七上应用题(简单倍数问题)
典型应用题三、倍比问题
(三)倍比问题概念及特征:两种量成倍数关系的问题,叫做倍比问题。
这类应用题的条件与简单的归一应用题相同,它的特征是同类量中前后两个量成倍数关系。
解这类问题的方法叫做“倍比法”。
倍比法是归一法的特殊形式。
解题关键:在于首先求出两个同类量的倍数,再用求得的倍数来求解。
一般说来,凡可用归一法求解的问题均可用倍比法来求解,反之亦然。
例1.一台拖拉机3小时可耕地40公亩,那么12小时可耕地多少公亩?分析:这个问题与归一问题的结构很类似。
要求12小时耕地多少公亩,只要求先求出每小时耕地多少公亩就可以了。
但是40公亩不能被3整除,因此,在整数范围内不能用“归一法”来解。
根据本题中的一种量——两个时间之间有整数倍数关系(12小时是3小时的4倍),而拖拉机的工作效率是相同的,所以另一种量——两个耕地公亩数之间也必然有相同的倍数关系(即12小时耕地公亩数也应该是3小时耕地公亩数的4倍)。
可以利用这个倍数来求解。
解:①12小时是3小时的多少倍?12÷3=4②12小时可以耕地多少公亩?40×4=160(公亩)综合算式: 40×(12÷3)=160(公亩)答:12小时可以耕地160公亩。
例2.同学们栽树,3行栽了24棵树苗,照这样计算,要栽22行需要多少棵树苗?分析:因为3行和22行两个量不成整倍数关系,所以不能用倍比法来解,可以用归一法来解。
解:24÷3×22=8×22=176(棵)答:需要176棵树苗。
例3.某盐场一块盐田能容海水9600吨,已知100千克海水含盐3千克,这块盐田一次可晒盐多少吨?分析:先求出9600吨是100千克的多少倍,把含盐量扩大同样的倍数,其结果便是所求的盐的吨数。
解:①9600000千克是100千克的多少倍?9600000÷100=96000②可以晒出多少千克盐?3×96000=288000(千克)综合算式:3×(9600000÷100)=288000(千克)=288(吨)答:这块盐田可以晒出盐288000千克,合288吨。
初一一元一次方程解应用题全部类型
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
倍数、比多比少、比倍多比倍少应用题
2.6X 2.6X
(比倍多倍比少分析过程) 设一倍的为X,
3、光明小学4月份买书86本,
小 2X 大
86=2X+10
小解:光明小学3月份 买书X本。 比3月份买的本数的2倍还多10本. 86=2X+10 X 2X+10=86 光明小学3月份买书多少本? 2X+10-10=86-10 2X=76 (比倍多,比倍少) 2X÷2=76÷2 X=38 为X, 两个条件一个在设,一个列方程
2、同学们做红花和黄花, 解:设黄花为X朵,
那么红花为 X 2.6X朵 2.6X=X+48 2.6X=X+482.6倍,红花比黄花多 红花 做红花的朵数是黄花的 48朵. 2.6X - X=48 大 小 小 1.6X=48 1.6X÷1.6=48÷1.6 同学们做红花和黄花各多少朵?(比多,比少) X=30 2.6X=2.6×30=78 答:黄花为 30朵 红花为78朵
倍数、比多比少、比倍多比倍少分析方法
(倍数分析过程)设一倍的为X, 两个条件一个在设,一个列方程
解:设松树为X棵, 1.5X + X = 那么柏树为 1.5X棵 1、柏树和松树一共7500 棵 1.5X+X=7500 2.5X=7500 X 1.5X ÷2.5=7500÷2.5 柏树的棵数是松树的2.5X 1.5倍 X=3000 1.5X=1.5×3000 两种树各有多少棵?(倍数) =4500(棵) 答:松树为3000棵 柏树为4500棵
倍数、比多比少、比倍多比倍少应用题
• • • • • 解方程方法:倍数(谁是谁的几倍) 比多比少、 比倍多比倍少、 必须用方程解, 设一倍或少的为X,两个条件一个在设,一个 列方程
倍数、比多比少、比倍多比倍少区分
专练 一元一次方程应用题(20题)-七年级上学期期末考点必杀200题(人教版,含答案)
七年级上册数学专练一元一次方程应用题(20题)1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元?(3)某饭店9月份交水费1120元,求该饭店9月份的用水量.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:m≥第一步:分发左、中、右三堆牌,每堆牌都为m张,且10;第二步:从右边一堆拿出五张,放入中间一堆;第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆.(1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)9.(2020·武钢实验学校初一月考)双十一临近,武汉掀起购物狂潮,现有甲,乙、丙三个商场开展的促销活动如下表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成下表后就可以做出选择(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动,张先生买了一件标价为630元的上衣,张先生发现竟然比没打折多付了20元钱,问丙商场先打了多少折后再参加活动(结果精确到0.01)10.(2020·江西初一期末)某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数11.(2020·山西初一期中)《夺冠》影片讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上映初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看.经了解,甲、乙两家电影院的电影票单价都是30元,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元,超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师学生共x人观看电影(每人买一张电影票),请用含x的式子分别表示在甲、乙两家电影院购票所需的费用.(2)若该学校有教师学生共500人观看电影(每人买一张电影票)选择哪家电影院购票更省钱,说明理由.12.(2020·内蒙古初一期末)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?13.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.14.(2020·南宁市第三十七中学初一期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示−10,点B表示10,点C表示15,我们称点A和点C在数轴上相距25个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2),P Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,,P O两点在数轴上相距的长度与,Q B两点在数轴上相距的长度相等.15.(2020·四川初一期中)小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.16.某市规定:每户每月用水不超过20立方米时,水费按“基本价”收费;超过20立方米时,不超过20立方米部分仍按“基本价”收费,超过20立方米部分按“调节价”收费小明今年一二月份的用水量和水费如表所示.(1)请你算一算该市水分的“基本价格”和“调节价”分别是每立方米多少钱?(2)若小明家3月份用水量为30立方米,请你算一算,3月份的水费是多少元?17.(2020·重庆巴蜀中学初一期中)列一元一次方程解应用题(两问均需用方程求解):10月14日iPhone12在各大电商平台预约销售,预售不到24小时,天猫、京东等平台的iPhone12就被抢完,显示无货.为了加快生产进度,郑州一富士康工厂连夜帮苹果手机生产iPhone12中的某AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200名工人.(1)据了解,在日常工作中,该工厂生产A型装置的人数比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需的AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?18.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.19.(2020·辉县市文昌中学初一期中)从2016年12月1日起某市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如下表所示):例:若某用户7月份的用水量为35吨,按三级计算则应交水费为:()⨯+⨯+--⨯=(元).20 1.910 2.9352010 5.996.5(1)如果小红家12月份的用水量为12吨,则需缴交水费________元;(2)如果小丽家12月份的用水量为27吨,求小丽家该月需缴交水费多少元?a ),求小明家该月应缴交水费多少元?(3)如果小明家12月份的用水量为a吨(30(用含a的代数式表示,并化简)(4)如果某月缴交水费126元,则该月的用水量为______吨.20.(2020·合肥实验学校初一期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?答案及解析1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)【答案】(1)150x+3000;160x;(2)甲优惠;理由见解析;(3)7x;(4)9号;21号.解:(1)甲军训机构的总费用为:200×75%×(x+20)=150x+3000;乙军训机构的总费用为:200×80%×x=160x;(2)甲优惠,利由如下:甲:150×780+3000=120000元乙:160×780=124800元∵甲<乙∴甲优惠;(3)设最中间一天的日期为x,则其余日期为x-3、x-2、x-1、x+1、x+2、x+3则这七天的日期和为:x-3+x-2+x-1+x+x+1+x+2+x+3=7x;(4)设这七天的日期之和为84a(a为正整数)令7x=84a,解得x=12a∵0<x<30∴x=12或x=24∴他们可能于12月9号或21号出发的.【点睛】本题主要考查了列代数式,弄清题意、列出相关代数式是解答本题的关键.2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元? (3)某饭店9月份交水费1120元,求该饭店9月份的用水量. 【答案】(1)92;(2)960元;(3)180立方米. (1)4.62092⨯=(元), 故答案为:92;(2)()()50 4.615050 6.51601508⨯+-⨯+-⨯,23065080=++,960=(元),答:该饭店8月份需交水费960元;(3)因为()50 4.615050 6.5880⨯+-⨯=(元),且1120880>, 所以9月份的用水量超过150立方米, 设该饭店9月份的用水量为x 立方米,由题意得:()()50 4.615050 6.581501120x ⨯+-⨯+-=, 解得180x =,答:该饭店9月份的用水量为180立方米. 【点睛】本题考查了有理数乘法与加减法的实际应用、一元一次方程的实际应用,依据题意,正确建立运算式子和方程是解题关键.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.【答案】(1)12,21;(2)()22+n ,()41n +;(3)2005元. (1)第1个图形用白色正方形瓷砖的块数为()44211=+⨯-, 第2个图形用白色正方形瓷砖的块数为()64221=+⨯-, 第3个图形用白色正方形瓷砖的块数为()84231=+⨯-,归纳类推得:第n 个图形用白色正方形瓷砖的块数为()42122n n +-=+,其中n 为正整数;第1个图形用黑色正方形瓷砖的块数为()55411=+⨯-, 第2个图形用黑色正方形瓷砖的块数为()95421=+⨯-, 第3个图形用黑色正方形瓷砖的块数为()135431=+⨯-,归纳类推得:第n 个图形用黑色正方形瓷砖的块数为()54141n n +-=+,其中n 为正整数; 则铺第5个图形用白色正方形瓷砖的块数为25212⨯+=,黑色正方形瓷砖的块数为45121⨯+=,故答案为:12,21;(2)由(1)已知:铺第n 个图形用白色正方形瓷砖()22+n 块,用黑色正方形瓷砖()41n +块,故答案为:()22+n ,()41n +;(3)由题意得:()()410.50.5 1.512.522n n +⨯⨯=+⨯⎡⎤⎣⎦+, 解得12n =,铺满该段小路所需瓷砖的总费用为()()2541302216085n n n +++=+, 则当12n =时,1608516012852005n +=⨯+=(元), 答:铺满该段小路所需瓷砖的总费用为2005元. 【点睛】本题考查了列代数式表示图形的规律型问题、整式的化简求值、一元一次方程的应用等知识点,观察图形,正确归纳类推出一般规律是解题关键.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?【答案】(1)0;(2)当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点.解:(1)设所求的数为x ,根据题意得:()422x x -=+,解得:0x =,∴所求的数为0; 故答案为0;(2)设点P 表示的数为y ,则有:①当点P 为,A B 【】的好点,由题意得:()20240y y +=-,解得:20y =,∴()4020210t =-÷=s ;②当P 为,B A 【】的好点,由题意得:()40220y y -=+,解得y=0,∴()400220t s =-÷=;③当B 为,A P 【】的好点,由题意得: ()()4020240y --=-,解得:10y =,∴()4010215t s =-÷=;④当A 为,B P 【】的好点,由题意得:()()4020220y --=+,解得:10y =,与③相同;综上所述:当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点. 【点睛】本题主要考查数轴上的动点问题及一元一次方程的应用,熟练掌握数轴上的动点问题及一元一次方程的应用是解题的关键.5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数. 【答案】(1)15;(2)15或13;(3)点P 表示的数为18,点Q 表示的数为18. (1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒),故答案为:15;(2)由题意,分以下六种情况: ①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -, 点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去; ③当点P 在BO ,点Q 在CO 时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,不在BO上,不符题设,舍去;④当点P、Q相遇时,点P、Q均在BC上,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,4174t t∴-=-,解得215t=,此时点P表示的数为15,点Q表示的数为15,均符合题设;⑤当点P在OC,点Q在OB时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,点Q表示的数为13-,均符合题设;⑥当点P在OC,点Q在BA时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为410128224t t⎛⎫----=-⎪⎝⎭,点P、Q到原点的距离相同,()4820t t∴-+-=,解得4t=,此时点Q表示的数为0,不在BA上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=,∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18. 【点睛】本题考查了数轴、一元一次方程的几何应用等知识点,结合数轴的定义,正确分情况讨论,并建立一元一次方程是解题关键.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌都为m 张,且10;m ≥ 第二步:从右边一堆拿出五张,放入中间一堆; 第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆. (1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?【答案】(1)5m +;12m +;17;210m -;见解析;(2)每堆牌分别是11张、16张、6张解:()1第二步后中间牌的张数为:5m + 第三步后中间牌的张数为: 5712m m ++=+ 第四步后中间的张数为:()()12 517m m +--= 右边的牌数为:()55)2(10m m m -+-=-,()2由题意可知:2103( 7)m m -=-解得:11m =,第二步后左边的牌数为: 11m =, 中间的牌数为:511516m +=+=, 右边的牌数为:51156m -=-=.答:第一步后,每堆牌分别是11张、16张、6张. 【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的加减是解题的关键. 7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?【答案】(1)2;(2)①16d t =+,242d t =+,存在,4m =;②t 为113或173时,点P 与点Q 距离3个单位长度 解:(1)由题意得:AC=8. ∵AC=AB+BC , ∴当AB=BC 时,AB=4.设向左移动后的点B 表示的数为x , 则AB=x-(-7)=4,解得x=-3, ∵向左移动前点B 表示的数为-1, ∴点B 向左移动了2个单位长度. 故答案为:2.(2)①由题意得:经过时间t 秒点P 向左移动了4t 个单位长度,点Q 向左移动了3t 个单位长度,点R 向右移动了t 个单位长度,∴经过时间t 后点P 在数轴上表示的数为-7-4t ,点Q 在数轴上表示的数为-1-3t ,点R 在数轴上表示的数为1+t .∴113(74)6d t t t =-----=+21(13)42d t t t =+---=+.∴()()()12642462md d m t t m t m -=+-+=-+-.∴当40m -=,即4m =时,12md d -的值不随t 的变化而改变. (3)解:∵AB=6,∴点Q 到达A 点的时间为623t ==(秒). ∴当t>2时,点Q 向左移动了6+7(t-2)=7t-8个单位长度. ∴经过时间t 后点Q 在数轴上表示的数为-1-(7t-8)=-7t+7. 由(2)①可得:经过时间t 后点P 在数轴上表示的数为-7-4t . ∴ 777()1443P t t t Q -+--=-=- . 当PQ=3,即143t -=3时, 可得:14-3t=3或3t-14=3,解得113t =或173t =. 综上所述,t 为113或173时,点P 与点Q 距离3个单位长度.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把数和形结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)【答案】【问题解决】①8;②t+1;③13;【关联运用】①3;②,226p x q q p ≤≤-+ 解:【问题解决】①MN=(t+5)-(t -3)= t+5-t+3=8; 故答案为:8; ②点Q 表示的数是5312t t t ++-=+,故答案为:t+1;③由题意知:0t <,30t -<,50t +>, ∴30t ->,50t --<,∴原式()()()535t t t t =-+++-++535t t t t =-+++-++=13; 【关联运用】①点T 对应数为m 、点S 对应数为3m -,3ST ∴=,设EF n =个单位长度, 则有:312n n +=,解得3n =,31nx ∴==; ②当数x 在数p 与数q 之间时,=p x q x x p q x q p +-+-=---,当数x 在数p 的左边时,=22x p x q x q p q q x p p p x +-+-=-+-->--,。
七上方程应用题20道
七年级上册方程应用题以下是20道七年级上册方程应用题:1. 某数的3倍减去5等于这个数的2倍加上7,求这个数。
2. 一个数的5倍与3的差等于这个数与7的和,求这个数。
3. 小明的年龄是他妈妈的1/3,他妈妈今年36岁,小明今年多少岁?4. 小红的体重比小明的体重的2倍少10千克,小明体重35千克,小红体重多少千克?5. 一件上衣比一条裤子贵60元,上衣的价钱是裤子的1.5倍,上衣和裤子的价钱各是多少元?6. 小华和小明两人共有故事书60本,如果小华给小明6本,小华还比小明多2本,小华和小明原来各有多少本?7. 小明和小华一共收集了180张邮票,如果小明给小华6张邮票后,小明还比小华多2张,那么小明和小华原来各有多少张邮票?8. 甲乙两数的和是18,甲数比乙数的2倍还多3,求甲乙两数。
9. 一块长方形地的周长是80米,长是宽的3倍,这块长方形地的长和宽各是多少米?10. 甲乙两数的和是100,甲数比乙数的3倍少4,求甲乙两数。
11. 小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4。
”小亮说:“你要是给我你的1/6,我就比你多2个了。
”小明有多少个玻璃球?12. 某校有学生465人,其中女生的2/3比男生的4/5少20人,求男生、女生各有多少人?13. 甲乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?14. 甲乙两车同时从相距420千米的两地相对开出,经过4.2小时相遇,已知乙车每小时行48千米,甲车每小时行多少千米?15. 甲乙两列火车同时从相距660千米的两地相对而行,经过6小时相遇,已知甲车每小时行60千米,乙车每小时行多少千米?16. 一块梯形田的上底是180米,下底是240米,高是80米,它的面积是多少公顷?17. 电视机厂原计划20天生产一批电视机,实际每天生产25台,提前4天完成了任务,这批电视机有多少台?18. 某厂有甲、乙两个车间,甲车间人数是乙车间人数的4/5,如果从乙车间调70人到甲车间,那么甲车间人数是乙车间的2倍,甲、乙两个车间原来各有多少人?19. 某服装厂有布1200米,先做大人服装120套,每套用布4.5米,剩下的做小孩衣服,每套用布3.3米,可以做小孩衣服多少套?20. 粮店运来大米和面粉各40袋,每袋大米25千克,每袋面粉20千克,运来的大米比面粉多多少千克?以上题目涵盖了各种不同类型的方程应用题,从简单到复杂,从单一到综合,适合七年级上册的学生进行练习。
初一上初中数学应用题100题练习与标准答案
列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。
解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。
解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。
解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。
解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -∙=+大小 999-1000x x ∙=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
小学倍数应用题及答案
小学倍数应用题及答案小学倍数应用题及答案做应用题是一种很好的思维锻炼,做应用题不但要会算,而且要多思考,善于发现题目中的数量关系,以下是店铺为您整理的小学倍数应用题及答案相关资料,欢迎阅读!小学倍数应用题及答案一两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。
原来两根铁丝各长多少厘米?解析:由于第二根比第一根多剪去26-18=8厘米,所以剩下的铁丝第一根就比第二根多(3-1)倍。
因此,8÷(3-1)=4(厘米)。
就是现在第二根铁丝的长度,它原来长4+26=30厘米。
小学倍数应用题及答案二甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。
原来甲组有图书多少本?解析:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的3倍。
事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6就正好对应着后来乙组的(5-3)倍。
因此,后来乙组有图书(18+6)÷(5-3)=12本,乙组原来有12+6=18本,甲组原来有18×3=54本。
小学倍数应用题及答案三幼儿园买来苹果的个数是梨的2倍。
大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。
大班共有多少个同学?解析:因为苹果是梨的2倍,每组分3个梨和3×2=6个苹果最后就一起分完。
可每组分4个苹果,少分6-4=2个,所以有8组同学,全班有7×8=56人。
小学倍数应用题及答案四一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?解析:由已知条件可知这盒棋子只要增加1颗,就正好是4、6、15的公倍数。
换句话说,这盒棋子比4、6、15的最小公倍数少1。
我们可以先求4、6、15的最小公倍数,然后再根据“这盒棋子在150至200颗之间”这一条件找出这盒棋子数。
七年级数学上册一元一次方程应用题常见的数量关系及题型归纳
一元一次方程应用题常见的数量关系及题型归纳补充:1、数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.2、市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.3、行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距4、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.5、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量6、增长率问题若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n=b7、加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数每份数×份数=总数总数÷每份数=份数总数÷份数=每份数8、工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
初一上册数学应用题提升题
初一上册数学应用题提升题
以下是一些适合初一上册学生的数学应用题,这些题目旨在提高学生的问题解决能力和数学思维能力。
1. 小明和小华在一个400米的环形跑道上练习跑步。
小明每分钟跑300米,而小华每分钟跑250米。
他们从同一个地方同时开始跑,同向而行。
多少分钟后,他们会再次在起点相遇?
2. 一家商店以每件10元的价格买进了一批商品,并以每件15元的价格卖出。
当还剩下5件商品时,除成本外已经赚回了所有投资。
问这家商店共购进了多少件商品?
3. 一家公司有100名员工,为了提高员工的健康水平,公司决定引入一项新的健身计划。
公司想知道至少有多少员工参加这个计划才能使这项投资值得。
假设每个员工每年参加这个计划需要花费公司500元,而每个员工的年收入为1 0,000元。
如果参加计划的人数为x,那么公司需要多少年才能从这项投资中收回成本?
4. 小华和小明在玩一个游戏,他们轮流从一个10堆的一堆糖中取糖,每次只能从一堆中取走任意数量的糖,但是不能不取。
谁最后取到糖谁就赢了。
请问小华应该如何制定策略才能确保他赢?
5. 一家超市推出了一个新的促销活动,所有商品打八折,如果购物满100元再减20元。
如果小王在超市购买了价值160元的商品,他应该支付多少钱?。
简单的倍数问题应用题
简单的倍数问题应用题
倍数问题是指已知一个数或几个数的和(差)及相互之间的倍数关系,求其中一个数或者几个数的问题。
它包括求1倍数或几倍数问题、和倍问题、差倍问题等三类。
一、求1倍数或几倍数
1、长方形和长是248厘米,是宽的2倍,长方形的宽是多少?
二、和倍问题
例1.学校图书馆有科技书和文艺书共2400本,文艺书的本数是科技书的4倍。
两种书各有多少本?
练习1、甲、乙两数的和是306,甲数是乙数的2倍。
甲、乙两数各是多少?
练习2、少先队员种杨树和柳树共248棵,其中杨树的棵树是柳树的3倍。
种杨树、柳树各多少棵?种杨树比柳树多多少棵?
三、差倍问题
例1.某养鸡专业户养的母鸡比公鸡多246只,养的母鸡是公鸡的4倍。
养的公鸡和母鸡各多少只?
练习1、长江路小学开展兴趣小组活动,其中合唱队的人数是舞蹈队的4倍,合唱队比舞蹈队72人。
合唱队、舞蹈队各多少人?
练习2、甲厂六月份生产的化肥是乙厂的3倍,比乙厂多生产化肥428吨。
甲、乙两厂六月份共生产化肥多少吨?
练习3、今年,爸爸的年龄是小强的6倍,爸爸比小强大25岁。
今年爸爸和小强各多少岁?
四、倍数问题拓展
例1.果园有苹果1200棵,梨树的棵数比苹果树的2倍多80棵。
梨树有多少棵?
例2.果园有梨树2480棵,梨树的棵数比苹果树的2倍多80棵。
苹果树有多少棵?
练习1、园林小学二年级有学生200人,三年级的人数比二年级的2倍少18人。
两个年级共有学生多少人?
练习2、一个长方形的长是宽的2倍少2分米。
已知长是18分米,长方形的周长是多少?。
列方程解倍数应用题
列方程解倍数应用题1、父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?2有两袋大米,甲袋大米的重量是乙袋大米的3倍,如果再往乙袋大米装50千克大米,两袋大米就一样重,原来两袋大米各有多少千克?3、幼儿园大班小朋友做了32朵花,其中红花朵数是黄花朵数的3倍,做红花和黄花各多少朵?4、、在一个笼子里,有鸡又有兔共8只,数一下它们的脚,共有20只。
请问笼子里鸡、兔各有几只?5、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?果园里种的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各多少棵6三个数的平均数是13.5,甲是乙的4倍,丙比甲多4.5,求三个数各是多少?7、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台? 8 洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?9 甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?10 甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?11 甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍?12甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长.思考13有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
问:队伍有多长?列方程解行程应用题两个火车站相距425千米。
甲、乙两列火车同时从两站相对开出,经过2.5小时相遇,甲车每小时行90千米,乙车每小时行多少千米?甲乙两车在某地同时相背而行,甲车每小时行40千米,经过3小时与乙车相距270 千米,求乙车每小时行多少千米甲乙两车在相距310千米的两地同时相向而行,甲车每小时行40千米,甲车先行1小时,乙车经过3小时与甲车相遇,求乙车每小时行多少千米?甲乙两车在相距30 千米的两地同时反向而行,甲车每小时行40千米,经过3小时与乙车相距270 千米,求乙车每小时行多少千米?甲乙两车在相距270千米的两地同时相向而行,甲车每小时行40千米,经过3小时与乙车相距30 千米,求乙车每小时行多少千米?辆汽车,从甲地到乙地.如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达.问甲乙两地的距离及原计划行驶的时间.甲、乙两车分别从A地和B地同时出发,相向而行。
七上一元一次方程应用题专题
七上一元一次方程应用题专题
1. 一个数的三倍加上5等于20,这个数是多少?
2. 现在小华的年龄是小明的两倍,5年后小华的年龄将是小明的1.5倍,求他们现在各自的年龄。
3. 甲组人数是乙组人数的2/5,如果甲组再增加10人,乙组人数减少10人,两组人数相等,求原来各组的人数。
4. 一块矩形花坛的长是宽的2倍,如果宽增加5米,长增加10米,长和宽分别是多少米?
5. 一条长方形围墙的长是宽的3倍,如果长增加5米,宽减少2米,围墙的长度和宽度分别是多少?
6. 小杨和小张合伙做苹果生意,小杨出资800元,小张出资600元,小杨得到的利润是小张的2倍,求他们两人分别得到的利润是多少?
7. 小明身上有某数的1/4和另外某数的1/3,共39元,求这两个数分别是多少?
8. 两个数相加得13,其中一个数是另一个数的3倍,求这两个数分别是多少?
9. 两个差为3的数的倒数的和是7/12,求这两个数。
10. 小李一共有40元,他用部分钱购买了一本书,剩下的钱还剩下购买书的三倍,求书的价格是多少?。
第2讲:倍数问题
(进士)春季备课教员:×××第二讲倍数问题一、教学目标:1、弄清和倍、差倍问题的数量关系:(1)和倍问题的数量关系是:和数÷(倍数+1)=较小数较小数×倍数=较大数(2)差倍问题的数量关系是:差数÷(倍数-1)=较小数较小数×倍数=较大数2、如何解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其他几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。
3、学着找题目中的数量关系。
二、教学重点:弄清和倍和差倍问题的数量关系。
三、教学难点:如何确定一个数作为标准数,即1倍数。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(7分)(PPT出示“倍”字)师:同学们,你们认识这个字吗?生:倍。
师:有的同学会说这么简单的字,谁不认识呀,对吧。
生:对。
师:说得好。
但是在平时的生活中,你们听到过哪些关于“倍”的话,大家还记得吗?生1:我听过哥哥说他的年龄是我的两倍。
生2:我听过妈妈说买东西花了双倍的价格,太不划算了。
师:非常棒!这两位同学说了两倍和双倍的话语。
那其他的同学呢?还有听过关于“倍”的话吗?生1:我听过爸爸说过翻一倍。
生2:我听过老师说加倍加分。
生3:我在电视上听见过产量增加多少倍。
……师:同学们都是生活的有心人,送给自己一个降龙十巴掌,预备齐。
师:那有谁能说说“加倍”和“翻一倍”的意思呢?生1:我知道,就是假如原来是加两分,加倍后,就是加四分。
生2:就是原来写50个字,现在是写100个字,就是翻一倍。
……师:同学们都说得非常具体。
加上3个大拇指。
实际上,“加倍”和“翻一倍”的意思是一样的。
对吗?生:对。
师:都是表示是原来的两倍。
对吗?生:是的。
师:那么我们数学中,倍数问题也会经常出现在我们的应用题中,是吗?生:是的。
师:那我们今天就一起来研究下有关倍数问题。
小学所有应用题类型100道附答案(完整版)
小学所有应用题类型100道附答案(完整版)类型一:加法应用题题目1:小明有5 个苹果,小红有3 个苹果,他们一共有几个苹果?答案:5 + 3 = 8(个)解析:将小明和小红的苹果数相加。
题目2:学校图书馆有20 本故事书,15 本科技书,一共有多少本书?答案:20 + 15 = 35(本)解析:故事书和科技书的数量相加。
类型二:减法应用题题目3:妈妈买了10 个梨,小明吃了3 个,还剩下几个梨?答案:10 - 3 = 7(个)解析:用总数减去吃掉的数量。
题目4:盒子里有18 颗糖,拿走了5 颗,盒子里还剩几颗糖?答案:18 - 5 = 13(颗)解析:原有的糖数量减去拿走的。
类型三:乘法应用题题目5:每个文具盒5 元,买3 个文具盒需要多少钱?答案:5 ×3 = 15(元)解析:单价乘以数量。
题目6:一行有6 个同学,5 行一共有多少个同学?答案:6 ×5 = 30(个)解析:每行的同学数乘以行数。
类型四:除法应用题题目7:把12 个苹果平均分成3 份,每份有几个苹果?答案:12 ÷ 3 = 4(个)解析:总数除以份数。
题目8:20 元钱可以买4 个笔记本,每个笔记本多少钱?答案:20 ÷ 4 = 5(元)解析:总价除以数量得到单价。
类型五:比较多少应用题题目9:小明有8 支铅笔,小红有12 支铅笔,小红比小明多几支铅笔?答案:12 - 8 = 4(支)解析:大数减小数。
题目10:果园里有15 棵苹果树,20 棵梨树,苹果树比梨树少几棵?答案:20 - 15 = 5(棵)解析:梨树数量减去苹果树数量。
类型六:倍数应用题题目11:小白兔有6 只,小灰兔的数量是小白兔的3 倍,小灰兔有几只?答案:6 ×3 = 18(只)解析:小白兔数量乘以倍数。
题目12:爸爸的年龄是小明的4 倍,小明8 岁,爸爸多少岁?答案:8 ×4 = 32(岁)解析:小明年龄乘以倍数。
倍数关系应用题
倍数关系应用题解决倍数应用题的关键是找准对应关系,实际数量的和对应的是倍数的和(差对应差),先求出一倍量,再求其它.若二者不对应,就先求对应量.1、长方形周长24米,长是宽的2倍,面积是多少平方米?2、两辆汽车同时同地同向相驶,3小时后相距120千米,如果快车是慢车速度3倍,两车速度分别是多少千米?例1:叔叔与小明今年的年龄和是40岁,叔叔的年龄比小明的2倍还多4岁,二人今年各多少岁?兄妹二人的年龄相差6岁,且哥哥的年龄比妹妹的2倍还少2岁,兄妹二人各多少岁?例2:两数相除,商是24,被除数、除数、商的和是924,求除数。
两数相除,商7余45,被除数、除数、商、余数之和是529,求除数.在一个减法算式里,被减数、减数、与差的和等于120,而差是减数的3倍,求差例3:两堆货,大堆是小堆的2倍;若大堆给小堆60千克,则相等。
各有多少货?两堆货,大堆是小堆的2倍;若大堆运走40千克,小堆运来10千克,则二堆相等,原有多少货?例4:三人出同样的钱买同样的水果,结果甲丙都比乙多买6千克.结果甲丙各付给乙16元,每千克水果多少钱?三人出同样的钱买同样的货物,由于甲改变了主意一件货物也没买,这样乙丙就各买了30件,并在回家后各付给甲45元,该货物的单价是多少元?三人各出6元买本,乙丙要的同样多,都比甲多12本,因此二人需要各付给甲1。
6元,三人一共买了多少本?例5:甲乙丙三人共有810元钱,已知甲的钱数是丙的3倍,乙的钱数是丙的2倍,三人各有多少元?甲乙丙三数之和是103,甲比乙的2倍多4,丙比乙的3倍少3,三个数各是多少?大中小三筐苹果共120个,中筐是小筐的3倍,大筐是中筐的2倍,三筐各有多少个?例6:甲乙丙丁四个数的和是162,甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。
四个数各是多少?甲乙丙丁四个数的和是58,甲加上1,乙减去2,丙乘以3,丁除以4,则四个数相等,求四个数各是多少?例7:一个人去商店买了两件商品,他把一件商品标价个位上的0忽略了,要付给商店162元,收款员让他付270元。
初一七年级数学上册列方程解应用题练习题(附答案)
初一数学上学期列方程解应用题练习题班级:__学号:__姓名:______得分:__列方程解应用题(每题10分)1.甲、乙两汽车,甲从A 地去B 地,乙从B 地去A 地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B 地,乙车还需要89小时到达A 地.若A 、B 两地相距210千米,试求甲乙两车的速度.2.先读懂古诗,然后回答诗中问题.巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g 蛋白质、脂肪、碳水化合物产生和热量分别为16.8J 、37.8J 、16.8J .当牛奶和鸡蛋各取几克时,使它们质量之比4.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为合适,即100kg 洗衣水里含200-500g 的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg 洗衣水(包括衣服),已知缸中的已有衣服重4kg ,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉(1匙洗衣粉约为0.02kg )问还需加多少kg 洗衣粉,添多少kg 水比较合适?5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量.6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.7.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?8.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?9.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG ” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52.问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?10.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成. 你认为哪种方案获利最多?为什么?参考答案:1. 解:设甲车的速度为x 千米/时,乙车的速度为y 千米/时,由题意得 xy y x 892= 得x y 34= 210)(5.1=+y x210)34(5.1=+x x 8060343460=⨯===x y x 答:甲车的速度为60千米/时,乙车的速度为80千米/时.2. 解:设寺内有x 名僧人,由题意得62436443==+x x x 答:寺内有624名僧人.3. 解:设取牛奶3x 克,取鸡蛋2x 克,由题意得12060221806033601260)2%8.13%9.4(8.16)2%7.103%8.3(8.37)2%2.133%5.3(8.16=⨯==⨯=≈=⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯x x x x x x x x x答:约取牛奶180g ,鸡蛋120g .4. 解:设还需加洗衣粉xkg,由题意得 996.0%4.0202.0415004.0154%4.0202.0%4.0=-⨯--==+⨯+x x x 答:还需加0.004kg 的洗衣粉,添加0.996kg 的水.5. 解:(1)分甲乙组合;乙丙组合;甲丙组合三种情况.方案一:甲乙组合:设买甲种手机x 部,则买乙种手机(40-x )部,由题意得 10403060000)40(6001800=-==-+x x x x方案二:乙丙组合:设买乙种手机y 部,则买丙种手机(40-y )部,由题意得 60000)40(1200600,y y =-+20402060000)40(12001800=-==-+z z z z综上所述,可以买甲种手机30部,乙种手机10部或买甲种手机和丙种手机各20部. (2)分乙种手机买6部、7部、8部三种情况买乙种手机6部:设买甲种手机x 部,则买丙种手机(40-6-x )部,由题意得 186402660000)640(120060061800=--==--+⨯+x x x x买乙种手机7部:设买甲种手机x 部,则买丙种手机(40-7-x )部,由题意得 167402760000)740(120060071800=--==--+⨯+x x x x买乙种手机8部:设买甲种手机x 部,则买丙种手机(40-8-x )部,由题意得 148402860000)840(120060081800=--==--+⨯+x x x x综上所述,可以买甲乙丙三种型号的手机的数量分别为26部,6部,18部或27部,7部,16部或28部,8部,14部.6. 解:(1)分三种情况讨论:方案一:甲乙组合:设买甲种电视机x 台,则买乙种电视机(50-x )台,由题意得 25502590000)50(21001500=-==-+x x x x方案二:乙丙组合:设买乙种电视机y 台,则买丙种电视机(50-y )台,由题意得)(5.8790000)50(25002100舍去不合题意,y y y ==-+方案三:甲丙组合:设买甲种电视机z 台,则买丙种电视机(50-z )台,由题意得 15503590000)50(25001500=-==-+z z z z综上所述可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台. (2)方案一:)(100002525025150元=⨯+⨯)(90001525035150元=⨯+⨯(3)设买甲种型号的电视机x 台,甲种型号的电视机y 台,甲种型号的电视机(50-x -y)台,由题意得y x y x y x y x 523535041090000)50(250021001500-==+=--++易知y 为5的倍数 0,25,253,27,206,29,159,31,1012,33,515,35,0==================z x y z x y z x y z x y z x y z x y因此有以上六种符合条件的方案.7. 解:设每小时雨水增加量为a ,每台水泵每小时的排水量为b ,则根据积水量相同得a b ab a b 473321010=-⨯=-设用三台水泵需要x 小时将积水排尽,由题意得173010471047310103=-⨯=-⨯-=-x a a ax ax ab ax bx 答:用三台水泵需要1730小时将积水排尽. 8. 解:设人前进的速度为am/min ,公共汽车的速度为xm/min ,由题意得 )(8.42501200503002501200)300(66120066300120044分===-===--=--==+t x a x x x a x xa x a答:人前进的速度为50m/min ,公共汽车的速度为250m/min ,公共汽车每隔4.8%40804880)(4840220)2100(8052)100(802032)2100(80522)100(80203=-===-⨯=-⨯⨯⎪⎩⎪⎨⎧-⨯=-⨯=元用整体代换得y x x x x x xy x xy (2)设全部改装需要z 天收回成本,由题意得 1251004000100)4880(=⨯=⨯-z z 答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.全部改装需要125天收回成本.10. 解:方案一:)(1400001000140元=⨯方案二:)(725000)615140(10007500615元=⨯-+⨯⨯方案三:设这批蔬菜中有 x 吨进行精加工,则有(140-x )吨进行粗加工,由题意得 )(810000450080750060)(801406015161406元吨=⨯+⨯=-==-+x x x x答:由此可以看出,方案三获利最多.。
因数与倍数解决问题(应用题)专项
因数与倍数解决问题(应用题)专项1. 有一块长方形纸板,长 24 厘米,宽 15 厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?2.李师傅找到一块长 72 厘米,宽 60 厘米,高 48 厘米的长方体木料,李师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?3. 把一张长 5.6 分米,宽 3.2 分米的长方形纸裁成大小相同的正方形,且没有剩余,最少可以裁多少个?4. 张三、李四都爱在图书馆看书,张三每 4 天去一次,李四每 6 天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?5. 有一包奶糖,无论分给 6 个小朋友, 8个小朋友,还是 10 个小朋友,都凑巧分完,这包糖至少有多少块?6. 某公共汽车站有三条例外线路,1 路车每隔 6 分钟发一辆,2 路至少再车每隔10 分钟发一辆,3 路车每隔12分钟发一辆,三路车在早上8 点同时发车后,到什么时候又可以同时发车?7. 一个班不够 50 人,上体育课站队时,无论每行站 16 人,还是每行站 24 人,都凑巧是整行,这个班有多少人?8. 用一个数去除 52,余 4,再用这个数去除 40,也余 4,这个数最大是多少?9. 把 19 支钢笔和 23 个软面抄平衡奖给几个三好学生,结果钢笔多出了 3 支,软面抄也多出了 3 个,得奖的学生最多有几人?10. 一个自然数,去除 22 少 2,去除 34 也少 2,这个自然数最大是几?11. 一个数除 73 余 1, 除 98 余 2, 除 147 余 3, 这个数最大应是多少?12.有一批作业本,无论是平衡分给 10 个人,还是 12 个人,都剩余 4 本,这批作业本至少有多少本?13.有一箱卡通书,把它平衡分给 6 个小朋友,多出 1 本;平衡分给 8 个小朋友,也多出 1 本;平衡分给 9 个小朋友,还是多 1 本,这箱卡通书最少有多少本?14.五年级同学参加社区服务活动,人数在 40 和 50 之间,如果分成 3 人一组,4 人一组或 6 人一组都凑巧缺一人,五年级参加活动的一共有多少人?15.有一篮鸡蛋,两个两个去数,余 1 个;三个三个去数,余 2 个;四个四个去数,余 3 个,这篮鸡蛋至少有多少个?16.有两根钢管,一根长 25 米,一根长 20 米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?17.杨老师要把 84 本语文课本,70 本数学课本,56 本自然课本,平衡分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?18.缝纫店有一块长 40 分米,宽 25 分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?19.一盒铅笔,可以平衡分给 4,5,6 个小朋友,都没有剩余,这盒铅笔最少有多少只?20.某学校暑假期间安排王老师生 4 天值一次班,李老师每 6 天值一次班,张老师每 8 天值一次班,如果 7 月 1 日他们三人同一天值班,下一次他们三人同一天值班是几月几日?21、开学初,学校准备了 96 个黑板擦, 72 把扫帚, 48 个纸篓,平衡分给各个班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别资料:常见的一元一次方程应用题类型
A.关于倍数的应用问题
类型一:简单的倍数问题
(1)大小货车共有115辆,,大货车是小货车的4倍,求:大小货车各有多少辆?
(2)甲、乙两个工程队共有100人,且甲队人数比乙队人数的4倍少10人,求甲、乙两个工程队各有多少人?
(3)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(只列方程)
(4)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?(只列方程)
(5)有三棵树,松树的年轮是柳树的2倍多1圈,柳树的年轮是杨树的2倍少2圈,三棵树的年轮之和是100圈,请分别求出三棵树的年轮是多少圈?
(6)再一次植树活动中,甲班植树的株数比已班多20%,已班植树的株数比甲班的一半多10株,设已班植树x株。
①列两个不同的含x的式子,分别表示甲班植树的株数;②根据题意列出含未知数x的方程;③检验已班、甲班植树的株数是不是分别为25株、35株。
(7)七年级2班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张。
问:(1)这个班共有多少名学生?(2)、展出的邮票共有多少张?
(8)※能力提升:有四个数,取其中三个数相加,和分别是22,24,27,20,求此四个数。
课后作业
(1)湘潭历史悠久,因盛产湘莲,被誉为“莲城”,李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x元,根据题意,列出方程为()(2)服装店有长短袖两款衣服,长袖的是短袖的1.8倍,若卖掉12件长袖的,则剩下的两款衣服的数量相等,求:原来两款衣服各多少件?
(3)七年级(5 )班数学兴趣小组的同学一起租车秋游,预计租车费人均摊1 5 元,后来又有4 名同学加入进来,租车费不变,结果每人可少摊3 元,设原来有学生x 人,可列方程为。
(不要求化简)
(4。