18.2特殊平行四边形 导学案
八年级数学下册 18.2 特殊的平行四边形导学案(新版)新人教版
八年级数学下册 18.2 特殊的平行四边形导学案(新版)新人教版18、2 特殊的平行四边形18、2、1矩形(一)学习目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系、2、会初步运用矩形的概念和性质来解决有关问题、3、渗透运动联系、从量变到质变的观点、学习重点:矩形的性质、学习难点:矩形的性质的灵活应用、课前预习一、回顾平行四边形有哪些性质?然后填空。
1、平行四边形的__________相等。
表示方法:若四边形ABCD 是平行四边形,则___________;2、平行四边形的__________相等。
表示方法:若四边形ABCD 是平行四边形,则___________;3、平行四边形的对角线________、表示方法:在□ ABCD 中,AC与BD相交于O,则______________4、平行四边形的对称性:平行四边形是___对称图形,而不是______对称图形,对角线的交点是平行四边形的_________、二、学习新知:自学P94-95页。
自学引导:①平行四边形活动框架在变化过程中,哪些量发生了变化?哪些量没有变化?从中得到哪些结论?你能试着说明结论是否成立?②矩形的一条对角线把矩形分成两个什么三角形?矩形的两条对角线把矩形分成四个什么样的三角形?1、矩形的定义:有一个角是直角的平行四边形,叫做矩形。
由此可见,矩形是特殊的,它具有平行四边形的所有性质。
2、结合上面两个图形说说矩形有哪些平行四边形不具有的特殊性质?、3、证明:矩形的四个角都是直角已知:如图,图形:画在下面求证:___________________ 证明:(2)证明:矩形对角线相等已知:如图,图形:画在下面求证:证明:课内探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?证明:“直角三角形斜边上的中线等于斜边的一半、已知:图形:画在下面求证:证明:问题三上面结论的逆命题是:。
2018-2019学年人教版八年级数学下册导学案:18.2 特殊的平行四边形
2018-2019学年人教版八年级数学下册导学案:18.2 特殊的平行四边形一、教学目标:1.掌握平行四边形的定义。
2.了解特殊的平行四边形,并能够判断其类型。
3.能够运用平行四边形的性质解决实际问题。
二、教学重点:1.特殊的平行四边形的认识与判断。
2.运用平行四边形的性质解决实际问题。
三、教学难点:1.运用平行四边形的性质解决实际问题。
2.掌握特殊的平行四边形的类型及其判断方法。
四、教学内容:1.回归平行四边形的定义及性质。
2.特殊的平行四边形:–矩形:定义,性质,特点。
–菱形:定义,性质,特点。
–正方形:定义,性质,特点。
3.运用平行四边形的性质解决实际问题。
五、课堂教学分析:1.首先,回归平行四边形的定义及性质,引导学生通过绘制图形的方式,理解平行四边形的概念,并通过合理的定义,引出平行四边形的性质。
如角的对边相等,对角线互相平分等等。
2.然后,介绍特殊的平行四边形:矩形、菱形和正方形等。
分别从定义、性质、特点等方面讲解,并给出示例让学生在实践中感性认识。
3.最后,结合生活实际,引导学生运用平行四边形的性质,解决实际问题。
比如在布置房间时,如何选择适合的地毯?如何做到四面不露角的窗帘?等等。
六、教学方法:1.图解法:通过画图的方式,帮助学生理解平行四边形的概念及性质。
2.课堂讲解法:引导学生通过举例及分析,理解研究各类平行四边形的定义、性质、特点等。
3.课堂练习法:利用练习题,让学生在课堂中反复练习、巩固所学内容。
同时,通过讨论、解答等方式,深化学生对平行四边形的理解与认识。
4.拓展性学习法:引导学生在生活实际中,运用平行四边形的性质,探究解决实际问题的方法。
七、教学设施:1.讲台、黑板、白板等。
2.教学PPT或板书。
3.学生作业本和练习册。
八、课后作业:1.完成练习册相关练习题。
2.总结所学内容,形成笔记并口头报告。
九、教学反思:本节课通过平行四边形的定义及性质,引出了特殊的平行四边形,通过图解法和练习法,分别讲解了矩形、菱形和正方形等的定义、性质和特点,并引导学生在实际生活中运用所学知识解决问题。
八年级数学下册18平行四边形182特殊的平行四边形导学案新人教版
18.2特殊的平行四边形课型: 新授课 上课时间: 课时: 11.已知:AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加条件是___________________. 2.若四边形ABCD 为平行四边形,请补充条件 使得四边形ABCD 为菱形. 3.如图1,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=2∠BOC , 若对角线 AC=6cm ,则周长= ,面积= 。
4.如图2,菱形ABCD 的边长为8cm ,∠BAD=120°,则AC= ,BD= ,面积= 。
5.如图3,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点 (点P 不与点A 、C 重合)且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是图1 图2 图36. 已知:如图4,O 是矩形ABCD 对角线的交点,AE 平分∠BAD , ∠AOD=120°,∠AEO= .7. 如图5,四边形ABCD 是菱形. 对角线AC=8㎝,DB=6㎝, DH ⊥AB 与H. DH= 。
8.如图6,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E ,若8AD cm ,则OE 的长为 cm .图4 图5 9.已知如图,菱形ABCD 中,∠ADC=120°,AC=123㎝, (1)求BD 的长;(2)求菱形ABCD 的面积, (3)写出A 、B 、C 、D 的坐标.BADCOAB CDA B D C O H图6 ABDCEABCOD10.如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且 DP=OC ,连结CP ,试判断四边形CODP 的形状.并证明。
如果题目中的矩形变为菱形,结论应变为什么? 如果题目中的矩形变为正方形,结论又应变为什么?11.以△ABC 的边AB 、AC 为边作等边△ABD 和等边△ ACE ,四边形ADFE 是平行四边形.① 当∠B AC 等于 时, 四边形ADFE 是矩形;② 当∠BAC 等于 时, 平行四边形ADFE 不存在;③ 当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形、正方形.BCAEF DABD C OP2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某校八一班同学的身高情况进行调查C.对某校的卫生死角进行调查D.对全县中学生目前的睡眠情况进行调查2.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2D.n=03.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.74.下列关系式中,不是函数关系的是()A.y=(x<0)B.y=±(x>0)C.y=(x>0)D.y=﹣(x>0)5.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差6.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+17.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x 的取值范围是()A .x >0B .x >1C .x >-1D .-1<x <28.如图,ABC △中,63∠=︒CAB ,在同一平面内,将ABC △绕点A 旋转到AED 的位置,使得//DC AB ,则BAE ∠等于( )A .54︒B .56︒C .64︒D .66︒9.计算8×2的结果是( ) A .10B .8C .4D .±410.如图,在□ABCD 中,AB AC ,若AB=4,AC=6,则BD 的长是( )A .11B .10C .9D .8二、填空题11.一次函数y kx b =+(,k b 是常数,0k ≠)的图象经过点()2,3A ,若3kx b +=,则x 的值是________. 12.在一个矩形中,若一个角的平分线把一条边分成长为3cm 和4cm 的两条线段,则该矩形周长为_________13.一次函数23y x =-的图象与y 轴的交点坐标是________.14.已知ABCD 的对角线AC ,BD 相交于点O ,AOD △是等边三角形,且4=AD ,则AB 的长为__________.15.如图平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠B =50°时,∠EAF 的度数是______°.16.某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△中,80ABCA∠=︒,则它的特征值k=__________.三、解答题18.如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?19.(6分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.(1)求证:△AEB≌△CFD;(2)求证:四边形BFDE是平行四边形.20.(6分)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节日,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习智慧学校开展了一次全校性的:“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据图表信息解答下列问题:(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x 在 范围内的人数最多,补全频数分布直方图;(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数; 听写正确的汉字个数x 1<11x ≤ 1121<x ≤2131x ≤< 31<41x ≤组中值6 1626 3621.(6分)如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD=EC ;(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.22.(8分)(1)分解因式:()222224a b a b +-;(2)解方程:2312124x x x-+=-- 23.(8分)如图,在平面直角坐标系xOy 中,已知直线AB :y =23x +4交x 轴于点A ,交y 轴于点B .直线CD :y =-13x -1与直线AB 相交于点M ,交x 轴于点C ,交y 轴于点D . (1)直接写出点B 和点D 的坐标.(2)若点P 是射线MD 的一个动点,设点P 的横坐标是x ,△PBM 的面积是S ,求S 与x 之间的函数关系,并指出x 的取值范围.(3)当S =10时,平面直角坐标系内是否存在点E ,使以点B ,E ,P ,M 为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.24.(10分)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.25.(10分)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E,F.(1)若CE=8,CF=6,求OC 的长.(2)连接AE,AF.问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.参考答案一、选择题(每题只有一个答案正确) 1.D 【解析】 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可. 【详解】解:A 、审核书稿中的错别字适合全面调查;B 、对某校八一班同学的身高情况进行调查适合全面调查;C 、对某校的卫生死角进行调查适合全面调查;D 、对全县中学生目前的睡眠情况进行调查适合抽样调查; 故选:D . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 2.A 【解析】试题解析:若y 关于x 的函数()2y m x n =-+是正比例函数,20,0.m n -≠=解得:2,0.m n ≠= 故选A. 3.C 【解析】 【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA 和设AB 的函数关系式,再分别求出当x=1和x=5时,y 值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数. 【详解】解:设y 关于x 的函数关系式为y=kx+b ,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b 中,020b k b =⎧⎨+=⎩,解得:10k b =⎧⎨=⎩, ∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b 中,220436k b k b +=⎧⎨+=⎩,解得:84k b =⎧⎨=⎩,∴y=8x+4(x≥2).当x=1时,y=10x=10,当x=5时,y=44,10×5-44=6(元),故选C.【点睛】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.4.B【解析】【分析】根据函数的概念可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.【详解】解:A、当x<0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x<0)是函数;B、当x>0时,对于x的每一个值,y=±有两个互为相反数的值,而不是唯一确定的值,所以y=±(x >0)不是函数;C、当x>0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x>0)是函数;D、当x>0时,对于x的每一个值,y=-都有唯一确定的值,所以y=-(x>0)是函数.故选B.【点睛】此题主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.B【解析】【分析】【详解】试题解析:A. x2-4=(x+2)(x-2) ,含有因式(x-2),不符合题意;B. x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C. x2-2x=x(x-2),含有因式(x-2),不符合题意;D. (x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.7.A【解析】【分析】当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象上方,据此可得使y1>y2的x的取值范围是x >0【详解】由图可得,当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象的上方,∴使y1>y2的x的取值范围是x>0,故选:A.【点睛】本题主要考查了一次函数与一元一次不等式的关系,解答此题的关键是利用数形结合的思想方法求解。
八年级数学下册 18.2.3 特殊的平行四边形导学案 (新版)新人教版
八年级数学下册 18.2.3 特殊的平行四边形导学案 (新版)新人教版18、2、3 特殊的平行四边形预习案一、学习目标(1)掌握菱形的概念、性质(2)在对菱形特殊性质的探索过程中,理解特殊与一般的关系、二、预习内容预习课本相关内容。
菱形的性质:。
根据概念进行判断。
菱形的两条对角线长分别为6和8,则菱形的周长是()A、40B、24C、20D、10菱形的性质:。
根据概念进行判断。
如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=4/5,则下列结论中正确的个数为()① D E=3cm;②EB=1cm;③S菱形ABCD=15cm2A、3个B、2个C、1个D、0个三、预习检测1、菱形具有一般平行四边形不具有的性质是()A、两组对边分别平行B、对角线互相平分C、两组对边分别相等D、一组邻边相等2已知菱形的周长等于40cm,两对角线的比为3:4,则对角线的长分别是()A、12cm,16cmB、6cm,8cmC、3cm,4cmD、24cm,32cm3、菱形的对角线长为8cm和6cm,则该菱形面积为()A、48cm2B、24cm2C、25cm2D、14cm2探究案一、合作探究(15min)上面的图案我们在生活中经常遇到,图中有很多四边形,它们是平行四边形吗?是矩形吗?它们有什么特点?【定义】XXXXX:有一组邻边相等的平行四边形叫做菱形。
日常生活中具有菱形形象的离子:【菱形的性质】1、菱形是特殊的平行四边形,它具有平行四边形的一切性质。
2、菱形的特殊性质:边:菱形的四条边都_________;对角线:菱形的两条对角线互相__________,并且每一条对角线______一组对角;对称性:菱形是轴对称图形,它的对称轴就是___________所在的直线。
如图,根据菱形的性质,在菱形ABCD 中:(1) AB=BC=CD=DA(2)AC⊥BD,且AO=CO,BO=DO;∠ABO=∠CBO,∠BCO=∠DCO∠CDO=∠ADO,∠DAO=∠BAO想一想:如何证明菱形的性质呢?菱形的性质:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角、已知:如图,四边形ABCD 是菱形、求证: AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和∠ABC、3、菱形的面积例、如图,菱形花坛ABCD的边长为20m,∠ABC=60,沿着菱形的对角线修建了两条小路AC和BD、求两条小路的长(结果保留小数点后两位)和花坛的面积(结果保留小数点后一位)、总结:菱形的面积公式:__________________________________________二、小组展示(规定出小组展示的时间或方案)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________第______组第______组____________第______组第______组三、归纳总结菱形的性质:1、具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的两条对角线相互垂直平分,并且每一条对角线平分一组对角。
八年级数学下册18.2.1特殊的平行四边形导学案新人教版
18.2。
1 特殊的平行四边形预习案一、学习目标1.掌握矩形的概念和性质.2.理解矩形与平行四边形的区别与联系,解决简单的实际问题。
二、预习内容预习课本相关内容。
1、矩形的性质定理: 。
根据概念进行判断。
(1)如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=ADC.∠B=60°,∠C=60°D.∠A:∠B:∠C=1:1:22、直角三角形斜边的中线:。
(2)如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )A.10cm B.8cm C.6cm D.5cm三、预习检测1、已知点P是矩形ABCD内一点,连结AP、BP、CP、DP,若S△ABP+S△CDP=S△ADP+S△BCP,则关于点P的位置,正确的说法是()A.一定是对角线交点B.一定在对角线上C.一定在对边中点的连线上D.可以是任意位置2、矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6cm,则BD的长( )A.6cm B.8cm C.10cm D.12cm3、八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆探究案一、合作探究(15min)问题:(1)同学们,在我们的生活中,处处存在数学图形,观察一下你身旁的物体,说一说它们的表面的大部分都是什么形状?(2)矩形与昨天所学的平行四边形有什么联系呢?动一动:(1)将手中的四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?(2)试着改变平行四边形的形状,说一说在这个变化过程中,哪些发生了变化?怎样变化?哪些保持不变?为什么?(3)你能拼出面积最大的平行四边形吗?此时这个平行四边形的一个内角是多少度?1、什么样的图形叫做矩形?2、矩形是轴对称图形吗?如果是,它有几条对称轴?3、矩形是特殊的平行四边形,除了具有平行四边形的所有性质外,还具有哪些特殊的性质呢?已知:如图所示,四边形ABCD是矩形.求证:AC=DB于是,就得到矩形的性质:矩形的对角线相等.4、归纳矩形的性质:边:_____________________角:_____________________对角线:_____________________5、观察图形,你能发现直角三角形的性质吗?得出:直角三角形斜边上的中线等于斜边的___________。
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形(2)导学案(新版)新人教版
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形(2)导学案(新版)新人教版18、2、1矩形(2)学习目标:1、理解矩形的两个判定定理,并能证明它们、2、会用矩形的定义、判定方法判定一个四边形是矩形、3、知道解决矩形问题的基本思想是化为三角形问题来解决,体会数学转化思想、学习重点和难点重点:矩形的判定定理的探究与应用难点:矩形的判定定理的探究与应用一、预习内容:1、知识链接(1)填表:填写平行四边形和矩形的性质平行四边形矩形边角对角线(2)通过填表,说说平行四边形与矩形的区别与联系、2、活动探究活动1:你还记得学习平行四边形的判定时,我们是如何猜想并进行证明的吗?性质逆命题猜想证明判定定理写出矩形性质定理的逆命题,想一想,它们是不是真命题?矩形性质定理1的逆命题:矩形性质定理2的逆命题:提问:1、一定要四个角都是直角吗?三个行不行?2、对角线相等的四边形是矩形吗?如果不是,那么对角线要满足什么条件的四边形才是矩形呢?二、数学概念请写出矩形的判定方法,并画图用几何语言表示出来、三、例题讲解(精讲)如图,EB=EC,EA=ED,AD=BC,∠AEB=∠DEC、证明:四边形ABCD是矩形、四、总结反思说说你的收获;1、你还有什么问题?五、反馈练习1、辩一辩,判对错(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形、 ( )2、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()、A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角是否都为直角D、测量其中三角形是否都为直角3、在□ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,且AB=4则□ABCD 的面积为六、能力提升如图,在□ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50、求∠OAB的度数、七、作业布置。
八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1.1 矩形的性质导学案 (新版)新人教版
八年级数学下册第十八章平行四边形 18.2 特殊的平行四边形 18.2.1.1 矩形的性质导学案(新版)新人教版18、2、1、1 矩形的性质导学案学习目标1、理解矩形的概念,知道矩形与平行四边形的区别与联系;2、会证明矩形的性质,会用矩形的性质解决简单的问题;3、掌握直角三角形斜边中线的性质,并会简单的运用、重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用、难点:会证明矩形的性质,会用矩形的性质解决简单的问题、一、自学释疑矩形的性质是什么?二、合作探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等、(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角度数和对角线的长度,并记录测量结果、ACBD∠BAD∠ADC∠ABC∠BCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?猜想1 矩形的四个角都是_________、猜想2 矩形的对角线__________、证一证如图,四边形ABCD是矩形,∠B=90、求证:∠B=∠C=∠D=∠A=90、证明:∵四边形ABCD是矩形,∴∠B____∠D,∠C____∠A, AB____DC、∴∠B+∠C=_____、又∵∠B =90, ∴∠C =____、∴∠B=∠C=∠D=∠A =_____、如图,四边形ABCD是矩形,∠ABC=90,对角线AC与DB相较于点O、求证:AC=DB、证明:∵四边形ABCD是矩形,∴AB____DC,∠ABC=∠DCB=_____,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC____△DCB、∴AC____DB、思考请同学们拿出准备好的矩形纸片,折一折,观察并思考、矩形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:1、矩形的四个角都是_______、矩形的对角线________、2、矩形是_________图形,它有_____条对称轴、几何语言描述:在矩形ABCD中,对角线AC与DB相交于点O、∠ABC=∠BCD=∠CDA=∠DAB =90,AC=DB、典例精析例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F、求证:DF=DC、例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积、针对训练1、如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A、AB∥DCB、AC=BDC、AC⊥BDD、OA=OB2、如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________、3、如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE =3:1,求∠BAE和∠EAO的度数、探究点2:直角三角形斜边上的中线的性质活动如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半、问题Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?猜想直角三角形斜边上的中线等于斜边的________、证一证如图,在Rt△ABC中,∠ABC=90,BO 是AC上的中线、证明:延长BO至D, 使OD=BO,连接AD、DC、∵AO=OC, BO=OD,∴四边形ABCD是____________、∵∠ABC=90,∴平行四边形ABCD是________,∴AC_______BD,∴BO=_____BD=_____AC、要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________、典例精析例3 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点、(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD、方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解、例4 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE 的中点,试说明GF⊥DE、方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题、针对训练如图,在△ABC中,∠ABC =90,BD是斜边AC上的中线、(1)若BD=3cm,则AC =_____cm;(2)若∠C =30 ,AB =5cm,则AC =_____cm, BD=_____cm、三、随堂检测1、矩形具有而一般平行四边形不具有的性质是 ( )A、对角线相等B、对边相等C、对角相等D、对角线互相平分2、若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( )B、6C、6、5D、不能确定3、若矩形的一条对角线与一边的夹角为40,则两条对角线相交的锐角是 ( )A、20B、40C、80D、104、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm、5、如图,△ABC中,E在AC 上,且BE⊥AC、D为AB中点,若DE=5,AE=8,则BE的长为______、我的收获_________________________________________________________ _________________________________________________________ ________________________参考答案随堂检测1、A2、C3、C4、2、5。
八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.2菱形第2课时菱形的判定导学案
18.2。
2 菱形第2课时菱形的判定一、新课导入1.导入课题用菱形的定义,我们容易得到,一组邻边相等的平行四边形是菱形,除此之外还有没有其他判定方法?(板书课题)2.学习目标(1)能从研究菱形性质的逆命题正确性中得到菱形的判定.(2)能运用菱形的判定方法判定一个四边形是菱形。
3。
学习重、难点重点:菱形的判定的推导与归纳。
难点:菱形的判定的正确运用。
二、分层学习1。
自学指导(1)自学内容:P57例4的内容.(2)自学时间:10分钟。
(3)自学方法:自己写出菱形性质的逆命题,验证它们的正确性,并相互交流。
(4)自学参考提纲:①由定义判定一个四边形是菱形:有一组邻边相等的平行四边形是菱形.②运用定义证明四边形是菱形,可先证它是平行四边形,再证它是菱形。
③运用“对角线互相垂直的平行四边形是菱形”证明四边形是菱形时,可先证它是平行四边形,再证它是菱形.④要证明一个平行四边形是菱形,只需先证明有一组邻边相等或对角线互相垂直.⑤判断:a。
对角线互相垂直的四边形是菱形。
(×)b.对角线互相垂直平分的四边形是菱形。
(√)2.自学:结合自学指导进行自主学习.3.助学(1)师助生:①明了学情:了解学生在完成判定定理的证明及完成自学提纲时遇到的偏差和困难之处。
②差异指导:对学生在菱形判定的证明步骤不当或思路不清之处进行点拨、引导.(2)生助生:学生相互研讨疑难之处。
4。
强化(1)菱形的判定方法:①按定义判定.②按对角线判定。
(2)证明一个四边形是菱形的步骤.1。
自学指导(1)自学内容:P57例4以下至P58练习的内容.(2)自学时间:5分钟。
(3)自学方法:写出菱形性质“菱形的四条边相等”的逆命题,再作图思考如何证明逆命题的正确性.(4)自学参考提纲:①“菱形的四条边相等”的逆命题是四条边相等的四边形为菱形。
②如图,四边形ABCD中,AB=BC=CD=DA,求证:四边形ABCD是菱形。
a.若按定义证:先证它是平行四边形,再证它是菱形,要证它是平行四边形,需找两对对角相等。
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形导学案(新版)新人教版
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形导学案(新版)新人教版18、2、3正方形》班级小组姓名一、学习目标:目标A:理解正方形与平行四边形、矩形、菱形的关系,并掌握正方形的概念和性质。
目标B:理解和掌握正方形的判定方法,二、问题引领目标A:理解并掌握正方形的概念和性质。
1、自学P58思考以上的内容,回答下列问题⑴、动手操作:用一张矩形的纸片折出一个正方形⑵、怎样将一个菱形的木框变成一个正方形的木框?⑶、正方形是轴对称图形吗?它的对称轴是什么?2、正方形的定义:(1)有_________________________________的矩形叫正方形。
(2)有_________________________________的菱形叫正方形。
3、正方形既是_______形,又是_______形,还是________________形。
正方形、矩形、菱形、平行四边形之间的关系可用下图表示:4、正方形的性质:正方形具有________和_______的所有性质。
如上图,用符号语言表示正方形的性质如下:(1)边:(2)角:(3)对角线:目标B:理解和掌握正方形的判定方法,1、什么条件的平行四边形是正方形?把你所想的判定方法写出来,并和同学们进行交流、证明(1)邻边__________________的矩形是正方形(2)对角线________________的矩形是正方形(3)有一个角是_______________的菱形是正方形(4)对角线___________________的菱形是正方形(5)对角线_________________的平行四边形是正方形(6)对角线___________________的四边形是正方形总之,只要能证明四边形既是________形,又是______形,就能证明四边形是正方形。
2、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形、(证后思考:图中共有多少个等腰直角三角形?)3图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料,回答问题:⑴连结AC、BD,由三角形中位线的性质定理可证四边形 EFGH是。
18.2特殊的平行四边形教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形、菱形、正方形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对特殊平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
学生小组讨论环节,总体来说,学生们能够围绕主题展开讨论,并提出一些有创意的想法。但在引导和启发学生思考方面,我觉得还有待提高。今后,我将更多地设计一些放性问题,引导学生深入思考,提高他们分析问题和解决问题的能力。
最后,在总结回顾环节,虽然学生们对本节课的知识点有了较好的掌握,但我也发现他们在某些细节方面仍存在疑惑。为了确保学生能够扎实掌握知识,我计划在课后布置一些针对性的练习,并对学生进行个别辅导,帮助他们巩固所学。
3.重点难点解析:在讲授过程中,我会特别强调矩形、菱形、正方形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与特殊平行四边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示特殊平行四边形的基本原理。
2.教学难点
-判定方法的掌握:学生往往难以准确把握判定矩形、菱形、正方形的方法,需要教师通过具体例子和练习进行详细讲解。
-矩形的判定:除了对边平行且相等、对角相等外,还需掌握“有一个角是直角的平行四边形是矩形”等判定方法。
-菱形的判定:除了对边平行、对角相等、四边相等外,还需掌握“对角线互相垂直平分的平行四边形是菱形”等判定方法。
八年级数学下册第十八章18.2特殊的平行四边导学案
八年级数学下册第十八章18.2特殊的平行四边导学案18.2.1矩形(1)主备人:王丽萍审核人:张金莉使用人:学习目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.理解“直角三角形斜边上的中线等于斜边的一半”这一重要结论.重点:矩形的性质与证明及其推论.难点:灵活应用矩形的性质及其推论解决问题。
教学过程:一、温故知新填空:(一)平行四边形具有下列性质:1.边:平行四边形对边且;2.角:平行四边形对角邻角;3.对角线:平行四边形对角线;4.平行四边形是对称图形 . (二)如果一个平面图形沿着一条直线折叠,直线两旁的部分能够这个图形叫做轴对称图形.二、探究新知活动(一)观察并思考一个活动的平行四边形学具,轻轻拉动一个点, 使它保持边长不变,而将一个内角的度数不断变化,当这个内角的度数变为特殊角90º时,会有什么样的图形产生呢?你能给这种图形下一个定义吗?归纳:观察图形特征,得出概念:叫做矩形.注意矩形定义满足:两个条件:(1);(2) . 看一看数学来源于生活,请同学们体会现实生活中矩形的例子,课下收集生活中存在的矩形.活动(二)问题1.平行四边形不是轴对称图形,矩形是轴对称图形吗?如果是,指出它的对称轴.请同学们拿出来我们已准备好的纸片,用折纸的方法探究矩形的对称性.结论:矩形是,连接对边的直线是它的两条对称轴.问题21.如图:矩形除了具有轴对称图形这个性质之外,还有那些与平行四边形不同性质?请拿出刚才用的纸片,用矩形的轴对称的性质来探究,你发现了什么?(1)边:(2)角:(3)对角线:猜想1:矩形的四个角都是直角;猜想2:矩形的对角线相等。
3.你能证明这些猜想吗?证明:猜想1:矩形的四个角都是直角;已知:如图,四边形ABCD是矩形:求证:∠A=∠B=∠C=∠D=90º猜想2:矩形的对角线相等.(至少两种方法)ODCBAADCBODCBA已知:如图,四边形ABCD 是矩形:求证:AC=BD归纳:矩形的性质:除了具有平行四边形性质之外,还具有:1.矩形的四个角 ;符号表示:2.矩形的对角线 ;符号表示:3.矩形是轴对称图形,它的对称轴是 .比一比,知关系如图:矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm, 求矩形的对角线的长.活动(三)(知识拓展)1:如图,矩形ABCD ,对角线相交于O ,观察对角线所分成的三角形,你有什么发现?2:类比三角形中位线的探究方法,你能发现直角三角形有什么特殊的性质吗?符号表示:应用新知如图:三位学生正在做投圈游戏,他们分别站在一个直角三角形的三个顶点处,目标物放在斜边的中点处.三个人的位置对每个人公平吗?请说明活动(四)这节课你收获了什么?☺知识方面:☺数学方法: ☺数学思想: ☺数学经验:活动(五) 测试:1.矩形具有而平行四边形不具有的性质是( )A.对边相等B.对角线相等C.邻角互补D.对角线平分 2矩形的对角线把矩形分成的三角形中全等三角形一共有( ).A 2对B 4对C 6对D 8对3.矩形的两边长分别为3和4,则矩形的对角线长为ODC BAABCOBCDODCBAODCBODC B A4.在Rt ABC中,两条直角边长分别为6和8,则斜边的中线长为四、课后作业:必做:课本53页练习题1,2,3题.选做:练习册60页8题,9题.五、学(教)后反思。
人教版数学八下18.2 特殊的平行四边形菱形导学案 学案1
《菱形的性质》学案一、基础知识1.菱形的概念叫做菱形.2.菱形的性质菱形的.菱形的.二、自主探究1.平行四边形的角特殊化得到特殊的平行四边形——;平行四边形的边特殊化,我们得到的特殊的平行四边形是什么,它有什么特征?菱形:叫做菱形.几何语言:∵,∴四边形ABCD是菱形.菱形:(1);(2).2.你能举出生活中的菱形的实际例子吗?.3.将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可得到一个.4.菱形是特殊的平行四边形,因此它具有平行四边形的所有性质.类似于矩形,菱形是否也具有一般平行四边形不具有的特殊性质?如果有,是什么?画出菱形的两条折痕,并通过折叠手中的图形,比一比,猜一猜,填写下表:猜想1:.猜想2:.5.你能证明上述猜想吗?(1)由于平行四边形的,而菱形的,因此我们得到:菱形的性质1:菱形的.几何语言:∵四边形ABCD是菱形,∴.(2)书写猜想2的证明过程:,,.经过证明,此命题为命题.菱形的性质2:菱形的.几何语言:∵四边形ABCD是菱形.∴.6.菱形是轴对称图形吗?如果是,它的对称轴是什么?.7.菱形ABCD的对角线AC、BD相交于点O,图中有哪些直角三角形?有哪些等腰三角形?有哪几对全等三角形?直角三角形:.等腰三角形:.全等三角形:.8.计算菱形的面积除了用小直角三角形的面积的4倍来求,利用对角线能计算菱形的面积吗?.9.现在,我们得到了菱形的性质.如果把矩形和菱形的性质进行比较,发现它们很相似.你能写出矩形、菱形的定义及它们的特殊性质并进行比较吗?,.10.书写例题步骤【例】如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD.求两条小路的长(结果保留小数点后两位)和花坛的面积(结果保留小数点后一位).,,.三、反馈练习1.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线AC于点F,E为垂足,连接DF,则∠CDF等于().A.80°B.70°C.65°D.60°2.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是().A.1B.3C.2D.323.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD 的周长为28,则OH的长等于().A.3.5 B.4 C.7 D.144.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为().A.28°B.52°C.62°D.72°5.已知菱形的周长是12cm,那么它的边长是______.6.菱形ABCD中,∠BAD=60°,则∠ABD=_______.7.菱形的两条对角线长分别为6cm和8cm,则菱形的边长是_______.8.如图,在菱形ABCD中,若∠ABC=2∠BAD,则∠BAD=_____,△ABD为_____三角形.9.菱形ABCD中,O是两条对角线的交点,已知AB=5cm,OA=4cm,求两对角线AC、BD的长.10.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD =∠CBE.参考答案:一、基础知识1.一组邻边相等的平行四边形.2.四条边相等,两条对角线互相垂直平分,并且每一条对角线平分一组对角.二、自主探究1.矩形.一组邻边相等的平行四边形.四边形ABCD是平行四边形,AB=BC.是平行四边形,一组邻边相等.2.3.菱形.4.四条边相等.两条对角线互相垂直平分,并且每一条对角线平分一组对角.5.(1)对边相等,邻边相等.四条边都相等.AB=BC=CD=DA.(2)已知:如图,四边形ABCD是菱形.求证:AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和∠ABC.证明:∵四边形ABCD是菱形,∴DA=AB(菱形的定义),OD=OB(平行四边形的对角线互相平分).∴AC⊥DB,AC平分∠DAB(等腰三角形三线合一).同理:AC平分∠DCB;DB平分∠ADC和∠ABC.真.两条对角线互相垂直,并且每一条对角线平分一组对角.AC⊥DB,AC平分∠DAB和∠DCB,DB平分∠ADC和∠ABC.6.菱形是轴对称图形,对称轴有两条,是菱形两条对角线所在的直线.7.Rt△AOB,Rt△BOC,Rt△COD,Rt△DOA.△ABC,△BCD,△CDA,△DAB.Rt△AOB≌Rt△COB≌Rt△COD≌Rt△AOD,△DAB≌△DCB,△ABC≌△ADC.8.1111144422222AOB ABCD S S OA OB AC BD AC BD ∆==⨯∙=⨯⨯∙=∙菱形.9.10.解:∵花坛ABCD 的形状是菱形, ∴AC ⊥BD ,∠ABO =12∠ABC =12×60°=30°. 在Rt △OAB 中, AO =12AB =12×20=10(m ),BO =(m ). ∴花坛的两条小路长 AC =2AO =20(m ),234.64BD BO ==(m ).花坛的面积14346.42OAB ABCD S S AC BD ∆==∙=菱形(2m ). 三、反馈练习1.D . 2.C . 3.A . 4.C . 5.3 cm . 6.60°. 7.5 cm . 8.60°,等边.9.解:∵四边形ABCD 是菱形, ∴OA =OC ,OB =OD ,AC ⊥BD . ∴AC =2OA =8 cm .∵Rt △AOB 中,222OB OA AB +=,AB=5cm,OA=4cm,∴OB=3cm.∴BD=2OB=6cm.10.证明:∵四边形ABCD是菱形,∴CB=CD,∠BCE=∠DCE.又CE=CE,∴△BCE≌△DCE.∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC.∴∠AFD=∠CBE.。
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.2 菱形(1)导学案(新版)新人教版
八年级数学下册 18 平行四边形 18.2 特殊的平行四边形 18.2.2 菱形(1)导学案(新版)新人教版18、2、2菱形(1)学习目标:1、掌握菱形概念,知道菱形与平行四边形的关系、2、掌握菱形的性质,并能简单应用、3、通过菱形性质的学习,体会菱形的图形美、学习重点和难点重点:菱形的性质定理、难点:把菱形的性质和直角三角形的知识综合应用、一、预习内容(—)知识回顾1、我们已经学习平行四边形的定义,你能写出来吗?________________________ _ ;2、你能写出平行四边形的性质吗?(1)边:(2)角:(3)对角线:(二)自主学习(教材55页-------56页)1、有相等的叫做菱形、2、菱形是特殊的、3、菱形的四条边、4、菱形的对角线、二、数学概念1、菱形的定义:有一组相等的叫做菱形、2、画图证明菱形的性质并用几何语言表示菱形的性质三、例题讲解(精讲)例3:如图,花坛的ABCD边长为20m,∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD、求两条小路的长(结果保留小数点后两位)和花坛的面积(结果保留小数点后一位) A B D C四、总结反思1、说说你的收获;2、你还有什么问题?五、反馈练习1、菱形具有而平行四边形不具有的性质是()A、对角线互相平分B、对边相等C、对角线互相垂直D、对角相等2、在菱形ABCD中,若两条对角线的长分别为6和8,则菱形的边长为,周长为,面积为、3、一个菱的形的边长是10,一条对角线的长分别是12,则另一条对角线长为,菱形的面积为、六、能力提升1、如图,菱形ABCD的边长为10,∠ABC=60度,求AC、BD的长菱形的面积、 A D B C2、如图,AB=CD,菱形ABCD的顶点E、F分别在AD、BC上,∠FAC=30度,求证四边形ABCD是矩形、 A E D B F C 七、作业布置。
八年级数学下册人教版18.2特殊的平行四边形优秀教学案例
1.培养学生对数学学科的兴趣,树立自信心,形成积极的数学学习态度;
2.培养学生勇于探索、坚持真理的精神,锻炼学生的意志品质;
3.培养学生团队协作、互相帮助的良好品质,提高学生的人际沟通能力;
4.通过对特殊平行四边形的探究,使学生认识到数学在实际生活中的重要性,培养学生的社会责任感。
5.教学内容的逻辑性和连贯性:教师从导入新课到讲授新知,再到学生小组讨论、总结归纳和作业小结,教学内容的安排具有逻辑性和连贯性,使学生能够系统地学习和掌握特殊平行四边形的性质及其应用。
在教学过程中,我以“以人为本”的教育理念为指导,充分考虑学生的认知规律和学习兴趣,采用多元化的教学方法和评价方式,激发学生的学习积极性,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.理解矩形、菱形、正方形的定义及其性质;
2.学会运用特殊平行四边形的性质解决实际问题;
3.掌握平行四边形到特殊平行四边形的判定方法;
3.及时反馈学生的学习情况,指导学生调整学习策略,提高学习效果。
在教学过程中,我将注重学生的反思与评价,帮助学生发现自己的优点和不足,指导学生调整学习方法,提高学生的综合能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的矩形、菱形、正方形实例,如建筑、设计、工程等,引导学生关注特殊平行四边形在现实中的应用;
在教学过程中,我将关注学生的情感态度与价值观的培养,以爱心、耐心和责任心对待每一个学生,营造和谐、民主的课堂氛围,使学生在愉悦的情感状态下学习,提高学生的情感态度与价值观。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的建筑、设计、工程等为例,引入特殊平行四边形的概念,让学生感受到数学与生活的紧密联系;
八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.3.1正方形的性质导学案新人教版
八年级数学下册第十八章平行四边形18.2 特殊的平行四边形18.2.3.1 正方形的性质导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第十八章平行四边形18.2 特殊的平行四边形18.2.3.1 正方形的性质导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第十八章平行四边形18.2 特殊的平行四边形18.2.3.1 正方形的性质导学案(新版)新人教版的全部内容。
18。
2。
3.1 正方形的性质导学案学习目标1.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;2.会应用正方形的性质解决相关证明及计算问题.重点:探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.难点:会应用正方形的性质解决相关证明及计算问题.一、自学释疑正方形的性质在使用过程中,应该注意些什么?二、合作探究探究点1:正方形的性质想一想 1。
矩形怎样变化后就成了正方形呢?你有什么发现?邻边2。
菱形怎样变化后就成了正方形呢?你有什么发现?要点归纳:正方形定义:有一组邻边_____并且有一个角是_____的__________叫正方形.想一想正方形是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有。
那你能说出正方形的性质吗?1。
正方形的四个角都是_________,四条边_________.2.正方形的对角线________且互相______________.证一证已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角。
八年级数学下册18平行四边形182特殊的平行四边形导学案新人教版
18.2特殊的平行四边形 课型: 新授课 上课时间: 课时: 1 1.已知:AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加条件是___________________.2.若四边形ABCD 为平行四边形,请补充条件 使得四边形ABCD 为菱形.3.如图1,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=2∠BOC , 若对角线 AC=6cm ,则周长= ,面积= 。
4.如图2,菱形ABCD 的边长为8cm ,∠BAD=120°,则AC= ,BD= ,面积= 。
5.如图3,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合)且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是图1 图2 图36. 已知:如图4,O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,∠AEO= .7. 如图5,四边形ABCD 是菱形. 对角线AC=8㎝,DB=6㎝,DH ⊥AB 与H. DH= 。
8.如图6,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E ,若8AD cm ,则OE 的长为 cm .图4 图59.已知如图,菱形ABCD 中,∠ADC=120°,AC=123㎝,(1)求BD 的长;(2)求菱形ABCD 的面积,(3)写出A 、B 、C 、D 的坐标.B AD C O A B C DAB DC O H 图6 A BD C EA B CO D10.如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且 DP=OC ,连结CP ,试判断四边形CODP 的形状.并证明。
如果题目中的矩形变为菱形,结论应变为什么? 如果题目中的矩形变为正方形,结论又应变为什么?11.以△ABC 的边AB 、AC 为边作等边△ABD 和等边△ ACE ,四边形ADFE 是平行四边形.① 当∠B AC 等于 时,四边形ADFE 是矩形; ② 当∠BAC 等于 时,平行四边形ADFE 不存在; ③ 当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形、正方形.B CA EFD A BD COP八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若等腰三角形的周长为15cm,其中一边为7cm,则该等腰三角形的底边长为()A.4cm B.4cm或7cm C.1cm或7cm D.7cm【答案】C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.2.已知直角三角形两边的长分别为6和8,则此三角形的周长为()A.14 B.14+C.24或14+D.14或7+【答案】C【分析】先设Rt△ABC的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.∆的第三边长为x,【详解】解:设Rt ABC①当8为直角三角形的直角边时,x为斜边,由勾股定理得,10x==,=++=;此时这个三角形的周长681024②当8为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=++=+6814故选:C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A.B.C.D.【答案】C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.4.如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 62cm,点D′到BC的距离是()A.3B.32+6C.326D.33-【答案】C【解析】分析:连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.详解:连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=3在△ABD′和△CBD′中,AB=BCBD′=BD′AD′=CD′,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(2x)cm,在Rt△GD′C中x2+(2−x)2=(3)2,解得:x1=26,x2=26(舍去),∴点D′到BC边的距离为(26)cm.故选C.点睛:此题主要考查了折叠的性质,全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.5.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是( )A.众数B.中位数C.平均数D.加权平均数【答案】A【解析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【点睛】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.6.下列四个图形中,是轴对称图形的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】根据轴对称图形的定义依次进行判断即可.【详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【点睛】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.7.某校组织开展了“吸烟有害健康”的知识竞赛,共20道竞赛题,选对得5分,不选或选错扣2分,小英得分不低于60分,设她选对了x 道题,则根据题意可列不等式为( )A .()522060x x --≤B .()522060x x --≥C .()522060x x --<D .()522060x x -->【答案】B【分析】根据题意可知最后的得分为答对的每题得5分,再扣掉错误的每题2分,之后根据题意列不等式即可.【详解】解:因为小英选对了x 题,所以这部分得分为5x ,可知错误的题数为20x -,需要被扣掉分数为2(20)x -,且不低于60分,即60≥分,故可列式()522060x x --≥;故选:B .【点睛】本题是一元一次不等式的应用,根据题意正确得出:最后得分=加分-减分,加分=答对的题目数×5,扣分=答错的题目数×2,即可解答本题. 8.已知,如图,D 、B 、C 、E 四点共线,∠ABD +∠ACE=230°,则∠A 的度数为( )A .50°B .60°C .70°D .80°【答案】A 【解析】由∠ABD +∠ACE=230°,得出∠ABC+∠ACB=130°,在△ABC 中,利用内角和等于180°即可.【详解】∵∠ABD +∠ACE=230° ∴∠ABC+∠ACB=130°∴在△ABC 中,∠ABC+∠ACB+∠A=180°,即∠A=50°.故答案选:A.【点睛】本题考查的知识点是三角形内角和,解题的关键是熟练的掌握三角形内角和.9.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A .1B .1-C .±1D .无法确定【答案】A【分析】先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可. 【详解】函数()2y k 1x k 1=++-是正比例函数, 210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键. 10.把分式方程211x x x -=+化为整式方程正确的是( ) A .22(1)1+-=x x B .22(1)1++=x xC .22(1)(1)+-=+x x x xD .22(1)(1)-+=+x x x x 【答案】C【解析】方程两边同乘最简公分母x(x+1),得:2(x+1)-x 2=x (x+1),故选C.二、填空题11.若,则的值为____. 【答案】-5【解析】利用多项式乘以多项式的运算法则计算,即可求得a 、b 的值,由此即可求得a+b的值.【详解】∵=,∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【点睛】 本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出是解决问题的关键.12.2(5)=______;33(2)=_____.【答案】5 2【分析】直接根据乘方与开方是互逆运算即可求解. 【详解】解:2(5)=5;33(2)=2【点睛】此题主要考查乘方与开方的互逆运算,正确理解乘方与开方的概念是解题关键.13.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________.【答案】17【分析】有两种情况:①腰长为3,底边长为7;②腰长为7,底边长为3,分别讨论计算即可.【详解】①腰长为3,底边长为7时,3+3<7,不能构成三角形,故舍去;②腰长为7,底边长为3时,周长=7+7+3=17.故答案为17.【点睛】本题考查等腰三角形的性质,当腰和底不明确的时候,需要分类讨论,并利用三边关系舍去不符合题意的情况.14.分解因式:29a -=__________.【答案】()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.15.若2(1)10a b -++=,则20132014a b +=___________.【答案】1【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:1.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键.16.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.17.如图,长方形ABCD 的边AD 在数轴上,21AD AB ==,,点A 在数轴上对应的数是-1,以点A 为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的数是__________.51【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得点E 表示的实数.【详解】解:∵AD 长为2,AB 长为1,∴AC=22215+=,∵A 点表示-1,∴点E 表示的实数是51-,故答案为:51-.【点睛】本题主要考查了实数与数轴和勾股定理,正确得出AC 的长是解题关键.三、解答题18.如图,D ,E 分别是等边三角形ABC 边BC 、AC 上的一点,且BD CE =,连接AD 、BE 相交于点O .(1)求证:ABD BCE ∆∆≌;(2)求AOE ∠的度数.【答案】(1)见解析;(2)60AOE =︒∠【分析】(1)根据等边三角形的性质,三条边都相等、三个内角都是60︒,即可根据边角边定理判定出ABD BCE ∆∆≌.(2)根据全等三角形的性质、三角形的外角定理进行转化即可得出AOE ∠的度数.【详解】(1)证明:∵ABC ∆是等边三角形∴AB BC =,ABC C ∠=∠在ABD ∆和BCE ∆中AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()ABD BCE SAS ∆∆≌(2)解:∵ABD BCE ∆∆≌∴CBE BAD ∠=∠∵60CBE ABE ABC ∠+∠=∠=︒∴60AOE BAD ABE ∠=∠+∠=︒【点睛】本题考查了等边三角形的性质、全等三角形的判定以及性质、三角形的外角定理等知识点,较为基础.19.如图,在长方形纸片ABCD 中,9,3AD AB ==.将其折叠,使点D 与点B 重合,点C 落在点C '处,折痕EF 交AD 于点E ,交BC 于点F .(1)求线段BE 的长.(2)求线段BF 的长.【答案】(1)1;(2)1.【分析】(1)设BE 长为x ,则,9DE BE x AE x ===-,在Rt ABE △中由勾股定理列方程,解方程即可求得BE 的长;(2)由//AD BC 得出DEF BFE ∠=∠,由折叠的性质得出DEF BEF ∠=∠,所以BEF BFE ∠=∠,得出BF BE =【详解】(1)设BE 长为x ,则,9DE BE x AE x ===-.在Rt ABE △中,90A ∠=︒,222AB AE BE +=,即2223(9)x x +-=. 解得5x =,所以BE 的长为1.(2)∵四边形ABCD 是长方形,//AD BC ∴.DEF BFE ∴∠=∠.由折叠,得DEF BEF ∠=∠,BEF BFE ∴∠=∠.5BF BE ∴==.【点睛】本题考查了折叠的性质和应用,勾股定理的性质,解题的关键是灵活运用平行的性质、勾股定理等几何知识来解答.20.规定一种新的运算“x A JX B →+∞”,其中A 和B 是关于x 的多项式.当A 的次数小于B 的次数时,0x A JX B→+∞=;当A 的次数等于B 的次数时,x A JXB →+∞的值为A 、B 的最高次项的系数的商;当A 的次数大于B 的次数时,x A JX B →+∞不存在.例如:210x J x X →+∞-=,22223121x JX x x x →+∞++-=(1)求3232x x JX x x →+∞+-的值. (2)若223410(2)11A x xB x x -=-÷--,求:x A JX B →+∞的值. 【答案】(1)0;(2)12【分析】(1)由A 的次数小于B 的次数,可得答案;(2)根据已知条件,化简分式即可求出答案.【详解】(1)32A x =+,32B x x =-.∵A 的次数小于B 的次数,∴32320x x JX x x →+∞+=-. (2)223410(2)11A x xB x x -=-÷-- 2232(25)()1(1)(1)x x x x x x ---=÷-+- 25(1)(1)12(25)x x x x x x -+-=⨯-- 12x x+=, ∵A 的次数等于B 的次数∴12x A JX B →+∞= 【点睛】本题考查了分式的混合运算,熟练分解因式是解题的关键.21.如图,在ABC 中,4654,B C AD ∠=︒∠=︒,平分BAC ∠交BC 于点D ,点E 是边AC 上一点,连接DE ,若40ADE ∠=︒,求证://DE AB .【答案】证明见解析【分析】先求出∠BAC 的度数,进而得出∠BAD ,因为∠BAD=40°=∠ADE ,由“内错角相等,两直线平行”即可判断.【详解】证明:在ABC ∆中,46,54,B C ︒︒∠=∠= 180465480BAC ︒︒︒︒∴∠=--=,AD 平分,BAC ∠ 1402BAD BAC ︒∴∠=∠=, 40,ADE ︒∠=.ADE BAD ∴∠=∠//.DE AB ∴【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键. 22.观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④ ......(1)请按以上规律写出第4个算式;(2)写出第n 个算式;(3)你认为(2)中的式子一定成立吗?请证明.【答案】(1)4×6-52=24-25=-1;(2)n(n+2)-(n+1)2=-1;(3)见解析.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中发现的规律,由特殊到一般,得出结论;(3)利用整式的混合运算方法加以证明.【详解】解:(1)第4个算式为:4×6−52=24−25=−1;(2)n(n+2)-(n+1)2=-1;(3)一定成立.理由:n (n +2)−(n +1)2=n 2+2n−(n 2+2n +1)=n 2+2n−n 2−2n−1=−1.故n(n+2)-(n+1)2=-1成立.【点睛】本题是规律型题,考查了整式的混合运算的运用.关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.23.已知 2x a x x c +-+()() 的积不含 2x 项与 x 项,求 2x a x x c +-+()()的值是多少? 【答案】x 3+1【解析】试题分析:先根据多项式乘多项式的法则计算,再让x 2项和x 项的系数为0,求得a ,c 的值,代入求解.解:∵(x+a )(x 2﹣x+c ),=x 3﹣x 2+cx+ax 2﹣ax+ac ,=x 3+(a ﹣1)x 2+(c ﹣a )x+ac ,又∵积中不含x 2项和x 项,∴a ﹣1=0,c ﹣a=0,解得a=1,c=1.又∵a=c=1.∴(x+a )(x 2﹣x+c )=x 3+1.考点:多项式乘多项式.24.甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.其中,甲的折线图为虚线、乙的折线图为实线.甲、乙两人的数学成绩统计表第1次 第2次 第3次 第4次 第5次 甲成绩90 40 70 40 60 乙成绩 70 50 70 a 70(1)a = ,x 乙 ;(2)请完成图中表示乙成绩变化情况的折线;(3)S2甲=260,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.【答案】(1)a=40,=x乙60;(2)见解析;(3)160,乙,乙;【分析】(1)由折线统计图直接可得a的值,利用平均数的计算公式计算即可;(2)根据乙的数据补全折线统计图,并注明图例,(3)计算乙的方差,比较做出选择.【详解】解:(1)根据折线统计图得,a=40;x乙=(50+40+70+70+70)÷5=60;故答案为:40,60;(2)甲、乙两人考试成绩折线图,如图所示:(3)S2乙=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160,∵S2甲=260,∴S2乙<S2甲,∴乙的成绩稳定,所以乙将被选中.故答案为:160,乙、乙.【点睛】本题考查折线统计图和统计表、平均数和方差,解题的关键是掌握折线统计图和统计表的信息读取、平均数和方差的计算.25.如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.【答案】见解析【解析】试题分析:根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.试题解析:如图所示,八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是()A.所有命题都是定理B.三角形的一个外角大于它的任一内角C.三角形的外角和等于180°D.公理和定理都是真命题【答案】D【分析】直接利用命题与定理的定义以及三角形的外角的性质分析得出答案.【详解】解:A、命题不一定都是定理,故此选项错误;B、三角形的一个外角大于它不相邻的内角,故此选项错误;C、三角形的外角和等于360°,故此选项错误;D、公理和定理都是真命题,正确.故选:D.【点睛】此题主要考查了三角形外角的性质以及命题与定理,正确掌握相关定义是解题关键.2.下列说法错误的个数是()a=;④数轴上的点都表示有理数A.1个B.2个C.3个D.4个【答案】C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3=,③错误;a数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.3.如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,3),棋了“马”的坐标为(1,3),则棋子“炮”的坐标为()A .(3,2)B .(3,1)C .(2,2)D .(﹣2,2)【答案】A【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:如图所示:棋子“炮”的坐标为(3,2).故选:A .【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.4.如果把分式-xx y 中的x 、y 的值都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .缩小为原来的一半C .扩大为原来的4倍D .保持不变【答案】D【分析】根据分式的基本性质,求得x ,y 的值均扩大为原来的2倍式子的值,与原式比较即可求解.【详解】把分式-xx y 中的x 、y 的值都扩大为原来的2倍,可得,22222()xx xx y x y x y ==---; ∴把分式-xx y 中的x 、y 的值都扩大为原来的2倍,分式的值不变.故选D.【点睛】本题考查了分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.5.一个正多边形,它的每一个外角都等于45°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形 【答案】C【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【详解】解:360÷45=8,所以这个正多边形是正八边形.故选C .6.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A .(3,4)B .(4,3)C .(3,4)--D .(4,3)-【答案】C【分析】明确A 、B 的坐标位置,即可判定坐标.【详解】以B 为原点建立平面直角坐标系,则A 点的坐标为(3,4);若以A 点为原点建立平面直角坐标系,则B 点在A 点左3个单位,下4个单位处.故B 点坐标为(-3,-4).故答案为C .【点睛】此题主要考查平面直角坐标系中用坐标表示位置,熟练掌握其性质,即可解题.7.若()()253y y y my n -+=++,则m ,n 的值分别为( ) A .2,15m n ==B .2,15m n ==-C .2,15m n =-=-D .2,15m n =-=【答案】C 【分析】先根据多项式乘以多项式的法则计算()()53y y -+,再根据多项式相等的条件即可求出m 、n 的值.【详解】∵()()22533515215y y y y y y y -+=+--=--, ∵()()253y y y my n -+=++, ∴22215y my n y y ++=--,∴2m =-,15n =-.故选:C .【点睛】本题主要考查了多项式乘以多项式的法则:()()a b m n am an bm bn ++=+++.注意不要漏项,漏字母,有同类项的合并同类项.8.如图,在ABC ∆中,90ACB ∠=︒,30A ∠=︒,2CE =,边AB 的垂直平分线交AB 于点D ,交AC 于点E ,那么AE 的为( )A .6B .4C .3D .2【答案】B 【解析】连接BE ,利用垂直平分线的性质可得AE=BE ,从而∠EBA=∠A=30°,然后用含30°角的直角三角形的性质求解.【详解】解:连接BE .∵边AB 的垂直平分线交AB 于点D ,交AC 于点E∴AE=BE∴∠EBA=∠A=30°又∵在ABC ∆中,90ACB ∠=︒,30A ∠=︒∴∠CBA=60°,∴∠CBE=30°∴在ABC ∆中,∠CBE=30°BE=2CE=4即AE=4故选:B .【点睛】本题考查垂直平分线的性质及含30°直角三角形的性质,题目比较简单,正确添加辅助线是解题关键.9.下列命题是假命题的是( )A .同角(或等角)的余角相等B .三角形的任意两边之和大于第三边C .三角形的内角和为180°D .两直线平行,同旁内角相等【答案】D【解析】利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.【详解】A 、同角(或等角)的余角相等,正确,是真命题;B 、三角形的任意两边之和大于第三边,正确,是真命题;C 、三角形的内角和为180°,正确,是真命题;D 、两直线平行,同旁内角互补,故错误,是假命题,故选D .【点睛】考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.10.如图,OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( )A .PC=PDB .OC=ODC .OC=OPD .∠CPO=∠DPO【答案】C 【分析】已知OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,根据角平分线的性质定理可得PC=PD ,在Rt △ODP 和Rt △OCP 中,利用HL 定理判定Rt △ODP ≌Rt △OCP ,根据全等三角形的性质可得OC=OD ,∠CPO=∠DPO ,由此即可得结论.【详解】∵OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,∴PC=PD (选项A 正确),在Rt △ODP 和Rt △OCP 中,DP CP OP OP =⎧⎨=⎩∴Rt △ODP ≌Rt △OCP ,∴OC=OD ,∠CPO=∠DPO (选项B 、D 正确),只有选项C 无法证明其正确.故选C.【点睛】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt △ODP ≌Rt △OCP 是解决本题的关键.二、填空题11.如图,AB AC =,AB 的垂直平分线交AB 于点E ,交AC 于点D ,若40A ∠=︒,则DBC ∠=______°.【答案】1【分析】根据等边对等角和三角形的内角和定理即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,从而得出∠A=∠DBA=40°,即可求出DBC ∠.【详解】解:∵AB AC =,40A ∠=︒∴∠ABC=∠ACB=()1180702A ︒-∠=︒ ∵DE 垂直平分AB∴DA=DB∴∠A=∠DBA=40°∴∠DBC=∠ABC -∠DBA=1°故答案为:1.【点睛】此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和线段垂直平分线上的点到这条线段两个端点的距离相等是解决此题的关键.12.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).【答案】真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .【答案】1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去.②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=1cm .故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14.对于实数p ,q , 我们用符号min {p , q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {2x+1, 1}=x , 则x=___.【答案】x=-1或x=1【分析】根据题意,对2x +1和1的大小分类讨论,再根据题意分别列出方程即可求出结论.【详解】解:当2x+1<1,即x <0时,min {2x+1, 1}=2x+1∴2x+1=x解得:x=-1;当2x+1>1,即x >0时,min {2x+1, 1}=1∴x=1;综上所述:x=-1或x=1故答案为:x=-1或x=1.【点睛】此题考查的是一元一次方程的应用,掌握题意和分类讨论的数学思想是解决此题的关键.15.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若150AFC BCF ∠+∠=,则AFE BCD ∠+∠的大小是__________.【答案】300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC ,∠BCF=∠DCF ,再根据题目条件∠AFC+∠BCF=150°,可得到∠AFE+∠BCD 的度数.【详解】解:∵六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,∴∠AFC=∠EFC ,∠BCF=∠DCF ,∵∠AFC+∠BCF=150°,∴∠AFE+∠BCD=150°×2=300°,故答案为:300°.【点睛】此题主要考查了轴对称的性质,关键是掌握轴对称图形的对称轴两边的图形能完全重合.1610,宽为2,则该矩形的面积为_________. 【答案】5【分析】直接利用矩形的性质结合二次根式乘法运算法则计算即可. 10,宽为2, 1022=45 故答案为:5【点睛】本题考查了二次根式的应用,掌握矩形的性质是解题的关键.17212(3)0x y -+-=xy _____. 【答案】6【分析】先根据算术平方根的非负性、偶次方的非负性求出x 、y xy 根的定义即可得.【详解】由题意得:120,30x y -=-=,解得12,3x y ==, 则1236xy =⨯=,因此,xy 的平方根是6±,故答案为:6±.【点睛】本题考查了算术平方根的非负性、平方根等知识点,掌握理解算术平方根的非负性是解题关键.三、解答题18.某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y 1(单位:元)与用电量x (单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y 2(单位:元)与用电量x (单位:元)之间满足如表所示的一次函数关系.(1)求y 2与x 的函数关系式;并直接写出当0≤x ≤180和x >180时,y 1与x 的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.低谷期用电量x 度… 80 100 140 … 低谷期用电电费y 2元 … 20 25 35 …【答案】(1)y 2与x 的函数关系式为y =1.25x ;()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩;(2)王先生一家在高峰期用电251度,低谷期用电111度.【分析】(1)设y 2与x 的函数关系式为y =k 2x+b 2,代入(81,21)、(111,25)解得y 2与x 的函数关系式;设当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ;当x >181时,设y 1=k 1+b 1代入(181,91)、(281,151),即可y 1与x 的函数关系式.(2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意列出方程求解即可.【详解】(1)设y 2与x 的函数关系式为y =k 2x+b 2,根据题意得2222802010025k b k b +=⎧⎨+=⎩, 解得220.250k b =⎧⎨=⎩ , ∴y 2与x 的函数关系式为y =1.25x ;当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ;当x >181时,设y 1=k 1+b 1,根据题意得111118090280150k b k b +=⎧⎨+=⎩, 解得110.618k b =⎧⎨=-⎩ , ∴y 1与x 的函数关系式为y =1.6x ﹣18;∴()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩; (2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意得3500.5+0.25150x y x y +=⎧⎨=⎩, 解得250100x y =⎧⎨=⎩. 答:王先生一家在高峰期用电251度,低谷期用电111度.【点睛】本题考查了一元一次方程和二元一次方程组的实际应用,掌握一元一次方程和二元一次方程组的性质以及解法是解题的关键.19.某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%; 方案二:第一、二次均提价2p q +%; 如果设原价为1元,(1)请用含p ,p 的式子表示提价后的两种方案中的产品价格;(2)若p 、q 是不相等的正数,设p%=m ,q%= n ,请你通过演算说明:这两种方案,哪种方案提价多?【答案】(1)方案一()()1%1%p q ++:元;方案二:(1+2p q +%)2元;(2)方案二提价多. 【分析】(1)根据各方案中的提价百分率,即可得到答案;。
2018春人教版数学八年级下册18.2《特殊平行四边形》word导学案
18.2.1 矩形学习目标知识:掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.能力:会初步运用矩形的概念和性质来解决有关问题.情感:渗透运动联系、从量变到质变的观点学习重点:掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.学习难点:会初步运用矩形的概念和性质来解决有关问题.教学流程【导课】平行四边形有哪此性质?边:平行四边形的( )角:平行四边形的( )对角线:平行四边形( )对称性:( )【多元互动合作探究】1、矩形的定义.教具演示活动平行四边形的的变化过程,当变化到一个角是直角时停止,让学生观察这是什么图形?引出本课题及矩形定义:( )平行四边形叫做( ) (通常也叫长方形).思考:为什么不说有两个、三个、四个角是直角呢?2、探究矩形的性质:(自学课本94页探究)矩形是特殊的平行四边形有一个角是( )的平行四边形,所以具有平行四边形的所有性质,课前也作了回顾。
我们是按照边、角、对角线三个元素去描述的。
通过和学生一起逐一探究得到矩形的性质,并让学生口述证明角:对角线;对称性:3、探究直角三角形斜边上的中线的性质:提问:⑴如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO之间的大小关系吗?OED CBA这四条线段与AC 、BD 又是什么关系呢?如果只看直角三角形ABC , BO 是什么边上的什么线?你能说说这个结论吗?⑵通过和学生一起回答上面的问题得到: 直角三角形斜边上的中线的性质:【训练检测 目标探究】1、矩形具有而平行四边行不具有的的性质是( )(A )对角相等 (B 对角线相等 (C )对角线互相平分 (D )对边平行且相等2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是( )(A )20° (B )40° (C )60° (D )80°3、两条直角边的长分别为12和5,则斜边上的中线长为( )(A )26 (B )13 (C )8。
人教版数学八年级下册18.2《特殊平行四边形》教学设计
人教版数学八年级下册18.2《特殊平行四边形》教学设计一. 教材分析人教版数学八年级下册18.2《特殊平行四边形》是学生在学习了平行四边形的性质和判定之后,进一步研究特殊平行四边形的特征和应用。
本节内容主要包括矩形、菱形、正方形的性质,以及它们之间的关系和转化。
教材通过丰富的图形和实例,引导学生探索和发现特殊平行四边形的性质,培养学生的观察能力、逻辑思维能力和解决问题的能力。
二. 学情分析学生在八年级上学期已经学习了平行四边形的性质和判定,对平行四边形有了初步的认识。
但特殊平行四边形的性质和判定对他们来说还是新的内容,需要通过实例和探究活动来进一步理解和掌握。
学生在学习过程中应具备观察和分析图形的能力,能够运用已学的知识解决实际问题。
三. 教学目标1.了解矩形、菱形、正方形的定义和性质。
2.掌握特殊平行四边形的判定方法。
3.培养学生的观察能力、逻辑思维能力和解决问题的能力。
4.能够运用特殊平行四边形的性质解决实际问题。
四. 教学重难点1.特殊平行四边形的性质和判定。
2.矩形、菱形、正方形之间的关系和转化。
五. 教学方法1.情境教学法:通过展示实际生活中的特殊平行四边形,激发学生的学习兴趣,引导学生主动探索。
2.问题驱动法:教师提出问题,引导学生思考和讨论,培养学生解决问题的能力。
3.合作学习法:学生分组讨论和探究,培养学生的团队协作能力。
4.直观教学法:利用图形和教具,直观展示特殊平行四边形的性质和判定。
六. 教学准备1.教学课件:制作课件,展示特殊平行四边形的图形和实例。
2.教学道具:准备一些特殊的平行四边形模型,如矩形、菱形、正方形等。
3.练习题:准备一些有关特殊平行四边形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些特殊的平行四边形,如矩形、菱形、正方形等,引导学生观察和思考:这些图形有什么特殊的性质?它们之间的关系如何?2.呈现(10分钟)教师简要介绍矩形、菱形、正方形的定义和性质,引导学生通过观察和分析,发现它们之间的关系和转化。
八年级数学下册 18.2.2 特殊的平行四边形导学案 新人教版(2021学年)
八年级数学下册18.2.2 特殊的平行四边形导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册18.2.2 特殊的平行四边形导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册18.2.2 特殊的平行四边形导学案(新版)新人教版的全部内容。
18。
2。
2 特殊的平行四边形预习案一、学习目标(1)在对矩形性质认识的的基础上,探索并掌握矩形的判别方法(2)应用矩形判定方法,解决简单的实际问题。
二、预习内容预习课本相关内容。
矩形的判定定理: 。
根据概念进行判断.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是( )A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形三、预习检测1、下列说法正确的个数为( )个①两组对边分别相等的四边形是平行四边形②对角线相等的四边形是矩形③对角线互相垂直的平行四边形是菱形④正方形是轴对称图形,有2条对称轴.A.1 B.2ﻩC.3 D.42在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD3、下列命题中,假命题是( )A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形探究案一、合作探究(15min)复习: 矩形具有哪些性质?哪些是平行四边形所没有的?列表比较:平行四边矩形形边角对角线【矩形的判定定理】除了矩形的定义:有一个角是直角的平行四边形是矩形,如何判定一个四边形是矩形呢?1、工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?猜想:对角线相等的平行四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.1 矩形(1)学习目标知识:掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.能力:会初步运用矩形的概念和性质来解决有关问题.情感:渗透运动联系、从量变到质变的观点学习重点:掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.学习难点:会初步运用矩形的概念和性质来解决有关问题.教学流程[:中国教育出版网【导课】平行四边形有哪此性质?边:平行四边形的( )角:平行四边形的( )对角线:平行四边形( )对称性:( )【多元互动合作探究】1、矩形的定义.教具演示活动平行四边形的的变化过程,当变化到一个角是直角时停止,让学生观察这是什么图形?引出本课题及矩形定义:( )平行四边形叫做( ) (通常也叫长方形).思考:为什么不说有两个、三个、四个角是直角呢?2、探究矩形的性质:(自学课本94页探究)矩形是特殊的平行四边形有一个角是( )的平行四边形,所以具有平行四边形的所有性质,课前也作了回顾。
我们是按照边、角、对角线三个元素去描述的。
通过和学生一起逐一探究得到矩形的性质,并让学生口述证明角:对角线;对称性:3、探究直角三角形斜边上的中线的性质:提问:⑴如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO之间的大小关OED CBA系吗?这四条线段与AC 、BD 又是什么关系呢?如果只看直角三角形ABC , BO 是什么边上的什么线?你能说说这个结论吗?⑵通过和学生一起回答上面的问题得到: 直角三角形斜边上的中线的性质:【训练检测 目标探究】1、矩形具有而平行四边行不具有的的性质是( )(A )对角相等 (B 对角线相等 (C )对角线互相平分 (D )对边平行且相等2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是( )(A )20° (B )40° (C )60° (D )80°3、两条直角边的长分别为12和5,则斜边上的中线长为( )(A )26 (B )13 (C )8。
5 (D )6。
54、已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,则矩形对角线的长为 cm5如果矩形的一条对角线的长为8 cm ,两条对角线的一个交角为120°,求矩形的边长。
(精确到0。
01 cm )6、如图:矩形ABCD 的两条对角线相交于点O ,C E ‖OB 交AB 的延长线于点E ,试证明AC 与CE 的大小关系。
【迁移应用 拓展探究】1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )A 、22.5°B 、45°C 、30°D 、60°2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为 。
3、如图5,在矩形ABCD 中,4,30,=︒=∠⊥DE ADE CE DE ,求这个矩形的周长。
4、如图,将矩形ABC D 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD =8,AB=4,求△BED 的面积。
布置作业 板书设计A B CDEE DCBAF教后反思授课时间:累计课时:18.2.1 矩形(2)学习目标知识:理解并掌握矩形的判定方法.能力:使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题情感:进一步培养学生的分析能力学习重点:理解并掌握矩形的判定方法.学习难点:使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题教学流程[:中国教育出版网【导课】1.矩形是轴对称图形,它有____________条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO的周长为_____________.【多元互动合作探究】1、自主学习指导预习教材第95-96页,思考并回答下列问题:2、想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线3、矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢?请说出最基本的方法:矩形的判定方法1:符号语言:矩形的判定方法2符号语言:矩形的判定方法3:符号语言:【训练检测 目标探究】1.下列说法正确的是( ).(A )有一组对角是直角的四边形一定是矩形 (B )有一组邻角是直角的四边形一定是矩形(C )对角线互相平分的四边形是矩形 (D )对角互补的平行四边形是矩形 2.满足下列条件( )的四边形是矩形。
A .有三个角相等 B.有一个角是直角 C.对角线相等且互相垂直 D.对角线相等且互相平分 3判断(1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( ) (6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形; ( ) (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( ) *如图,已知AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE , 求证:四边形BCED 是矩形.(用两种证法)(提示:证法1.连结DC ,BE ,利用先证平行四边形再证DC=BC 可得,证法2.从定义出发)【迁移应用 拓展探究】1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量其中三角形是否都为直角 2、能判断四边形是矩形的条件是( )A 、两条对角线互相平分B 、两条对角线相等C 、两条对角线互相平分且相等D 、两条对角线互相垂直。
3、已知四边形ABCD 中AC ⊥BD,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求证:四边形EFGH 是矩形。
4、已知□ABCD 的对角线AC ,BD 相交于O ,△ABC 是等边三角形,cm 4 AB ,求这个平行四边形的面积布置作业板书设计教后反思授课时间:累计课时:18.2.2 菱形(1)学习目标知识:理解菱形的定义;探究归纳菱形的性质。
能力:会用菱形的性质进行推理与计算情感:通过对菱形的探索学习,体会它的内在美和应用美。
学习重点:理解菱形的定义;探究归纳菱形的性质。
学习难点:会用菱形的性质进行推理与计算教学流程[:中国教育出版网【导课】请同学们画出一个平行四边形,使它的相邻的两边相等,通过观察说明它与我们前面学过的平行四边形有什么不同的地方?【多元互动合作探究】1、自学教材97页—100页内容。
2、动手操作,课本97页探究(小组合作交流)3、探索得出:(1)的平行四边形叫菱形(2)作出你所做菱形的对角线,探索a对称性:b边:c对角线:你是怎样发现的?又是怎样验证的?(小组交流后展示)4、矩形与菱形有什么区别与联系?【训练检测目标探究】1、已知菱形的一边长为,4厘米,则它的周长为2、棱形的周长为8.4cm,相邻两角之比为5:1,那么菱形一组对边之间的距离为()A、1.05cmB、0.525cmC、4.2cmD、2.1cm3、菱形周长为40,一条对角线长为16,则另一条对角线长为 ,这个菱形的面积为。
4、菱形ABCD中∠A=120°,周长为14.4,则较短对角线的长度为。
5、菱形的面积为50平方厘米,一个角为30°,则它的周长为。
6、在菱形ABCD中,∠BAD=80°,AB的垂直平分线交A C于F,交AB于E,则,∠CDF=()A、80°B、70°C、65°D、50°7、小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。
小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()A、小明、小亮都正确B、小明正确,小亮错误C、小明错误,小亮正确D、小明、小亮都错误8、在菱形ABCD中,对角线AC,BD交于点O,已知AC=5,BD=6,求菱形的面积。
【迁移应用拓展探究】1、已知菱形的一条对角线与边长相等,则菱形四个角的度数分别为2、在四边形ABCD中,若已知AB∥CD,则再增加条件即可使四边形ABCD成为平行四边形。
若再补充条件__________,则四边形ABCD为菱形3、下列命题中是真命题的是()A)对角线互相平分的四边形是菱形B)对角线互相平分且相等的四边形是菱形C)对角线互相垂直的四边形是菱形D)对角线互相垂直平分的四边形是菱形。
4、在菱形ABCD中,∠BAD=2∠B,试求出∠B的度数,并说明△ABC是等边三角形。
5、在菱形ABCD中,对角线AC,BD交于点O,已知AB=5,OA=4,OB=3,求这个菱形的周长与两条对角线的长度。
布置作业板书设计教后反思授课时间:累计课时:18.2.2 菱形(2)学习目标知识:掌握菱形的判定方法能力:能弄懂各种方法的推理依据.情感:能应用性质和判定解决有关问题.学习重点:掌握菱形的判定方法学习难点:能应用性质和判定解决有关问题.教学流程[:中国教育出版网【导课】矩形的判定定理:从角考虑:(1)____________________________________的平行四边形是矩形。
从对角线考虑:(2)_______________________________的平行四边形是矩形。
从角考虑:(3)__________________________________的四边形是矩形。
【多元互动合作探究】(一)自主学习用5分钟的时间看课本99页的内容,能够说出菱形的判定方法,小组互相提问(二)小组合作1、菱形的定义判定:有一组邻边__________的平行四边形是菱形.几何表示:AB DC 2、菱形判定方法1: ___________________平行四边形是菱形.应用判定方法1时,要注意其性质包括两个条件:(1)是平行四边形;(2)两条对角线互相垂直.已知:平行四边形ABCD ,对角线AC ⊥BD ,求证:四边形ABC D 是菱形证明:在ABCD 中, OB=OD ∵AC ⊥BD∴∠AOB____∠AOD 在△AOB 与△AOD 中, ∴四边形ABCD 是菱形思考:对角线互相垂直的四边形是菱形吗?为什么? _____________________________________3.画一个菱形,使它的边长为6cm 。