数值计算方法复习提纲

合集下载

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值分析复习提纲(修改完)

数值分析复习提纲(修改完)

第一章 绪论【考点1】绝对误差概念。

近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。

【考点2】相对误差限的概念。

近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。

【考点3】有效数字定义。

设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。

例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。

因为,2-m=所以2n=,a 有2位有效数字。

若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。

例:设000018.x=,则00008.a=具有五位有效数字。

41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。

例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。

410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。

【考点5】有效数字与相对误差的关系。

设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。

数值分析计算方法复习提纲

数值分析计算方法复习提纲

数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。

在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。

一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。

基本的问题是(1)1()(01)(1)!n n f x x n,已知ε求n。

例1.1:计算e 的近似值,使其误差不超过10-6。

解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。

由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n当x=1时,1111(01)2!!(1)!e e n n故3(1)(1)!(1)!n e R n n 。

当n=9时,R n (1)<10-6,符合要求。

此时, e≈2.718 285。

2、绝对误差、相对误差及误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。

基本的计算公式是:①e(x)=x *-x =△x =dx② *()()()ln r e x e x dxe x d x x x x③(())()()()e f x f x dx f x e x ④(())(ln ())r e f x d f x⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ⑥121212((,))((,))(,)f x x f x x f x x⑦ x注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式()()r e x e x x或x, 这样计算简单。

数值计算方法复习要点

数值计算方法复习要点

第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。

这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。

2、采用“离散化”方法把连续变量问题转为求离散变量问题。

例:把定积分离散成求和,把微分方程离散成差分方程。

3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。

由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。

4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。

算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。

时间复杂度是算法耗费时间的度量。

算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。

误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。

因而总是近似的,这就产生了误差。

这种数学模型解与实际问题的解之间出现的误差,称为模型误差。

2、观测误差观测到的数据与实际数据之差。

3、截断误差数学模型的准确解与计算方法的准确解之间的误差。

4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。

绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。

定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。

实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。

“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。

(完整)数值计算方法复习

(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1。

了解数值分析的研究对象与特点。

2。

了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0。

229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。

了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3。

理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4。

掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。

为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。

数值计算方法复习

数值计算方法复习

数值计算方法复习1.数值求解数值求解是通过数值计算方法来寻找一个给定方程的数值解。

常见的数值求解方法包括二分法、牛顿法、割线法和迭代法等。

-二分法是一种用于求解单调函数方程的数值方法。

它将函数方程的解限定在一个区间内,然后通过缩小区间的方式来逼近解。

二分法的思想是通过不断将区间一分为二,并判断解是否在其中一半区间内,从而缩小解的范围。

-牛顿法是一种用于求解非线性方程的数值方法。

它利用函数方程的切线来逼近解。

牛顿法的核心思想是通过不断迭代逼近解的位置,使得迭代序列逐渐收敛到解。

-割线法是一种求解非线性方程的数值方法,类似于牛顿法。

它通过连结两个近似解点,得到一个割线,然后以割线和x轴的交点作为下一次迭代的近似解点。

-迭代法是一种通过迭代计算来逼近解的数值方法。

迭代法的核心思想是通过不断更新迭代序列的值,使得序列逐渐收敛到解。

2.插值与拟合插值与拟合是通过已知数据点来推断出未知数据点的数值计算方法。

-插值是通过已知数据点在这些点之间进行推断。

常见的插值方法包括拉格朗日插值和分段线性插值。

拉格朗日插值通过构造一个n次多项式函数来拟合已知数据点,从而推断出未知数据点的值。

分段线性插值是指将数据点之间的区间划分为若干段,然后在每段区间内使用线性插值来推断未知数据点的值。

-拟合是通过已知数据点在这些点之间进行逼近。

常见的拟合方法包括最小二乘拟合和多项式拟合。

最小二乘拟合通过使得残差的平方和最小来找到最优拟合函数。

多项式拟合是指通过构造一个n次多项式函数来拟合已知数据点,从而得到一个逼近函数。

3.数值积分数值积分是通过数值计算方法来近似计算函数的定积分。

常见的数值积分方法包括矩形法、梯形法、辛普森法和龙贝格法等。

-矩形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过函数的平均值来近似计算定积分的方法。

-梯形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过线性插值来近似计算定积分的方法。

数值计算方法重点复习内容

数值计算方法重点复习内容
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式

《数值计算方法》复习资料

《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法总结计划复习总结提纲.docx

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。

1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。

2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。

2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。

本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。

2019年数值计算方法复习提纲

2019年数值计算方法复习提纲
二分法求根
基本原理 误差估计
-3-
22:16
简单迭代法
迭代原理 迭代格式的收敛性判断 收敛速度的度量
Newton迭代法
原理 算法步骤(★) 收敛的阶 手工计算(★) newton迭代法的改进
1) 重根时的改进 2) 避免求一阶导数的改进:弦截法
-4-
1) 对称性 f[x 0 , ,x k]f[x i0, ,x ik]
2) f[x 0 , ,x n ] i n 0 (x i x 0 ) (x i x i f 1 ( )x ix ) i( x i 1 ) (x i x n )
f[x0,,xn]
f
(n)()
(n)!
22:16
第3章 线性方程组求解
线性方程组的求解方法: (★)
直接法 迭代法
直接法:(各种方法的适用条件、手工计算)
Guass顺序消元法
1) 适用条件: a) 系数矩阵A是严格对角占优的矩阵
n
||aii| |aij|,A的每行主对值 角同 元行 的其 绝余 对元之 素和 的绝 ji i1 b) 顺序阶主子式为正
最小二乘原理及正规方程组的构造(计算) (★)
多项式拟合: y=a0+a1x+…+amxm (1)
1) 对应的正规方程组:CTCa=CTy
n

n
xi
CTC


i0 n
xi2
i0
....


n
xim
n
xi
i0 n
xi2
i0
n
xi3
i0
....
3) 会手工计算(★)

(完整版)数值计算方法复习提纲

(完整版)数值计算方法复习提纲
消元,对i=k+1, ,n,计算 对j=L+1, ,n+1,计算
(2)回代过程:
1.若 则矩阵A奇异,程序结束;否则执行。
2
举例说明。
4、消元法应用
(1)行列式计算;
(2)矩阵求逆。
二、利用矩阵三角分解求解线性方程组
1、求解原理
线性方程组写成矩阵形式为:
AX=b
若A=LU,则LUX= b,
记UX=Y
解的存在性定理:
解析解的概念
数值解的概念
§1 Euler方法
一、Euler公式
导数离散化
由向前差商代替导数

记为 ------- Euler显式公式
由向后差商代替导数

记为 ------- Euler隐式公式
由中心差商代替导数

记为 ------- Euler两步公式
二、Euler预估-校正公式
梯形公式
。。。
依次带入
----- Newton插值多项式
计算时先造差商表;
三、余项
§4差分与等距节点插值多项式
一、差分及其性质:
二、等距节点插值多项式
§5 Hermite插值
一、带导数的插值多项式
1、问题:求次数不超过3次多项式 ;
2、利用基函数构造
二、一般情形
1、问题:求次数不超过2n+1次多项式
2、利用基函数构造
1、公式推导
由Lagrange插值多项式 代替函数f(x)


求积系数 的计算:
-
为Cotes系数;
--------- Newton-Cotes求积公式
2、Cotes系数性质
对称性:

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。

它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。

本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。

常见的插值方法有拉格朗日插值和牛顿插值。

2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。

逼近常用的方法有最小二乘逼近和Chebyshev逼近。

二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。

常见的数值微分方法有前向差分、后向差分和中心差分。

2.数值积分:数值积分是通过近似计算定积分的值。

常见的数值积分方法有中矩形法、梯形法和辛普森法。

三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。

常见的直接解法有高斯消元法和LU分解法。

2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。

常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。

四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。

常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。

2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。

这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。

总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。

本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

数值计算方法复习要点

数值计算方法复习要点

数值计算方法复习要点1.近似方法的概念和意义:近似方法是指通过一系列逼近计算步骤来得到问题的数值解。

在实际问题中,很多问题无法通过解析方法来求解,数值计算方法提供了一种有效的途径。

近似方法的正确性和稳定性对于数值计算方法的可靠性至关重要。

2.插值方法:插值方法是指通过已知数据点构造一个函数来逼近未知数据点的数值方法。

常见的插值方法有拉格朗日插值和牛顿插值。

在复习插值方法时,需要掌握插值多项式的构造方法和插值误差估计的技巧。

3.数值微分与数值积分:数值微分与数值积分是数值计算方法中的核心内容。

数值微分用于求取函数的导数近似值,常见的数值微分方法有差分法和微分方程法。

数值积分则是用于求取函数的积分近似值,常见的数值积分方法有梯形法则、辛普森法则和高斯积分法则。

4.非线性方程求解:非线性方程求解是数值计算方法中的重要问题之一、常见的非线性方程求解方法有二分法、牛顿法、割线法和试位法等。

在复习非线性方程求解时,要理解这些方法的基本原理和收敛性条件,并学会分析其收敛速度和稳定性。

5.线性方程组求解:线性方程组求解是数值计算方法中的另一个重要问题。

常见的线性方程组求解方法有高斯消元法、LU分解法和迭代法等。

在复习线性方程组求解时,需要理解这些方法的基本原理和收敛性条件,并学会分析其计算复杂度和稳定性。

6.数值解常微分方程:数值解常微分方程是数值计算方法的一个重要应用领域。

常见的数值解常微分方程的方法有欧拉法、改进欧拉法、龙格-库塔法等。

在复习数值解常微分方程时,需要掌握这些方法的基本原理和实现技巧,并学会分析其精度和稳定性。

8.线性插值和非线性插值:线性插值是插值方法的一种简单形式,即通过已知的两个数据点之间的线性关系来逼近未知数据点的值。

非线性插值则是通过已知的多个数据点之间的非线性关系来逼近未知数据点的值。

理解线性插值和非线性插值的原理和应用场景对于选择合适的插值方法具有重要意义。

以上是数值计算方法复习的一些重点要点,通过理解和掌握这些要点,可以为进一步深入学习和应用数值计算方法奠定基础。

数值计算方法总复习

数值计算方法总复习

数值计算方法总复习第一章算法与误差第二章非线性方程求解第三章线性代数方程求解第四章函数插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法Chap.1 (1)关于数值计算方法,What,特点一、关于《数值计算方法》数值计算方法是应用数学的一个分支,又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计和对数值结果进行分析的依据和基础。

应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数学模型;选用数值计算方法;程序设计和上机计算。

可见数值计算方法是进行科学计算全过程的一个重要环节。

计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和一些逻辑运算。

所以,各种复杂的数学问题------→归结为四则运算------→编程指令。

把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序有完整而准确的描述的算法称为数值计算方法或简称数值算法。

研究各种算法和相关理论的一门课程。

§1.2 误差一、误差的来源数分为两类:精确数(准确数、真值);近似数/近似值。

1)模型误差或描述误差2)测量误差(观测误差)3)截断误差(方法误差)4)舍入误差(计算误差):数值计算关心的是截断误差(方法误差)和舍入误差(计算误差)二、误差限和有效数字1. 误差限的定义设Z 是准确值Z *的某个近似值,如果根据具体测量或计算的情况,可以事先估计出误差的绝对值不超过某个正数ε:即: |Z * - Z |≤ε则称ε为近似值的误差限。

或称在允许误差ε的情况下,结果Z 是“准确的”.2. 误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和误差限都是用来定量表示误差的大小,且它们之间有对应关系。

有效数字的定义:设数x 的近似值m n x x x x 10.021*⨯= , 其中 xi 是0到9之间的任一个数,但x 1≠0,i=1,2,3…,n 正整数,m 整数,若nm *|x x |-⨯≤-1021 则称x *为x 的具有n 位有效数字的近似值,x *准确到第n 位,x1x2…xn 是x *的有效数字。

数值计算复习资料

数值计算复习资料

第一章 绪论§1 绪论:数值分析的研究内容 §2 误差的来源和分类 §3 误差的表示 §4 误差的传播§5 算法设计的若干原则一、误差的分类(绝对误差,相对误差)例1-1 设 x *=2.18是由精确值x 经过四舍五入得到的近似值。

问 x 的绝对误差限ε和相对误差限η各是多少?解:因为 x =x * ±0.005 ,所以绝对误差限为ε=0.005 相对误差限为二、有效数字定义 设数 x 的近似值可以表示为其中 m 是整数,αi (i=1,2, …, n ) 是0到9 中的一个数字,而α1 ≠ 0. 如果其绝对误差限为则称近似数 x* 具有 n 位有效数字。

结论:通过四舍五入原则求得的近似数,其有效数字就是从末尾到第一位非零数字之间的所有数字。

例1-2 下列近似数是通过四舍五入的方法得到的,试判定它们各有几位有效数字: x 1* =87540,x 2*=8754×10, x 3*=0.00345, x 4*= 0.3450 ×10-2已知 有5位有效数字。

同理可以写出 可以得出 x 2 , x 3 , x 4 各具有4、3、4 位有效数字。

例1-3 已知 e =2.718281828……, 试判断下面两个近似数各有几位有效数字? 解:由于%23.018.2005.0*≈==x εηm n x 10.021*⨯±=ααα *1102m nx x --≤⨯1112x x *-≤510.8754010x *=⨯而55111021-*⨯≤-x x 所以1221102x x *-≤⨯520.875410x *=⨯54221102x x *--≤⨯5331102x x *--≤⨯230.34510x *-=⨯-23331102x x *--≤⨯6441102x x *--≤⨯240.345010x *-=⨯24441102x x *---≤⨯718281.2,718282.221==e e而e 1有7位有效数字。

数值计算方法复习提纲PPT

数值计算方法复习提纲PPT
a) ρ( A) ≤||A||
b) 若矩阵 A 对某个算子范数满足 ||A|| < 1,则 必有: I±A可逆、 I A 1 1
1|| A||
4) 矩阵的条件数: cond(A)=||A||||A-1||
-7-
17:40
❖ 迭代法原理及收敛条件:求解 Ax=b (★)
1) 充分条件: x=Bx+f, ||B||<1
第6章 数值积分
基本概念:
❖ 数值积分(机械求积公式)的一般形式 ❖ 求积公式的代数精度(计算、证明)
Akba
插值型求积公式:
❖ 插值求积公式的构造方法(★) 1) n+1积分结点的插值型求积公式至少具有n次代数精度 2) n+1个积分结点构造n阶Newton-Cotes积分公式,若n为偶数则具有 n+1次代数精度
1) 步骤
2) 估算某点的近似值:
❖ Nn(x)=f(x0)+f[x0,x1](x-x0)+…+f[x0,x1,…,xn] (x-x0)(x-x1)…(x-xn-1)
-11-
17:40
Hermit插值
❖ 基本思想 ❖ 插值多项式的构造方法
1) Lagrange型构造法(基函数构造法) 2) Newton型构造法(重节点的差商)
2) f[x 0 , ,x n ] i n 0 (x i x 0 ) (x i x i f 1 ( )x i x ) i( x i 1 ) (x i x n )
f[x0,,xn]
f
(n)()
(n)!
❖ Ne推 wton插值论 f 公(x 式)的 构: P n 造(x ()★f,若 [ )x 0, ,x k] a 0 n ,,k k n n

数值计算方法复习提纲

数值计算方法复习提纲

数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。

1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。

有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。

选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn n eI nI I n n11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。

本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

数值方法期末复习

数值方法期末复习

《计算机数值方法》复习提纲第一章知识点:①误差、有效数字② 如何减少舍入误差 P29 ex(11)(12)例题:1、x=3.1415926…,取五位有效数字的近似值为___ 。

2、x=2.8410508075…,若取近似值为2.8410,则有___位有效数字。

3、为减少舍入误差,第二章 直接法解线性方程组 知识点: Ax=b① Gauss 列主元消去法② 直接三角分解法 PA=LUdoolittle 分解例题:第一次消元后的第三个方程是_________第二步消元前选的列主元是___________ 20122013-⎪⎩⎪⎨⎧=+-=+-=+-1294364213Gauss 1321321321x x x x x x x x x 列主元消去法解方程组、第三章 插值法与最小二乘法插值法:Lagrange 插值、Newton 插值Hermite 插值、三次样条插值(二阶导连续)最小二乘法:线性拟合由n 个插值节点可惟一确定一个n 次的插值多项式。

Lagrange 插值:会使用插值公式,熟悉基函数的特点P116 ex(1)(2)(4)Newton 插值:会使用插值公式、构造均差表、熟悉差分、均差和导数三者的关系√√√→Lagrange 插值多项均差和导数等距节点均差和导数差分和导数 例题:已知某函数P(x)满足:P(1)=1,P(2)=2,P(3)=4由这三点求其二次Newton 插值多项式。

)()()()(1100x l y x l y x l y x L n n n +⋯⋯++=∑∏=≠=--=n j n j i i i j i j x x x x y 00⋯+--+-+=))(](,,[)](,[)()(102100100x x x x x x x f x x x x f x f x f )())(](,,[1100--⋯--⋯+⋯n n x x x x x x x x f !)(],...,,,[)(210k fx x x x f k k ξ=k k k h k f x x x x f !],...,,,[0210∆==∆0f k k k h f )()(ξ13)(2+=x x f ],,,[],,,[,..)2,1,0(,,1)(3212102+++==++=n n n n k x x x x f x x x f k kh x x x x f 计算)(),(],12,10,8,6,4,2[)2,..;2,1,0(,2,1)(66065505245f f f f f hk kh x x x x x f k ∇∆∇∆==+=+-+=计算再补充一个条件:P ′ (2)=0 ,求满足这四个条件的三次多项式。

《数值分析复习提纲》word版

《数值分析复习提纲》word版

数值分析第一部分线性方程组的数值解法一、基本要求1、掌握每一种解法的基本思想,适用范围,收敛条件,计算公式以及误差估计.2、在应用中不同解法的异同、优劣,加深对算法的理解,最好能上机计算.二、主要概念及结果主要概念定义1.1 对于方程通过某种方法建立了迭代法(2.1.1)如果对于任何使得极限成立,则称该迭代法是收敛的.定义1.2 如果,对于,都有成立,则称A是严格对角占优的.主要算法与定理高斯(Gauss)消去法假设A的所有顺序主子式都不等于零,原来的方程组为计算步骤为1) 把上面的第一个方程除以,在分别乘上后与第k 个方程相加(),得到于是我们从第2到第n 个方程中消去了.2) 把上面的第二个方程除以,再分别乘上后与第k 个方程相加()得到于是我们从第3到第n 个方程中消去了.3) 继续这个过程直到我们得到4) 由上面的最后一个方程很容易得到,然后按相反次序回代逐一计算出方程的解.高斯(Gauss)列主元消去法 假设A 的所有顺序主子式都不等于零,原来的方程组为(1) 消元过程.对,进行以下运算: 1) 选主元.找行号,使得; 2) 交换中的ki k ,两行;3) 消元:对于; 对.(2) 回代过程.按下述公式;回代求解即可得到方程组的解.定理1.1 对于,如果A 的所有顺序主子式都不为零,则存在唯一的上三角矩阵U 和对角元素为1的下三角矩阵L,使得Doolittle 分解 根据定理1.1,对于,如果A 的所有顺序主子式都不为零,则存在唯一的上三角矩阵U 和对角元素为1的下三角矩阵L,使得.可以直接计算分解式中的诸元素.为此,我们假设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-11111,21323121n n n n l l l l l l L,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-----nn n n n n n n n n u u u u u u u u u u U ,11,121,22211,11211用U 的第k 列()乘L ,然后与A 的相应列比较,可以逐列(逐行)计算出L(U)的元素.定理1.2 设A 是一个对称正定矩阵,则存在唯一的下三角阵L ,其对角元素都是正的,使得定理1.3 设A 是一个对称正定矩阵,则存在一个单位下三角阵L和对角矩阵D,使得定理1.4 迭代法对于任意收敛的充分必要条件是,其中是迭代矩阵的谱半径.如果及假设A的对角元素,令A=D-L-U,其中D是A 的对角部分构成的矩阵.L和U分别是A的严格下(上)三角矩阵,则有以下几个具体算法:雅可比迭代法高斯-赛德尔迭代法关于这两个算法的收敛性有如下定理:定理1.5 如果方程组Ax=b的系数矩阵是严格对角占优的,则雅可比迭代法和高斯-赛德尔迭代法都收敛.定理1.6 如果方程组Ax=b的系数矩阵是对称正定的,则高斯-赛德尔迭代法收敛.第二部分非线性方程的数值解法一、基本要求掌握每种方法的基本思想、迭代公式、收敛条件以及与其他方法的差异.二、主要概念及结果主要概念定义2.1 对于方程,通过某种方法建立了迭代法(2.1)如果存在使得极限,则称该迭代法是收敛的.主要算法与定理定理2.1 设有方程,如迭代函数在有根区间[a,b]上满足:(1)当时,;(2)在[a,b]上可导,且有,则有:(1)方程在[a,b]上有唯一的根*x;(2)对任意初值,迭代公式产生的数列收敛于方程的唯一根*x,即;(3)误差估计定理2.2 设*x是方程的根,在*x的某个邻域内连续,且有,则必存在*x的一个邻域,对于任意选取的初值,迭代公式产生的数列收敛于方程的根*x.二分法假设的隔根区间为,取,计算.如果,则取,否则取.继续这个过程直到取见足够的小,就可以把最后区间的中点作为方程的近似根.此法称为二分法.牛顿法计算公式定理 2.3 如果,且在*x的某个邻域内连续,则牛顿法是局部收敛的.弦截法计算公式第三部分插值法一、基本要求1、在算法上要求熟练掌握拉格朗日插值法,等距节点插值法,牛顿插值法.2、要求能按所给条件,选用适当的近似公式求出近似函数或计算出函数的近似值,并会估计其误差.二、主要概念及结果主要概念定义3.1 设在区间上有定义,且在上的个不同的点的函数值为,若存在一个代数多项式(3.1)其中为实数,使得成立,则称为函数的插值多项式,点称为插值节点.主要算法与定理定理3.1 在个互异节点上满足插值条件的次数不高于的插值多项式存在且唯一.拉格朗日插值多项式的一般形式 其中为插值基函数, 插值余项为其中是区间中的某一个值,且和x 有关,所以牛顿插值多项式及余项)())(](,,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N余项牛顿前插公式牛顿后插公式第四部分数值积分与数值微分一、基本要求掌握梯形求积公式、辛普森求积公式以及复化的梯形公式、复化的辛普森公式和龙贝格公式的构造方法.二、主要概念及结果主要概念定义4.1 若求积公式对于任意不高于次的代数多项式都准确成立,而对于次多项式却不能准确成立,则称该求积公式具有次代数精度.定义 4.2 将个节点的具有次代数精度的插值型求积公式称为高斯型求积公式,节点称为高斯点,称为高斯系数.主要算法与定理插值型求积公式其中牛顿-柯特斯公式其中梯形公式辛普森公式柯特斯公式其中复化梯形公式复化辛普森公式复化柯特斯公式其中龙贝格求积公式定理4.1 节点为高斯点的充分必要条件是以这些点为零点的多项式与任意次数不大于的多项式在上正交,即.第五部分常微分方程的数值解法一、基本要求掌握欧拉公式、经典的龙格-库塔公式二、主要概念及结果主要算法和定理显式欧拉方法隐式欧拉方法梯形公式预报-校正方法预估校正龙格-库塔方法二阶龙格-库塔公式经典的四阶龙格-库塔公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。

1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限εεε+≤≤-**x x x相对误差***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。

有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小;(2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。

选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播;例⎰=101dx e x e I xn neI nI I n n 11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。

本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

一、 Gauss 消去法 1、 顺序Gauss 消去法 记方程组为:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(21)1(1)1(2)1(22)1(221)1(21)1(1)1(12)1(121)1(11............nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a消元过程:经n-1步消元,化为上三角方程组⎪⎪⎩⎪⎪⎨⎧=+++=+=)()(2)(21)(1)2(22)2(221)2(21)1(11)1(11......n nn n nn n n n n b x a x a x a b x a x a b x a第k步若0)(≠k kkan k j i n k b a a bba a a aak k k kkk ikk ik ik kj k kkk ik k ijk ij,....,1,1,...1)()()()()1()()()()()1(+=-=-=-=++回代过程:⎪⎩⎪⎨⎧--=-==∑+=ni j i iij i iji i in nn n n n n n i a x ab x a b x 1)()()()()()1,...2,1(/)(/2、Gauss —Jordan消去法避免回代,消元时上下同时消元 3、Gauss 列主元消去法例 :说明直接消元,出现错误⎩⎨⎧=+=+32200001.02121x x x x 由顺序Gauss 消去法,得0,112≈≈x x ;Gauss 列主元消去法原理: 每步消元前,选列主元,交换方程。

算法:将方程组用增广矩阵[]()(1)ij n n A b a +=M 表示。

(1)消元过程: 对k=1,2,n-1,选主元,找{,1,,}ki k k n ∈+⋅⋅⋅使得,max k i k ikk i na a ≤≤=如果,0kika =,则矩阵A 奇异,程序结束;否则执行3。

如果k i k ≠,则交换第k 行与第k i 行对应的元素位置, ,,, 1.k kji j a a j k n ↔=+g g g消元,对i=k+1,L,n,计算,ikik kka l a =对j=L+1, L,n+1,计算ijij ik kj a a l a =-(2)回代过程:1.若0,nna =则矩阵A 奇异,程序结束;否则执行。

2,1;1,,2,1,n n n nna x i n a +==-L 对计算,11ni n ij j j i i iia a x x a +=+⎛⎫-∑ ⎪⎝⎭=举例说明。

4、消元法应用 (1)行列式计算; (2)矩阵求逆。

二、利用矩阵三角分解求解线性方程组 1、求解原理线性方程组写成矩阵形式为: AX=b若A=LU ,则LUX= b , 记UX=Y 则LY= b若L 、U 为特殊矩阵,则求解线性方程组变为解两个特殊线性方程组问题。

2、 Doolittle 分解L 为下三角矩阵, U 为上三角矩阵,不一定能分解,分解也不一定唯一; 设L 或U 是单位三角矩阵, 若能分解,则可分解唯一. L 是单位下三角矩阵,称为Doolittle 分解; U 是单位上三角矩阵,称为Crout 分解;定理: n 阶矩阵A 有唯一分解的充要条件为A 的前n-1阶主子式都不为0.Doolittle 分解算法:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a ............1............11............ (222112)112121212222111211 由矩阵乘法:∑==nk kjik ij u l a 1得到:∑-=+=-=11;,...1,k r rjkr kj kj n k k j u l a un k k i u u l a l k r kkrk ir ik ik ,...1,/)(11+=-=∑-=算法特点:先计算U 的行,再计算L 的列,交替进行;存储时可用紧凑格式。

矩阵分解后,解两个三角方程组: LY= b ,UX=Y⎪⎩⎪⎨⎧=-==∑-=1111,...3,2i k kik i i ni yl b y b y∑+=-=-=ni k iik iki i n n i u x uy x 11,...1,/)(3、Crout 分解若L 为下三角矩阵,U 是单位上三角矩阵,则称Crout 分解; 算法特点:先计算L 的列,再计算U 的行,交替进行。

4、正定对称矩阵的平方根法(Cholesky 分解) (1) 正定对称矩阵性质与判定:定义:是n 阶对称矩阵,若对任意非零向量n R X ∈,有0>AX X T ,则称A 为正定对称矩阵;判定:A 为n 阶正定对称矩阵充要条件A 的各阶顺序主子式大于0。

(2) Cholesky 分解定理:设A 为n 阶正定对称矩阵,则存在唯一主对角线元素都是正数的下三角阵L ,使得T LL A =.Cholesky 分解算法:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡nn n n nn n n nn n n n n l l l l l ll l l l l l l a a a a a a a a a .................................... (222112)1121222111212222111211 21112)(∑-=-=j k jkjj jj l a l∑-=-=11/)(j k jjjk ik ij ij l l l a lnj j i n j ,...2,1;,...2,1++==5、 追赶法三对角矩阵的特殊分解⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----n n C n n nn n n u c u u c u l l l b a c b a c b a c b a c b 1-n 12113211133322211......1......111....2n i cl b u u a l b u i i i ii i i ,...3,2/1111=⎪⎩⎪⎨⎧-===--三对角方程组的追赶法:追的过程 LY=D⎩⎨⎧=-==-n i y l d y d y i i i i ,...3,2111 赶的过程 UX=Y⎩⎨⎧--=-==+1,....,2,1/)(/1n n i u x c y x u y x i i i i inn n§2 线性方程组的迭代解法一、 Jacobi 迭代公式 例:⎪⎩⎪⎨⎧-=+=+212121212121x x x x 其解为 1,121-==x x 方程变形得到迭代公式⎪⎩⎪⎨⎧--=+-=++21212121)(1)1(2)(2)1(1k k k k x x x x 给初值⎪⎪⎭⎫ ⎝⎛=00)0(X 计算,观察解的变化。

一般地,对线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (2211222221211)1212111若0≠ii a ,则可从第i 个方程中解出i x ,得到Jacobi 迭代公式:⎪⎪⎩⎪⎪⎨⎧--=---=---=-+++nn k n nn k n n k nii k n in k i i k ik n n k k a x a x a b x a x a x a b x a x a x a b x /)...(.../).......(.../)...()(1)(11)1()()(11)1(11)(1)(2121)1(1简记为:n i a x a b xiinij j k jij i k i,...,2,1/)(1)()1(=-=∑≠=+二、 Gauss--Seidel 迭代公式n i a x ax a b xiii j ni j k j ijk jij i k i,...,2,1/)(111)()1()1(=--=∑∑-=+=++三、 SOR 迭代公式四、 迭代公式的矩阵表示DGX Xk k +=+)()1(§3 迭代公式的收敛性一、 向量与矩阵的范数与性质 1、 向量范数定义:向量n R X ∈,对应非负实数X,满足三条件:(1)非负性0,0,0==≥X X X(2)齐次性Xk kX =(3)三角不等式YX Y X +≤+称X为向量范数2、 常见向量范数1范数nx x x X +++= (211)2范数222212...nx x x X+++=∞范数ix ni X≤≤=∞1max3、 矩阵范数定义:方阵n n R A ⨯∈,对应非负实数A,满足三条件:(1)非负性0,0,0==≥A A A(2)齐次性A k kA =(3)三角不等式 B A B A +≤+(4)绝对值不等式 BA AB ≤称A为矩阵范数;向量范数与矩阵范数相容性:XA AX ≤4、常见矩阵范数1范数,列范数 :∑=≤≤=ni ijnj a A 111max∞范数,行范数 :∑=≤≤∞=nj ijni a A11max2范数,谱范数 :F 范数:∑∑===ni nj ijFaA112举例计算二、 迭代公式收敛性的判定 1、 向量的极限2、 矩阵的谱半径:iini A λλρ≤≤=1max )(为特征值;3、收敛性的判定 收敛的充要条件:迭代公式D GX X k k +=+)()1(收敛的充要条件为谱半径1)(<G ρ。

相关文档
最新文档