统计分析等方面也逐渐引起人们的注意。

时间序列分析方法之谱分析

时间序列分析方法之谱分析

第六章谱分析Spectral Analysis到目前为止,时刻变量的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,那个结构对不同时点和上的变量和的协方差具有什么样的启发。

这种方法被称为在时刻域(time domain)上分析时刻序列的性质。

在本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时刻序列数值的方法,那个地点表示特定的频率,表示形式为:上述分析的目的在于推断不同频率的周期在解释时刻序列性质时所发挥的重要程度如何。

如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。

我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示能够描述的任何数据性质,都能够利用另一种表示来加以体现。

对某些性质来讲,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。

§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。

6.1.1 母体谱及性质假设是一个具有均值的协方差平稳过程,第个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:∑+∞-∞==j jj Y z z g γ)(那个地点z 表示复变量。

将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:∑+∞-∞=--==j j i j i Y Y e e g s ωωγππω21)(21)(注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都能够计算)(ωY s 的数值。

利用De Moivre 定理,我们能够将j i e ω-表示成为:)sin()cos(j i j e j i ωωω-=-因此,谱函数能够等价地表示成为:∑+∞-∞=-=j j Y j i j s )]sin()[cos(21)(ωωγπω注意到关于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:⎭⎬⎫⎩⎨⎧----++-=∑+∞=10)]sin()sin()cos()[cos(21)]0sin()0[cos(21)(j j Y j i j i j j i s ωωωωγπγπω 利用三角函数的奇偶性,能够得到:⎭⎬⎫⎩⎨⎧+=∑+∞=10)cos(221)(j jY j s ωγγπω 假设自协方差序列+∞∞-}{j γ是绝对可加的,则能够证明上述谱函数)(ωY s 存在,同时是ω的实值、对称、连续函数。

时间序列分析第一章 时间序列分析简介

时间序列分析第一章 时间序列分析简介
由于SAS系统具有全球一流的数据仓库功能,因此 在进行海量数据的时间序列分析时它具有其它统计 软件无可比拟的优势
2019/12/13
时间序列分析
2019/12/13
时间序列分析
2019/12/13
精品课件!
时间序列分析
2019/12/13
精品课件!
时间序列分析
1.4 时间序列分析软件
常用软件
S-plus,Matlab,Gauss,TSP,Eviews 和SAS
推荐软件——SAS
在SAS系统中有一个专门进行计量经济与时间序列 分析的模块:SAS/ETS。SAS/ETS编程语言简洁, 输出功能强大,分析结果精确,是进行时间序列分 析与预测的理想的软件
观察值序列:随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列
x1, x2 ,, xt
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
2019/12/13
时间序列分析
1.3 时间序列分析方法
2019/12/13
时间序列分析
完善阶段
异方差场合
Robert F.Engle,1982年,ARCH模型 Bollerslov,1985年GARCH模型 多变量场合 C.Granger ,1987年,提出了协整(co-
integration 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数
20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶 段
特点
非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计方法,用于研究随时间变化的数据。

它可以帮助我们揭示数据背后的趋势、周期性和季节性等模式,帮助我们做出有意义的预测和决策。

本文将介绍时间序列分析的基本原理、常用的方法和应用领域等内容。

一、时间序列分析的基本原理时间序列是按时间顺序排列的数据序列。

时间序列分析的基本原理是假设数据是由趋势、周期性、季节性和随机波动组成的。

通过分解时间序列,可以将数据分解为这些组成部分,进而对每个部分进行建模和分析。

趋势是时间序列长期变化的方向。

通过趋势分析,可以判断数据的增长或下降趋势,并预测未来的发展方向。

常用的趋势分析方法有移动平均法、指数平滑法和回归分析法等。

周期性是时间序列在一定时间范围内变化的重复模式。

周期性分析可以帮助我们了解数据的周期性波动,并进行周期性预测。

常用的周期性分析方法有傅里叶级数分析、谱分析和周期性指数平滑法等。

季节性是时间序列在一年内循环出现的固定模式。

季节性分析可以揭示数据中的季节性变化规律,并进行季节性预测。

常用的季节性分析方法有季节性指数平滑法、季节性回归模型和季节性自回归移动平均模型等。

随机波动是时间序列中无法由趋势、周期性和季节性解释的部分。

随机波动的分析可以帮助我们评估模型的准确性和稳定性。

常用的随机波动分析方法有自相关函数和偏自相关函数的分析等。

二、常用的时间序列分析方法1. 移动平均法移动平均法是一种常用的趋势分析方法,通过计算一定时间段内数据的平均值来平滑时间序列。

移动平均法能够过滤数据的随机波动,较好地反映数据的趋势。

2. 指数平滑法指数平滑法是一种适用于短期预测的方法,通过赋予过去观测值不同的权重来预测未来的值。

指数平滑法能够灵活地适应数据的变化,并能够较好地捕捉数据的趋势。

3. 季节性指数平滑法季节性指数平滑法是一种适用于季节性数据的方法,通过对每个季节的数据赋予不同的权重来进行季节性预测。

季节性指数平滑法能够很好地反映季节性数据的变化规律。

统计学中的时间序列分析方法

统计学中的时间序列分析方法

统计学中的时间序列分析方法时间序列分析是统计学中一种重要的方法,用于研究时间序列数据的模式、趋势和周期性。

它在经济学、金融学、气象学等领域有着广泛的应用。

本文将介绍一些常见的时间序列分析方法,包括平稳性检验、自相关和偏自相关分析、移动平均和指数平滑法以及ARIMA模型。

平稳性检验是时间序列分析的第一步。

平稳性是指时间序列的均值和方差在时间上保持不变的性质。

通过平稳性检验,我们可以确定时间序列是否具有稳定性。

常用的平稳性检验方法有ADF检验和KPSS检验。

ADF检验是一种基于单位根理论的检验方法,它通过检验序列是否具有单位根来判断序列的平稳性。

KPSS检验则是一种检验序列是否具有趋势的方法,它通过检验序列的单位根是否存在来判断序列的平稳性。

自相关和偏自相关分析是时间序列分析的另一个重要步骤。

自相关是指时间序列与其自身在不同时间点的相关性。

偏自相关则是在控制其他时间点的影响下,某个时间点与另一个时间点的相关性。

自相关和偏自相关分析可以帮助我们确定时间序列的滞后阶数,即在建立模型时需要考虑的时间点数目。

常用的自相关和偏自相关分析方法有自相关图和偏自相关图。

移动平均和指数平滑法是常见的时间序列预测方法。

移动平均法是一种平滑时间序列的方法,它通过计算一段时间内的观测值的平均值来减少随机波动。

指数平滑法则是一种加权平均的方法,它通过对不同时间点的观测值赋予不同的权重来减少随机波动。

移动平均和指数平滑法都可以用于预测未来的时间序列值。

ARIMA模型是一种常用的时间序列分析方法,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。

ARIMA模型可以用来描述时间序列数据的长期趋势、季节性和随机波动。

ARIMA模型的建立需要根据自相关和偏自相关分析确定AR、差分和MA的阶数。

通过拟合ARIMA模型,我们可以对时间序列进行预测和分析。

总之,时间序列分析是统计学中一种重要的方法,用于研究时间序列数据的模式、趋势和周期性。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。

它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。

本文将介绍时间序列分析的基本概念、常用方法和实际应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。

它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。

时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。

二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。

这些指标可以帮助我们了解数据的分布情况和相关性。

2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。

趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。

通过对组成部分的分析,可以更好地理解时间序列的内在规律。

3. 平稳性检验法平稳性是时间序列分析的基本假设之一。

平稳时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。

4. 预测方法时间序列分析的一个重要应用是预测未来的数值。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。

三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。

在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。

除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。

通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。

结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。

通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种经过时间排序的统计数据分析方法,它是指对同一时间观测到的数据的分析,包括自然界和社会现象等范畴。

时间序列分析可用于预测未来趋势、分析周期性变化、发现非线性关系、判断相关性等,广泛应用于经济、金融、气象、地震预测、健康等领域。

时间序列分析中常见的数据主要包括三种类型:趋势、季节性和周期性。

趋势是一种长期观测到的数据变化趋势,它可以是线性的、非线性的、上升的或下降的。

例如,一家公司的销售额随着时间的推移而逐渐上升是一种典型的趋势。

季节性是指短期内重复出现的周期性变化,通常是因为季节变化、传统节日等原因引起的。

例如,零售行业的销售额在圣诞节和冬季假期期间通常会增加,而在夏季会下降。

周期性是一种存在于相对较长时间内的、定期重复的变化。

例如,经济周期性波动,股票价格的周期性变动等都是周期性变化的例子。

对于时间序列分析,常见的方法有时域方法和频域方法两种。

时域方法是指直接对观测数据进行建模和预测,常见的模型有移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。

频域方法则是将时间序列转换为频率域,进行分析和模型设计,常用的方法有傅里叶变换、功率谱分析等。

在实际应用中,时间序列分析常常需要处理的问题包括序列平稳性、季节型、异常值等。

序列平稳是指序列的统计性质在时间上的不变性,如果序列不平稳,则需要进行差分处理以达到平稳的要求。

在季节性分析中,需要使用季节性分解的方法来区分季节性和趋势成分。

异常值指的是在序列中出现的短期内极端高或者极端低的值,这些异常值对分析的结果产生影响,因此需要进行处理。

总之,时间序列分析是一种广泛应用的统计分析方法,对于理解和预测时间序列的趋势、季节型和周期性变化具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 谱分析 Spectral Analysis
到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:
我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。

这种方法被称为在时间域(time domain)上分析时间序列+∞
∞-}{t Y 的性质。

假设+∞
∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:
假设这些自协方差函数是绝对可加的,则自协方差生成函数为:
这里z 表示复变量。

将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:
注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞
∞-}{j γ,原则上都可
以计算)(ωY s 的数值。

利用De Moivre 定理,我们可以将j i e ω-表示成为:
因此,谱函数可以等价地表示成为:
注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:
ω的下面我们考虑)1(MA 过程,
此时:z z θψ+=1)(,则母体谱为:
可以化简成为:
显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有:
这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为:
该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。

一般地,对),(q p ARMA 过程而言:
)
(ωY s 利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。

解释母体谱函数
假设0=k ,则利用命题6.1可以得到时间序列的方差,即0γ,计算公式为:
根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

更一般的,由于谱函数)(ωY s 是非负的,对任意],0[1πω∈,如果我们能够计算:
这个积分结果也是一个正的数值,可以解释为t Y 的方差中与频率的绝对值小于1ω的成分相关的部分。

注意到谱函数也是对称的,因此也可以表示为:
这个积分表示频率小于1ω的随机成分对t Y 方差的贡献。

但是,频率小于1ω的随机成分对t Y 方差的贡献意味着什么?为了探索这个问题,我们
虽然在上述过程中,我们已经过程的方差分解为频率低于某种程度的周期成分的贡献,我们能够这样做的原因在于这个过程是比较特殊的。

对于一般的情形,着名的谱表示定理(the spectral representation theorem)说明:任何协方差平稳过程都可以表示成为不同频率周期成分的和形式。

对任意给定的固定频率],0[πω∈,我们定义随机变量)(ωα和)(ωδ,并假设可以将一个具有绝对可加自协方差的协方差平稳过程表示为:
这里需要对随机变量)(ωα和)(ωδ的相关性给出更为具体的假设,但是上述公式便是谱表示定理的一般形式。

§6.2 样本周期图 Sample Periodogram
对一个具有绝对可加自协方差的协方差平稳过程}{t Y ,我们已经定义在频率ω处的谱函数值为:
μ
ˆ,M αααˆ,,ˆ,ˆ21 ,M
δδδˆ,,ˆ,ˆ21 使得t 期的y 值可以表示成为: 其中:
当k j ≠时,)]1(cos[ˆ-t j j ωα
与)]1(cos[ˆ-t k k ωα不相关; 当k j ≠时,)]1(sin[ˆ-t j
j ωδ与)]1(sin[ˆ-t k k ωδ不相关;
对于所有的j 和k ,)]1(cos[ˆ-t j j ωα与)]1(sin[ˆ-t k
k ωδ不相关。

y 的样本方差是∑=--T
t t y y T 121)(,
该方差中可以归因于频率为j ω的周期成分的部分由样本周期图)(j Y s ω给出。

我们对样本容量是奇数的情形展开讨论上述谱表示模式。

这时t y 可以表示成为由2/)1(-≡T M 个不同频率构成的周期函数,频率M ωωω,,,21 如下: 1)],,cos[M ω(回归的OLS 系
M ,,进一步,假设T y y y ,,,21 是任意T 个实数,则下述推断成立:
(a) 过程t y 可以表示为:
这里:
y =μˆ,∑=-=T t j t j t y T 1)]1(cos[2ˆωα,∑=-=T t j t j t y T 1
)]1(sin[2ˆωδ
(b) t y 的样本方差可以表示为:
样本方差可以归因于频率为j ω的周期成分的部分为2/)ˆˆ(22j j δα+。

(c) t y 的样本方差中可以归因于频率为j ω的周期成分的部分还可以表示为:
其中)(ˆj y s
ω是样本周期图在频率j ω处的值。

上述结果说明,'T
x x 是对角矩阵,这意味着包含在向量x 中的向量之间是相互正交
因此,根据以前的讨论,具有频率2/3πω=的周期在观测值上等价于具有频率2/πω=的周期。

注意到频率和周期之间的关系,频率ω对应的周期为ωπ/2。

由于我们考虑的最高频率为πω=,因此我们所观测到的能够自己重复的最短阶段是2/2=ππ。

如果2/3πω=,则周期是每3/4阶段重复自己。

但是,如果数据是整数阶段观测的,因此数据可以观测的时间间隔仍然是每4个阶段观测到,这对应着周期频率是2/πω=。

例如,函数])2/cos[(t π和函
数])2/3cos[(t π在整数的时间间隔上,它们的观测值是一致的。

命题6.2也为计算在频率T i j /2πω=(M j ,,2,1 =)上的样本周期图的数值提供了方法。

定义:
这里:
∑=-=T t j t j t y T 1)]1(cos[2ˆωα,∑=-=T t j t j t y T 1
)]1(sin[2ˆωδ
进一步,如果ωλ≠,也有:
并且上述两个渐近分布的随机变量是相互独立的。

注意到)(2n χ的均值等于自由度,因此有:
因为)(ωY s 是母体数量,不是一个随机变量,因此上式也可以表示成为:
因此,对充分大的样本容量,样本周期函数为母体谱提供了一个渐近无偏估计。

母体谱的参数化估计
假设我们认为数据可以由),(q p ARMA 模型表示:
这里t ε是具有方差2σ的白噪声。

这时一个估计母体谱的出色方法是先利用前面介绍的极大似然估计估计参数22121,,,,,,,,,σθθθφφφμq p ,具有绝对可加自协方差的协方差平稳
T j /。

相关文档
最新文档